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Abstract

The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes
affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing
and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information
content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between
excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing
frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short
delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as
temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest
that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about
the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal
or a rate code.
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Introduction

The Cornus Ammonis 1 (CA1) region serves as the output of the

hippocampus and has been associated with several memory

processes including working memory [1,2,3,4], acquisition and

retrieval of contextual fear conditioning [4] as well as spatial and

object novelty detection [5,6,7]. Therefore, understanding infor-

mation coding in CA1 neurons is critical for the interpretation of

hippocampal output and its possible role in these memory processes.

CA1 pyramidal neurons receive sensory information via the

perforant path (PP) or temporoammonic (TA) pathway from the

Entorhinal Cortex (EC) and processed intra-hippocampal input

from CA3 neurons through the Schaffer Collaterals (SC) pathway.

The interplay between EC and CA3 signals has been shown to

modulate the discharge pattern of CA1 pyramidal neurons in a bi-

directional way [8,9,10,11,12,13,14]: for example, when the TA

pathway is activated a few hundreds of milliseconds before the SC

pathway, the propagation of supratheshold SC signals is blocked

[12]; on the contrary, when the TA pathway is activated a few tens

of milliseconds before the SC pathway, the propagation of

subthreshold SC signals is facilitated [9]. This negative or positive

modulation of excitability may be attributed to the domination of

either the inhibitory (GABAergic) or the excitatory component of

TA-mediated inputs and has been suggested to act as a gating

mechanism [10]. It has also been reported that inhibition

modulates action potential firing rate by blocking dendritic

calcium activity [15].

In addition to pathway-specific interactions, the dendritic

arrangement of activated synapses has also been shown to

influence neuronal output. Both experimental and computational

studies suggest that activation of synapses in clusters within a few

dendritic compartments leads to much stronger somatic responses

than activation of diffusely arranged synapses [16,17,18,19,20].

This arrangement-dependent modulation of excitability has been

associated with the formation of long-term memory engrams [21],

the transfer of spatial information from EC to CA1 [22], the

binding of behaviorally linked information [23] and has given rise

to the ‘branch strength potentiation’ as a new plasticity mechanism

for storing complex characteristics of the synaptic input [24].

Finally, results from the barn owl auditory system provide one of

the first direct evidence about the clustering of axo-dendritic

contacts in response to behaviorally relevant learning signals [25].

Since hippocampal firing patterns are known to vary depending

on the ongoing memory process and the behavioral state of the

animal [26,27,28,29], the interplay between lamina-specific

signals, which can alter the response of pyramidal neurons from

regular spiking to bursting or activity blockade, is likely to play a

key role in information processing in the hippocampus. In this

work, we use a detailed compartmental model of a CA1 pyramidal

neuron to investigate the possibility that the interplay between

extra-hippocampal (EC) and intra-hippocampal (CA3) signals that

vary in their spatio-temporal characteristics may serve as a

substrate for information coding.
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Results

In order to investigate the effect of temporal and spatial

variability of lamina-specific inputs on the firing properties of CA1

pyramidal neurons we simulate synaptic stimulation of the

Stratum Radiatum (SR) and Stratum Lacunosum Moleculare

(SLM) layers (0–290 and 385–470 microns, (0–2.9?1024 and 3.85–

4.7?1024 m) from the soma, respectively) in a morphologically and

biophysically detailed model cell (see Methods). We use 84%

excitatory and 16% inhibitory synapses in the SLM layer and 75%

excitatory and 25% inhibitory in the SR layer, according to the

anatomical data of [30]. Distal dendrites of CA1 neurons in the

SLM layer predominately receive GABAergic input from

neurogliaform (NG) interneurons[31,32] and perforant path-

associated cells [31] while the SR apical trunk receives inhibitory

input mostly from apical dendrite innervating cells [33] [34], PV

and somatostatin positive bistratified cells [35] and ivy cells [36].

NG interneurons in young animals exhibit GABAB-dependent

depression of EPSCs after high-frequency stimulation of the

perforant path and respond with high frequency bursts when

activated by strong current pulses [32]. Parvalbumin-containing

neurons (basket cells) innervating the proximal dendritic and

somatic regions of CA1 neurons generate primarily fast IPSPs

characteristic of GABAA receptors and follow pyramidal cell

discharges by a monosynaptic delay both in vitro [37] and in vivo

[38]. We use the stimulation protocol shown in Figure 1A, which

was first described by Dvorak-Carbone and Schuman [12] and

takes into account the main activation patterns of inhibitory as well

as excitatory input to CA1 pyramidal neurons. According to this

protocol, excitatory and inhibitory synapses in the SLM layer are

stimulated with subthreshold bursts (each burst contains 10 events

at 100 Hz and leads to ,2 mV depolarization) delivered at a

frequency of 1 Hz for 10 seconds. Excitatory and inhibitory

synapses in the SR layer receive 1 Hz stimulation (1 event per

second, for 10 seconds) capable of inducing regular spiking at 1–3

Hz for 10 seconds. In our set of experiments, the two layers are

stimulated with 34 different delays ranging from 0–450 ms (0–

0.45 s), with the SLM layer being activated first, and four different

synaptic arrangements (fully diffused, fully clustered, SR clustered

and SLM clustered) in which synapses are either randomly

scattered throughout each layer or clustered within a few

branches. Both excitatory (containing AMPA and NMDA

receptors) and inhibitory (containing GABAA or GABAB recep-

tors) synapses are used in the SR and SLM layers as described in

the Methods section. For each different combination of temporal

delay and type of synaptic arrangement, we perform 100 trials in

which the exact synapse locations vary at random, resulting in a

total of 13,600 simulated firing patterns. Representative model

responses to SLM, SR and SLM+SR stimulation recorded at the

cell body are shown in Figure 1B.

The SR delay acts as a temporal switch between neuronal
excitability modes

To examine the effect of delayed and layer-specific synaptic

activation on the excitability of the model neuron, we record its

average firing frequency ( ff ) for the fully diffused arrangement

across the 34 different delays. For each delay, ff is calculated over

62 repetition trials (see Methods). As shown in Figure 1C, the

average ff of the model neuron is strongly modulated by the delay

between the two stimulated layers and this modulation can be

described by a sigmoidal activation function (see Table 1, FExp_1).

For short delays (0–90 ms (0–0.09 s)), ff is clearly greater than

baseline (1 Hz), for intermediate delays (100–190 ms (0.1–0.19 s)),

ff falls off exponentially, and for long delays (200–300 ms (0.2–

0.3 s)), ff remains below the baseline exhibiting the ‘spike blocking’

phenomenon, in accordance with previous work [12,39] (also see

Figure S6 in Text S1). These results suggest that the effect of

preceding SLM stimulation on low frequency SR-induced activity

depends heavily on the delay of SR stimulation and changes from

facilitation (short delays) to suppression (long delays) according to a

sigmoidal function. A similar facilitation of the model’s somatic

responses, associated with the generation of dendritic plateau

potentials, was also shown using a theta-burst stimulation protocol

(see Figure 3 in [40]) and was recently verified experimentally by

[41]. Taken together, these results show that the response of the

single neuron model to a simple protocol can replicate findings

from different experimental groups and different experimental

conditions, including both the facilitation and suppression of CA1

neuronal activity depending on the temporal delay between SR

and SLM signals [9,12,41].

To examine whether the excitability modulation exerted by the

SR delay is affected by the spatial distribution of synaptic contacts,

we repeat the experiment for all four synaptic arrangements and

find a similar sigmoidal shaped modulation (Figure 2 and Table 1).

The average firing frequency as a function of the temporal delay for

the fully diffused (Exp1, filled circles) and fully clustered (Exp2, open

circles) arrangements are shown in Figure 2A. For short delays (0–

90 ms (0–0.09 s)) both arrangements result in a similar increase

in excitability (ffExp1~4:84+0:033Hz, ffExp2~4:77+0:084Hz)

while for intermediate (100–190 ms, (0.1–0.19 s)) as well as longer

delays (200–300 ms (0.2–0.3 s)) the average firing frequency of the

model is significantly different between the two experiments (see

Table S1 in Text S1). Moreover, in the fully clustered case, ff

remains well above the baseline for all temporal delays, suggesting

that the spike blocking phenomenon does not occur. Note that for

delays longer than 160 ms, the average firing frequency of the

model cell is clearly different for clustered versus diffused

arrangements.

To determine which layer-specific synaptic arrangement may be

responsible for the differences seen between Exp1 and Exp2, in the

next simulation (Exp3) synapses are clustered only in the SR layer,

while in Exp4 synapses are clustered only in the SLM layer. We

find that the average firing frequency of the model in Exp3 and

Author Summary

Pyramidal neurons in the hippocampus are crucially
involved in learning and memory functions, but the ways
in which they contribute to the processing of sensory
inputs and their internal representation remain mostly
unclear. The principal neurons of the CA1 region of the
hippocampus are surrounded by at least 21 different types
of interneurons. This feature, together with the fact that
CA1 pyramidal dendrites associate two major glutamater-
gic inputs arriving from the entorhinal cortex, makes it
laborious to track the ‘how’ and ‘what’ of synaptic
integration. The present study tries to shed light on the
‘what’, that is, the information content of the CA1
discharge pattern. Using a detailed biophysical CA1
neuron model, we show that the output of the model
neuron contains spatial and temporal features of the
incoming synaptic input. This information lies in the
temporal pattern of the inter-spike intervals produced
during the bursting activity which is induced by the
temporal coincidence of the two activated synaptic
streams. Our findings suggest that CA1 pyramidal neurons
may be capable of capturing features of the ongoing
network activity via the use of a temporal code for
information transfer.

Information Coding in a Single Pyramidal Neuron
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Exp4 is significantly different across all temporal delays (see Table

S1 in Text S1). Moreover, model responses for the SR clustered

case are almost identical to the responses for the fully clustered

arrangement: ff is above baseline (no spike blocking) for all

temporal delays in both arrangements (Figure 2A and 2B, open

circles) and there is no statistical difference between the two curves

(Figure 2C, open circles and Table S1 in Text S1). On the

contrary, clustering in the SLM results in a general reduction of

the average firing frequency across all delays and leads to more

than 150 ms (0.15 s) prolongation of the excitability suppression

Figure 1. Graphic representation of the initial stimulation protocol. A. Synaptic contacts were distributed in two layers corresponding to the
Stratum Radiatum (SR) and Stratum Lacunosum Moleculare (SLM). Both excitatory (green) and inhibitory (red) synapses were placed in each layer.
Synapses in the SLM layer were activated by high frequency subthreshold bursts (10 spikes at 100 Hz) for 10 seconds, at a frequency of 1 Hz.
Synapses in the SR layer were activated by suprathreshold events strong enough to induce on average a single somatic AP at a frequency of 1 Hz.
Stimulation of the two pathways was separated in time by a delay raging from 0–450 ms (0–0.45 s), with SLM stimulation preceding the SR input. B.
Somatic traces showing the response of the model to stimulation of the SLM layer alone, the SR layer alone and both layers with a delay of 260 ms
(0.26 s). Traces correspond to the fully diffused synaptic arrangement. For a delay of 260 ms (0.26 s), somatic spikes are truncated for the first 5
seconds. C. Average firing frequency as a function of the stimulus delay for the fully diffused synaptic arrangement. Short delays (0–90 ms, (0–0.09 s))
are associated with pronounced enhancement of the neuronal firing frequency while long delays (190–350 ms, (0.19–0.35 s)) lead to suppression of
excitability (ff drops below the 1 Hz baseline). Overall, the average firing frequency of the model is modulated by the temporal delay between
incoming signals in a sigmoidal shaped pattern. Error bars represent standard error.
doi:10.1371/journal.pcbi.1001038.g001

Information Coding in a Single Pyramidal Neuron
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period, thus qualitatively resembling the fully diffused experiment

(Figure 2A, 2B and 2C filled circles).

Taken together, these findings suggest that the latency between

incoming SR and SLM signals may determine the excitability level

of a CA1 pyramidal neuron and serve as a signal for alternating

between enhancement and suppression modes. Synaptic arrange-

ment on the other hand seems to fine-tune this modulation of

excitability by determining the degree of activity enhancement or

suppression: clustering in the SR prevents spike blocking for long

delays while clustering in the SLM reinforces spike blocking. The

former suggests that clustered activation of SR synapses ensures

the propagation of intra-hippocampal signals irrespectively of the

timing and arrangement of SLM (i.e. cortical) input. The latter

suggests that clustered activation of SLM synapses preferentially

gates the propagation of delayed SR signals (i.e. intra-hippocampal

input arriving after 200 ms (0.2 s)). Moreover, given the specific

stimulation conditions, our model predicts that clustered input to

the distal dendrites of the CA1 pyramidal neuron may act as an

AND gate for short delays and as an AND-NOT gate for long delays

[42].

Since both spatial and temporal features of the input affect the

average firing frequency of the model neuron, we next investigate

whether these changes are consistently reflected in the output

pattern of the model cell. We find that for all synaptic

arrangements and for temporal delays between 0 and 240 ms

(0.24 s), the neuron often discharges with trains of bursts consisting

of 2–6 action potentials and each burst appears with a frequency of

1 Hz, as dictated by the SR stimulation. In all four experiments,

bursting is more prominent for short temporal delays (0–90 ms (0–

0.09 s): 4–5 spikes per burst. 90–150 ms, (0.09–0.15 s): 2–3 spikes

per burst. 160–240 ms (0.16–0.24 s): 1–2 spikes per burst).

Representative traces for the fully clustered and fully diffused

synaptic arrangements and three different delays (60, 120 and

260 ms (0.06, 0.12 and 0.26 s)) are shown in Figure 3. Note that

while spike blocking is frequently evident for delays beyond

190 ms (0.19 s) in the fully diffused and SLM diffused arrange-

ments, it is not unusual to find doublets in some somatic responses

where spike blocking does not occur. These findings show that

enhancement of the average firing frequency of the neuron results

from the induction of a somatic bursting response which is affected

by the spatio-temporal characteristics of the input.

Biophysical mechanisms supporting bursting vs. spike
blocking in the model cell

Previous experimental findings [12,15,43] suggested that distal

dendritic inhibitory currents, primarily GABAB-mediated, selec-

tively dampen the response of pyramidal neurons. To confirm that

the GABAB current is also necessary for the SLM-mediated

suppression of excitability in our model neuron, we decrease the

GABAB current either in the distal dendrites or in all dendrites and

record the model’s response to spatially and temporally dispersed

signals for which spike blocking is maximized: a fully diffused

synaptic arrangement with 260 ms (0.26 s) delay between SLM

and SR signals. Figure 4A shows that reduction of GABAB

-mediated currents by 90% in the SLM layer alone completely

eliminates spike blocking (average firing frequency returns to

baseline), reproducing the experimental data of [12], and further

suggesting that GABAB currents in the distal dendrites alone are

primarily responsible for the spike blocking effect.

Somatic bursting observed for short delays in all different spatial

arrangement experiments, is the flip-side of the coin regarding the

EC-mediated modulation. Busting in pyramidal neurons has

frequently been associated with the occurrence of dendritic

regenerative events mediated primarily by Ca++ [41,43,44] and/

or NMDA currents [41,45,46]. To investigate the biophysical

mechanisms underlying burst generation in the model cell, we

reduce the L-type, N-type, R-type and T-type calcium currents,

the h-current and the NMDAR-mediated current by 90% and

measure the effect on bursting (see Methods). Figure 4B, shows

that blockade of L-type, N-type or T-type calcium currents does

not significantly affect bursting while blockade of R-type calcium

currents results in a small decrease of bursting (15.3% decrease)

and blockade of the dendritic, high-threshold R-type channels

(caRHd) reduces bursting up to 49.8%. Decreased bursting

following a 90% elimination of R-type and R-type high threshold

calcium conductances are in accordance with properties of the

channels to drive after depolarization potentials and contribute to

burst firing [47]. Blockade of the h-current also decreases bursting

by 25%, probably due to the reduction in Ih-mediated membrane

depolarization following hyperpolarizing potentials. The latter

negatively affects dendritic excitability and calcium spike initiation

associated with somatic bursting [48,49]. Blockade of the NMDA

current in the SLM layer alone has a smaller impact (15%

decrease) while blockade in both layers results in a remarkable

65% decrease in bursting. These findings suggest that NMDA-

mediated currents along with R-type currents are the key players

underlying somatic bursting, in accordance with the recent

findings of [41]. Overall, our results add to a large body

of previous work regarding the role of NMDA and voltage

dependent calcium channels in promoting somatic bursting

[41,50,51,52,53,54,55,56].

The spatio-temporal information content of bursts
The average burst inter-spike-interval. To further

investigate whether spatio-temporal information of the incoming

signals may be captured by the bursting activity of the model

neuron, we measure the average Inter-Spike-Interval within bursts

(IŜSIb) for all synaptic arrangements and delays between 0–240 ms

(0–0.24 s) (see Methods). Only trials exhibiting bursting activity

are used (at least two spikes per burst). Longer delays are not

Table 1. Sigmoidal equations used to fit the average firing frequency curves in Figures 1–2.

F xð Þ~basez
max

1zexp {
x{xhalfð Þ

rate

� �
FExp_1(x)±s.d. FExp_2(x) ±s.d. FExp_3(x) ±s.d. FExp_4(x) ±s.d.

base 4.96460.117 4.792760.0522 4.790760.046 4.499460.091

max 23.96260.142 22.96160.0652 22.85060.0616 23.957460.122

xhalf 111.3162.87 120.2361.79 114.7761.45 122.1262.54

rate 20.15262.5 19.13161.57 12.60361.26 24.83462.28

doi:10.1371/journal.pcbi.1001038.t001

Information Coding in a Single Pyramidal Neuron
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considered in this analysis since bursting is rarely observed in the

fully diffused and SLM clustered cases.

Similar to the average firing frequency, the IŜSIb values for both

fully clustered and fully diffused arrangements are nearly identical

for short delays (0–90 ms, (0–0.09 s)), IŜSIbExp1~18:66ms+0:15,

IŜSIbExp2~18:18ms+0:13) and significantly different for longer

delays (140–240 ms, IŜSIbExp1~25:00ms+0:31, IŜSIbExp2~

21:40ms+0:16, also see Table S2 in Text S1), with the fully

diffused arrangement exhibiting larger IŜSIb values than the fully

clustered arrangement (Figure 5A). Intermediate delays (100–

150 ms (0.1–0.15 s)) are characterized by a one-to-one mapping

between the delay and the respectiveIŜSIbvalue for both arrange-

ments. These findings suggest that the IŜSIb value (similar to the

average ff) can be used to infer the synaptic arrangement (fully

clustered or fully diffused) of signals that are separated by delays

larger than 140 ms (0.14 s).

Results for the layer-specific clustering arrangements are also

similar to the firing frequency findings: clustering in the SLM

alone (Figure 5B, open circles) results in IŜSIb values which are

more similar to the fully diffused case (Figure 5A, open circles)

whereas clustering in the SR (Figure 5B, filled circles) results

in IŜSIb values which are more similar to the fully clustered

arrangement (Figure 5A, filled circles. Also see Table S2 in Text

S1). In all cases the average ISIb as a function of the delay can be

well fitted by sigmoidal functions whose parameters are listed in

Table 2. Taken together, these findings suggest that both spatial

(arrangement) as well as temporal (delay between inputs) features

of the layer-specific incoming signals are reflected in the average

temporal properties (IŜSIb) of the neuronal response. Moreover,

assuming a rate code for information transfer, the average firing

frequency and/or the average ISIb value may be used to signal

differences in the spatial arrangement (fully diffused vs. fully

clustered) of EC and CA3 inputs that arrive with a delay of 140–

450 ms (0.14–0.45 s).

The sequence of burst inter-spike-intervals. Although

informative, neither the average firing frequency nor the average

burst inter-spike-interval are sufficient to discriminate between

fully clustered versus fully diffused signals that arrive within short

delays. However, an analysis of the succession of inter-spike-

intervals within each burst (ISIb) using three-dimensional return

maps for two different delays (60 and 120 ms (0.06–0.12 s)) and

two synaptic arrangements (fully diffused vs. fully clustered, see

Methods) reveals that the successive ISIb values could be used to

encode differences in the spatial arrangement of incoming signals.

As shown in Figure 6, the 3-D return maps of the model responses

to fully diffused incoming signals form a much more structured

map compared to clustered inputs (see Table 3 for a quantitative

comparison). Furthermore, the respective maps for short delays

reveal the formation of a few tight elongated groups which fade as

the delay between SLM and SR signals increases (Figure 6 and

Figure S1 in Text S1). This grouping of past, current and future

ISIb values for short delays indicates different degrees of variation

in spike time occurrence as well as correlation between preceding,

current and/or future action potentials. Since clustered

arrangements are associated with higher entropy maps than the

respective diffused cases (see Table 3), these findings suggest the

existence of an underlying rule that characterizes the cell’s firing

pattern, which appears to be more prominent in fully diffused than

fully clustered synaptic arrangements.

To measure the degree to which future spike timings (estimated

using successive ISIb values) can be predicted based on the history

of responses to similar inputs we next use non-linear time series

analysis [57]. Specifically, for each delay (0–240 ms) and synaptic

arrangement (fully clustered or fully diffused), we quantify

Figure 2. Average firing frequency as a function of the
temporal delay for all different synaptic arrangements. A.
Synaptic clustering in both layers (filled circles) eliminates the
excitability suppression effect that was evident for long delays in the
diffused arrangement (open circles). However, model responses for
short delays (0–90 ms, (0–0.09 s)) are nearly identical for both
arrangements. Overall, synaptic clustering in both layers results in
enhancement of the average firing frequency of the model for all delays
larger than 100 ms (0.1 s). B. Layer specific synaptic clustering has
different effects on neuronal output. Clustering in the SLM layer
enhances and prolongs excitability suppression for delays larger than
190 ms. Moreover, the average firing frequency in the SLM clustered
case (panel B, filled circles) is lower than the fully diffused case (panel A,
filled circles) for all delays. Clustering in the SR layer has a very similar
effect as clustering in both layers: excitability is enhanced across all
delays. C. Comparison of average ff for all arrangements. Clustering in
the SR is nearly identical to clustering in both layers (open circles) while
clustering in the SLM results in reduction of the average ff across all
delays and expansion of the spike blocking window. Error bars
represent standard error.
doi:10.1371/journal.pcbi.1001038.g002

Information Coding in a Single Pyramidal Neuron
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prediction accuracy by grouping together all firing patterns (i.e. all

ISIb values) resulting from the 62 repetition trials (one pattern

after the other) and estimating the prediction error (see Methods).

As evident from Figure 7, the prediction error in short delays is

smaller compared to long delays, and therefore, the predictability

is better in short delays, where the two incoming signals overlap in

time. Furthermore, the prediction error for diffused arrangements

is slightly smaller compared to the clustered arrangement,

suggesting that for delays shorter than 100 ms (0.1 s), at any

given time, the occurrence of the next spike can be estimated with

higher accuracy in fully diffused than fully clustered arrangements.

This is in agreement with earlier findings [19,20] showing that

diffuse signals often fail to engage dendritic nonlinearities and are

integrated in a linear averaging manner. This averaging over a

larger number of synapses reduces the trial-to-trial variability in

the somatic response, leading to better predictability. On the

contrary, clustered signals lead to a higher incidence of local

dendritic nonlinearities which are generated by a smaller number

of synapses each, leading to greater variability in the somatic

response and subsequently poorer predictability. To assess the

extent to which somatic responses vary, we used the Local

Variation (LV) metric [58] and compared all repetition trials for

each synaptic arrangement and a given temporal delay (see section

Variability of individual neuronal responses in Text S1).

Figure 3. Representative traces showing the neuron’s discharge pattern in various synaptic and temporal settings. Traces correspond
to fully diffused and fully clustered synaptic arrangements and delays of 60, 120 and 260 ms (0.06, 0.12, 0.26 s), recorded at the cell body of the
model cell. For a 60 ms (0.06 s) delay, strong somatic bursting is evident in both arrangements (inset: 4 spikes per event). As the delay increases to
120 ms (0.12 s), the bursting response weakens (inset: 2–3 spikes per event). For a delay of 260 ms (0.26 s), somatic spiking is partially blocked in the
fully diffused arrangement while in the fully clustered arrangement the baseline response is unaffected.
doi:10.1371/journal.pcbi.1001038.g003

Figure 4. Biophysical mechanisms involved in excitability modulation. A. Effect of GABAB blockade on the average firing frequency of the
model cell during spike blocking conditions (fully diffused arrangement, delay = 260 ms, (0.26 s)). The average firing frequency of the model during
spike blocking (control) is significantly below baseline. Blockade of the GABAB receptor conductance by 90% either in the SLM layer or both SLM and
SR layers restores baseline firing (1 Hz). B. Effect of blockade of different ionic mechanisms on the average duty cycle of the model cell during
excitability enhancement conditions when the two pathways are stimulated with a delay of 50 ms (0.05 s) and the stimulated synapses are arranged
in a diffused manner. The duty cycle [117] is used as a measure of ‘burstiness’, which is essentially the ratio of the active phase (burst duration) over
the inter-burst-period (time from first spike of a burst until the first spike on the next burst). Blockade of the L-type, N-type and T-type calcium
currents does not have a significant effect on the duty cycle while blockade of R-type calcium currents results in a small decrease of bursting (15.3%
decrease) and blockade of the dendritic, high-threshold R-type channels (caRHd) reduces bursting up to 49.8%. Blockade of the h-current induces a
25% decrease in the duty cycle compared to the control. Blockade of the NMDA receptors in the SLM layer alone results in a 15% decrease of the duty
cycle while blockade in both layers results in a 65% decrease in the duty cycle.
doi:10.1371/journal.pcbi.1001038.g004
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Overall, for short delays, activation of synapses in a diffused

manner results in responses which are very regular and similar to

each other while activation of synapses in clusters induces highly

variable firing patterns. Consequently, the sequence of inter-spike-

intervals within bursts is likely to contain discriminatory information

about the spatio-temporal features of incoming signals.

The sequence of burst inter-spike-intervals has

discriminatory power. Our next goal was to investigate

whether the information contained in the sequence of inter-

spike-intervals within bursts is sufficient to discriminate between

inputs that differ in their spatial and temporal characteristics. We

address this question for the fully clustered and fully diffused

synaptic arrangements and delays of 0–240 ms (0–0.24 s) by

constructing a feature vector containing the successive ISIb s along

the 10-second response pattern of the model, averaged over the 62

repetition trials (see Methods). This procedure results in 13

different ‘signatures’ for each of the two synaptic arrangements,

where each signature corresponds to a different delay. Using

hierarchical clustering (complete linkage, Spearman Rank

correlation), the 26 signatures are grouped to form the

dendrogram shown in Figure 8A. With the exception of one

case (fully clustered, delay of 140 ms (0.14 s)), responses to fully

clustered inputs (red) are clearly separated from responses to fully

diffused inputs (blue) for all delays. Specifically, the responses for

delays between 140–240 ms (0.14–0.24 s) are arranged in two sub-

clusters, each corresponding to the fully clustered and fully diffused

case, respectively. Both of these sub-clusters are clearly separated

from responses for delays between 0–120 ms (0–0.12 s), which are

in turn organized into distinct groups, one for each synaptic

arrangement. These findings show that the firing pattern of the

model cell, and in particular the succession of inter-spike-intervals

within bursts contains discriminatory information regarding the

spatial arrangement (clustered or diffused) and the temporal

characteristics (delay of 0–120 ms or 140–240 ms (0–0.12 s or

0.14–0.24 s)) of incoming signals. Therefore, the model neuron

might use the sequence of ISIb values of a given response pattern

to infer whether the incoming stimuli activated synapses in a

clustered or diffused manner and roughly estimate the delay that

SLM activation preceded that of SR.

Time-to-first-spike. The time delay before the onset of

activity following a stimulus (time-to-first-spike) is a feature often

associated with temporal information coding in cortical neurons

[59]. This delay is usually attributed to the dynamics of temporal

and spatial summation of synaptic currents leading to the initiation

of an action potential and has been suggested to convey

behaviorally relevant information such as sound location [60] or

the spatial structure of images [61]. The specific location of

activated synaptic contacts throughout the dendritic tree has also

been suggested to influence the time-to-first-spike (ttfs) value and

perhaps serve as a mechanism for tagging inputs according to their

respective delay in initiating somatic firing [62]. It is thus likely

that changes in the spatial arrangement of incoming signals have a

Figure 5. Average burst Inter-Spike-Interval (IŜSIb) as a function of the temporal delay for all synaptic arrangements. Model responses
can be approximated by sigmoidal functions. A. Synaptic clustering (filled circles) or diffusion (open circles) in both layers induce nearly identical
average responses for short temporal delays (,100 ms) which become clearly different for large delays (.140 ms). B. Layer-specific synaptic
clustering leads to separable IŜSIb curves for most delays (except for 120–140 ms, (0.12–0.14 s)). Synaptic clustering in the SLM (open circles) seems
to be primarily responsible for changes in the IŜSIb values corresponding to inputs with short temporal delays. Error bars represent standard error.
doi:10.1371/journal.pcbi.1001038.g005

Table 2. Sigmoidal equations used to fit the average burst ISI curves in Figure 4.

F xð Þ~basez
max

1zexp {
x{xhalfð Þ

rate

� �
FExp_1(x) ±s.d. FExp_2(x) ±s.d. FExp_3(x) ±s.d. FExp_4(x) ±s.d.

base 17.94260.138 17.8560.0853 17.16960.119 18.50260.104

max 6.787260.216 3.3560.127 4.007760.166 6.203260.187

xhalf 131.5162.1 125.0362.44 116.0362.32 142.0662.09

rate 14.29861.85 13.11762.13 9.136162.01 18.9661.88

doi:10.1371/journal.pcbi.1001038.t002
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measurable effect on the ttfs value in the model cell, even in the

absence of a difference in the average ff or ISIb values. To address

this question we compare the timing of the first spike under

activation of the SR alone versus SR and SLM layers

(simultaneously) and find that spiking occurs much earlier if

both layers are activated (approximately 20 ms (0.02 s) earlier,

data not shown). We then measure the ttfs value (with respect to

SLM stimulation) for the fully clustered and fully diffused synaptic

arrangements and delays between 0–100 ms (0–0.1 s). We focus

on short delays because for this range both fully clustered and fully

diffused signals generate bursting responses with nearly identical

average ff (Figure 2A) and average ISIb (Figure 5A) characteristics.

We find that the ttfs value (taken over the 62 trials) is significantly

smaller for clustered (Figure 8B, red) than diffused (Figure 8B,

blue) signals for all delays between 0–100 ms (p,0.0001, t-test was

performed for every ttfs pair corresponding to a single delay). This

suggests that when synapses are activated in clusters, the cell

responds much faster than when synapses were activated in

random locations throughout the dendritic tree, while the average

characteristics of the response signal (ff and IŜSIb) remain the same.

Figure 6. 3-D return maps of successive ISIb values. Return maps for fully diffused (A) and fully clustered (B) synaptic arrangements and two
different delays (60 ms (0.06 s) top graphs and 120 ms (0.12 s) bottom graphs), across the 62 repetition trails (see Methods). Color has been added as
a marker of depth. The number of points plotted in the different panels is A1: 2156, A2: 718, B1: 2230 and B2:1213. For a delay of 60 ms (0.06 s), model
responses to diffused stimuli (A1) form a more structured map than responses to clustered synapses (B1), whereby the ISIb values are condensed in
several tight groups. This grouping indicates a relationship between preceding and future spike occurrences for diffused signals and appears to fade
in both arrangements when the temporal delay increases to 120 ms (0.12 s) (A2 and B2).
doi:10.1371/journal.pcbi.1001038.g006

Table 3. Comparison of 3-D return maps for fully clustered
and fully diffused arrangements.

Diffused synapses Clustered synapses

Delay (ms) Normalized entropy KS test Normalized entropy

D = 20 0.498 p = 0.19 0.567

D = 60 0.473 p = 0.35 0.523

D = 100 0.537 p = 0.1 0.601

D = 120 0.476 p = 0.02 0.585

D = 160 0.414 p = 0.08 0.416

To quantify the difference between 3-D return maps we use the normalized
entropy statistic [118] and the two-sample Kolmogorov-Smirnov test (KS test)
between delay pairs. Entropy for clustered arrangements is larger compared to
diffused arrangements indicating higher variability of the former responses. KS
test is applied on the density histograms of each set.
doi:10.1371/journal.pcbi.1001038.t003
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This increase in response speed for clustered signals is likely to

result from stronger dendritic activation which subsequently leads

to faster and larger somatic depolarizations. As shown in previous

work, clustered inputs engage dendritic nonlinearities (NMDA/

calcium spikes) to a much larger extent than diffused signals

[19,20].

Moreover, when measured relative to the SLM stimulation

(Figure 8B), the ttfs value for both arrangements seems to be

linearly associated with all temporal delays up to 100 ms. Since

this linearity is likely to reflect the delay between the two input

streams, we also measured the ttfs relative to the SR stimulation

(Figure 8C). We found that in the latter case, the ttfs values remain

larger for clustered vs. diffused inputs for each delay, over all

delays tested (0–240 ms (0–0.24 s)) but the modulation induced by

the delay is more subtle and non-linear. We consider measuring

the ttfs from the SLM stimulation, as opposed to the SR

stimulation, more relevant to this analysis since layer V EC cells,

which are the main targets of the CA1 output (together with the

subiculum) [63], have no connections with the CA3 region and are

thus not likely to have access to the information about SC

activation. On the contrary, these cells have connections with layer

III EC neurons [64,65] (the ones projecting to the SLM layer) and

are thus more likely to have information about the time of SLM

input to the CA1. Our findings show that the ttfs contains

Figure 7. The sequence of ISIb values contains predictive information about future spike occurrences. Nonlinear analysis of successive
ISIb values for fully diffused (A) and fully clustered (B) synaptic arrangements and different delays. Each prediction step represents successive future
ISIb values, with step one corresponding to prediction of the next spike occurrence. For delays less than 100 ms (0.1 s), the prediction error for the
first step is lower in the fully diffused (A) than the fully clustered arrangement (B), suggesting that the occurrence of the next spike can be estimated
with higher accuracy in fully diffused than fully clustered arrangements. However, as the delay increases beyond 100 ms (0.1 s), the prediction error
for both cases becomes close to/or larger than one, indicating that predictability is very poor. The predictability for future spike occurrences
decreases for both arrangements along the prediction horizon.
doi:10.1371/journal.pcbi.1001038.g007

Figure 8. Model responses contain discriminatory information about the spatio-temporal characteristics of the input. A. Hierarchical
clustering (complete linkage, Spearman Rank correlation) of median ISIb values for fully diffused and fully clustered arrangements and different
temporal delays. With the exception of one case (fully clustered, delay = 140 ms (0.14 s)), responses to fully clustered inputs (red) are clearly separated
from responses to fully diffused inputs (blue) for all delays. Moreover, responses for long delays (140–240 ms, (0.14–0.24 s)), are arranged in two sub-
clusters each corresponding to the fully clustered and fully diffused case, respectively. Responses for short delays (0–120 ms, (0–0.12 s)) are clearly
separated from responses for long delays and organized into distinct groups, one for each synaptic arrangement. Green and black dots represent two
new response patterns which are found to be located within the fully diffused (green) and fully clustered (black) short delay sub-clusters. B. Time-to-
first-spike box plot for fully diffused (blue) and fully clustered (red) stimuli. Horizontal red bars represent the medians for each case. For delays less
than 100 ms, (0.1 s), occurrence of the first spike happens significantly faster in clustered than diffused stimuli. Given information about the spatial
arrangement of two new response patterns (black: clustered, green: diffused), the delay between SLM and SR stimulation can be inferred using the
time-to-first-spike lines when this is measured relative to the SLM stimulation, even if the time-to-first-spike value is identical for both responses. C.
Same as B but for all temporal delays tested (0–240 ms) and with time-to-first-spike measured relative to the SR stimulation. In this case the
modulation induced by the temporal delay is more subtle and non-linear. Discrimination of synaptic arrangement remains clear based on the time-to-
first-spike values; however, prediction of the exact temporal delay from the time-to-first-spike values becomes hazy.
doi:10.1371/journal.pcbi.1001038.g008
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information about the delay between layer III activation and the

CA1 response, when the latter also contains SC input information.

The above findings suggest that for a given delay between 0–

2.40 ms (0–0.24 s), a single feature of the neuronal response, i.e.

the time-to-first-spike, is sufficient to infer the spatial arrangement

of activated synapses. Furthermore, for any delay between 0–

240 ms (0–0.24 s), the sequence of ISIb values can be used to infer

the arrangement of incoming contacts by looking at the position of

the new pattern on the dendrogram of Figure 8A (green or black

dot). Once the arrangement has been inferred, the time-to-first-

spike value can be used to approximately estimate the delay

between SLM and SR activation by looking at its position on the

respective line (green or black dot for delays less than 100 ms,

orange or blue dot for delays larger than 100 ms) of Figure 8B (or

Figure 8C). Therefore, given the specific stimulation protocol, a

temporal code that consist of the sequence of ISIb and the ttfs

values carries sufficient information for inferring both the spatial

(fully clustered versus fully diffused) as well as the temporal

(approximate delay) characteristics of cortical and intra-hippo-

campal inputs.

It has been suggested that a small ttfs value may signal the

presence of a strong input pattern [66,67,68,69]. Our results are in

agreement with these findings for signals leading to significantly

different average responses. Specifically, stimuli with the same

Figure 9. Robustness of spatio-temporal encoding across stimulation protocols. A, D, G. The three different stimulation protocols. B, E, H.
Hierarchical clustering (complete linkage, Spearman Rank correlation) of median ISIb values for fully diffused and fully clustered arrangements and
different temporal delays for each protocol. For Protocols 1 and 2, responses to fully clustered inputs (red) are clearly separated from responses to
fully diffused inputs (blue) for all delays, with the exception of one-two cases. Discrimination is not as clear, however, for Protocol 3. As in Figure 8,
green and black dots (in B) represent two new response patterns which are found to be located within the fully diffused (green) and fully clustered
(black) short delay sub-clusters. C, F, I. Time-to-first-spike (relative to the SLM stimulation) box plots for fully diffused (blue) and fully clustered (red)
stimuli for each protocol. Horizontal red bars represent the medians for each case. Occurrence of the first spike is significantly faster in clustered than
diffused stimuli, for all three protocols. C. As in Figure 8, given information about the spatial arrangement of two new response patterns (black:
clustered, green: diffused) the exact delays between SLM and SR stimulation can be inferred using the time-to-first-spike lines, even if the time-to-
first-spike value is identical for both responses. J, K, L Same as C, F, I but with the time-to-first-spike measured relative to the SR stimulation. In this
case, the temporal delay leads to a much more subtle, non-linear modulation of the time-to-first-spike values. Discrimination of synaptic arrangement
remains clear but prediction of the temporal delay from the time-to-first-spike value becomes hazy.
doi:10.1371/journal.pcbi.1001038.g009
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synaptic distribution and activation delays, but different synaptic

strengths are associated with different ttfs values, with stronger

stimuli (Protocol 3) leading to smaller ttfs (compare Figure 9, panels

C, I). However, for stimuli that lead to similar average responses

(Protocol 1, delay 0–100 ms, Figures 2A and 5A), the ttfs may be

used to encode another characteristic of the input. According to our

findings, when a rate code (average ff or IŜSIb) is not sufficiently

informative, the time-to-first-spike contains discriminatory infor-

mation about the synaptic distribution of incoming signals as well as

the temporal latency separating the activation of the two layers.

Robustness of the spatio-temporal feature encoding

across different stimulation protocols. The above findings

suggest that the time-to-first-spike and the sequence of ISIb can be

used to infer the spatial and temporal characteristics of the

incoming stimuli. However, since these findings were based on a

single protocol, this encoding ability of the neuron could be

specific to the protocol characteristics (for example, delay of

inhibitory input compared to excitatory input, frequency and

number of events used for SLM/SR activation etc). To investigate

this issue, we first slightly modify the inhibitory synapse

connectivity and activation pattern of the model cell to account

for (a) inhibitory contacts activated by SC inputs and terminating

on the dendrites in the SLM layer (perforant path associated cells)

[31] (b) inhibitory contacts activated by PP inputs and terminating

on the soma (apical dendrite innervating cells) [34] and (c) a 2.5 ms

(0.0025 s) delay between the activation of excitatory and inhibitory

inputs [70] to account for the di-synaptic activation of

PPRinterneuronRCA1 and SCRinterneuronRCA1 pathways.

We then use different protocols for stimulation of the distal

dendrites in the SLM, where we vary the number of events (3 or 5)

during the 100Hz-burst as well as the frequency by which these

bursts are repeated (1 Hz, 4 Hz and 5 Hz). Furthermore, we vary

the protocol by which synapses in the SC layer are stimulated and

we use either low frequency (single spikes at 1 Hz), theta cycle

(single spikes at 4 Hz) or theta burst (100 Hz bursts repeated at 5

Hz), as detailed in the Methods. Note that the theta burst protocol

is performed under conditions of reduced inhibition, as described

in [41]. We find that all protocols induce somatic bursting for short

delays but only the first protocol generates spike blocking when the

delay between PP and SC signals is longer than 180 ms (0.18 s)

(see Figure 10, and Figure S2 in Text S1), in accordance with our

earlier results. Moreover, all three protocols have time-to-first-

spike values in which model responses are initiated faster for

clustered than diffused signals (see Figure 9C,F,I,J,K,L), as was the

case with the initial protocol (see Figure 8B). In addition, the time-

to-first-spike (relative to the PP input) is linearly associated with the

SC signal delay and is statistically different between clustered and

diffused signals corresponding to the same delay, for all protocols

tested (including the initial shown in Figure 8B and Protocols1-3

shown in Figure 9C,F,I).

Importantly, the observed linearity in ttfs graphs suggests that

model responses are likely to be driven by the SC signal, which

Figure 10. Mechanisms underlying somatic bursting. A. Representative traces from the model (somatic, dendritic at 300 microns) showing the
effect of mechanism blockade (90% reduction in conductance) on the generation of dendritic plateau potentials and somatic bursts using Protocol 3.
A1. Blockade of NMDA currents results in complete elimination of dendritic plateau potentials as well as somatic bursting. Note that AMPA currents
were increased to counteract excitability reduction from the NMDA blockade when each of the pathways was stimulated individually, indicating that
dendritic plateau potentials are NMDA dependent. A2. Blockade of R-type currents (caR and caRH) severely reduces the appearance and width of
dendritic plateau potentials as well as somatic bursting. A3–A5. Blockade of N-type, T-Type and L-type currents has a negligible effect on dendritic
and somatic responses, indicating that these mechanisms do not significantly contribute to dendritic plateau potentials or somatic bursting. B.
Dependence of dendritic plateau potentials and somatic bursting on the temporal offset between SC and PP inputs. Traces showing simultaneous
stimulation (0 ms, B1) produce large, long-lasting plateau potentials in the dendrites which diminish in size and duration as the two inputs are
separated in time (by 50 ms, B2 and 100 ms, B3). Somatic bursting follows the same trend.
doi:10.1371/journal.pcbi.1001038.g010
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arrives progressively later than the SLM input. To investigate this

possibility, we also measured the ttfs relative to the SC signal and

found a different, more subtle modulation of the ttfs parameter.

Panels J-L in Figure 9 show the ttfs graphs evaluated relative to the

SC input for each of the three protocols. In all cases, ttfs for diffused

arrangements are significantly larger than respective values for

clustered arrangements, indicating that the ttfs value may encode

synaptic arrangement. However, for any given synaptic arrange-

ment, the modulation of ttfs values by the temporal delay is much

smaller (fitted curves are not monotonic), indicating that ttfs relative

to the SC signal is not a reliable predictor of the temporal delay

between SR and SLM activation. On the contrary, comparison of

ttfs curves across protocols shows that for a given synaptic

arrangement and activation delay, the ttfs value is smaller in

Protocols 2 and 3 (strong input patterns) than Protocol 1 (weak input

patterns) (p,0.0001, Protocol 1ttfs vs. Protocol 2ttfs, for clustered and

diffused synapses, delays = 0, 20, 40, 60 ms, Mann-Whitney U-test),

supporting earlier findings that this parameter also carries

information about the intensity of the stimulus [68,70,71,72].

Finally, discrimination of burst inter-spike-interval sequences

between clustered and diffused signals is also maintained in Protocols

1 and 2, and becomes fuzzy in Protocol 3 (see dendrograms in

Figure 9B, E, H). Note however that Protocols 1 and 2 are performed

under control conditions, while Protocol 3 is performed under

conditions of reduced inhibition. Even in this case, the time-to-first-

spike is clearly different between clustered and diffused signals

(irrespectively of the way it is measured). The discrimination of

different arrangements and delays via the use of ISIb sequences,

however, becomes more difficult, highlighting the importance of

inhibitory input for the reliable encoding and transmission of input

patterns that differ in their spatio-temporal characteristics. Taken

together, these findings show that the encoding capabilities of our

model cell with respect to spatio-temporal characteristics of incoming

stimuli remain sound across four different stimulation protocols.

Model validation regarding the mechanisms underlying

bursting for Protocol 3. According to our earlier predictions [40]

which are in line with the recent experimental findings of Takahashi

and Magee [41], somatic bursting is evident when PP and SC inputs

are temporary close due to the generation of dendritic plateau

potentials. Moreover, the experimental data show that the biophysical

mechanisms underlying the generation of these plateau potentials

seem to be the NMDA and R-type calcium currents, while none of the

T-type, N-type or L-type currents appears to contribute significantly.

To test the validity of our model with respect to the experimental

findings of Takahashi and Magee, 2009, we used the same stimulation

protocol (Protocol 3) and recorded the somatic as well as dendritic

responses when all of the above mechanisms were blocked by 90%.

Figure 10 shows representative traces form the model under the

influence of the various blockers. As evident from the figure, blockade

of T-type, N-type and L-type currents does not affect model responses

while blockade of NMDA and R-type calcium currents eliminates

dendritic plateau potentials as well as somatic bursting.

The effect of temporal dispersion between PP and SC inputs in

the model was also investigated. As shown in Figure 10B,

simultaneous activation of both pathways (0 ms, B1) produces

large, long-lasting plateau potentials in the dendrites of the model

cell which diminish in size and duration as the two inputs are

separated in time (by 50 ms, B2 and 100 ms, B3). Somatic

bursting follows the same trend. All of the above findings are in

close agreement with the results of Takahashi and Magee [41],

under the same stimulus conditions. One difference between our

findings and their findings is that our model does not incorporate

plastic synapses and thus it cannot reproduce the LTP induction

associated with plateau potential generation. This plasticity

phenomenon may also be responsible for the experimentally

observed increase in dendritic plateau potential magnitude and

duration within the stimulation protocol, after the first 1–2 bursts.

Discussion

We have investigated the integrative properties of a detailed

CA1 pyramidal neuron model under delayed and layer-specific

synaptic stimulation, considering the spatial arrangement of

activated synaptic contacts. We found that:

1. The model’s firing pattern ranges from suppression to

enhancement of baseline responses, depending on the spatio-

temporal characteristics of incoming signals.

2. The delay between EC and CA3 inputs may act as a

mechanism for alternating between excitability states: short

delays lead to strong bursting while long delays lead to reduced

firing.

3. For low frequency stimulation, synaptic arrangement has a

layer-specific effect: clustering in the SLM promotes excitability

reduction (spike blocking) while clustering in the SR promotes

excitability enhancement (bursting).

4. Some spatio-temporal information of incoming stimuli is

captured by a rate code (average ISIb and ff of model

responses).

5. Predictive information about the occurrence of the next spike is

contained in the sequence of ISIb values and is more accurate

for diffused than clustered signals.

6. Discriminatory information about the spatio-temporal charac-

teristics of the input is contained in the intra-burst activity

(sequence of ISIb values) and the onset delay (time-to-first-

spike) of the model’s response across different stimulation

protocols.

7. The time-to-first-spike contains discriminatory information

about both the synaptic arrangement and the stimulus strength.

When measured relative to the PP activation, it also contains

discriminatory information about the activation delay between

PP and SC pathways; when measured relative to the SC

activation is shows a more subtle modulation by the above-

mentioned delay.

These findings suggest that a single CA1 pyramidal neuron may

be capable of detecting and propagating several characteristics of

the ongoing network activity via the modulation of its firing

pattern, presumably reflecting the use of a temporal code for

information transfer.

Spike blocking: Understanding inhibition in the CA1
pyramidal neuron model

The soma-dendritic axis of CA1 pyramidal neurons is

innervated by a plethora of GABAergic interneurons [73] whose

activity influences local dendritic signals, thus promoting the

functional compartmentalization of the dendritic arbor [74,75]

which in turn enhances the computational capabilities of

individual pyramidal neurons [19,20,76,77]. Together with the

cooperation of the two major glutamatergic inputs in space and

time, the single neuron model captures anatomical and functional

characteristics of the CA1 microcircuit [78,79]. In our model,

inhibition plays a key role in the emergence of spike blocking. In

line with experimental findings [12], this blockade of excitability

depends on the strong, long-lasting, activation of GABAB-

mediated currents originating at the SLM layer, presumably due

to the EC-mediated activation of GABAergic neurogliaform
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interneurons [32]. An alternative explanation for the GABAB-

mediated reduction in excitability has been found in neocortical

pyramidal neurons where the elimination of somatic bursts

resulted from the GABAB-induced blockade of dendritic calcium

spikes [15]. In accordance with these findings, elimination of

dendritic calcium spikes in the model cell (shown in Figure 10)

greatly impairs burst activity at the cell body. It is likely that this

pathway-specific inhibitory network acts as a gate that preferen-

tially isolates certain cortical inputs from delayed intra-hippocam-

pal signals thus preventing their association [43].

Synaptic arrangement and information coding
An important aspect of this work concerns the role of synaptic

arrangement in shaping the firing pattern of the model neuron.

Clustered activation of synapses in particular, seems to play an

important role in information processing in our model. There is now

cumulating evidence suggesting that synaptic clustering not only

facilitates neural computations [80] and information processing [81]

but it can emerge as a result of learning and memory processes [82].

Moreover, lamina-specific axonal branching in thalamocortical

connections and remodeling processes can be regulated by neural

activity [83]. As recently shown by Le Bé and colleagues, there is

extensive rewiring in the neonatal neocortex which includes the

spontaneous as well as evoked formation of new, fully functional,

synaptic contacts within clusters of interconnected pyramidal

neurons [84]. The authors also showed that following stimulation,

weaker connections are selectively eliminated suggesting that this

form of plasticity enables the evolution of the microcircuit

connectivity by natural selection as a function of experience.

Finally, according to the clustered plasticity model of Govindarajan

et al., when synapses are activated in clusters within a branch they

facilitate the establishment of long term memory engrams via the

association of neighboring synapses that are strengthened or

weakened through a tractable molecular process heavily dependent

on local translational enhancement [21].

We find that in addition to the temporal interplay between the

two input streams, the spatial distribution of activated synapses

also impacts dendritic integration and neuronal output. This is in

accordance with previous modeling and experimental studies

where individual dendrites of pyramidal neurons were shown to

combine incoming signals almost independently, in highly non-

linear ways [16,18,19,20,85,86,87]. The significance of this

compartmentalization in multiple, quasi-independent non-linear

subunits is that it allows a single neuron to act as a two (or multi)-

layer neural network, where information is first processed locally

in the dendrites before reaching the somatic thresholding non-

linearity, thus massively expanding its information processing

capacity [20,59]. While highlighting the powerful computations of

dendrites and single neurons, the above studies did not examine

whether these non-linear properties may also be used to determine

the information content of neuronal output patterns as a function

of realistic incoming signals. Here, we show that the firing pattern

(sequence of ISIb values) of a single pyramidal neuron model

contains enough information to discriminate between realistic

incoming signals whose spatial distribution is clustered within a

few dendrites or diffused throughout the receiving dendritic layers

(Figures 8A, 9B,E,H). This discrimination is possible even when

the average firing properties (ff and/or ISIb) of neuronal responses

are indistinguishable, indicating that a rate code may be

insufficient for signaling subtle differences in the spatial organiza-

tion of layer-specific stimuli. In addition to spatial discrimination,

the firing pattern of the model cell can be used to estimate the

temporal difference (0–120 ms vs. 140–240 ms, (0–0.12 vs 0.14–

0.24 s)) between incoming signals impinging onto the SR and

SLM dendritic regions (Figure 8A), thus conveying both temporal

and spatial information of network inputs to the downstream cells.

Importantly for delays smaller than 100 ms where a rate code fails

completely, once the spatial arrangement of the inputs is inferred

(Figures 8A, 9B,E,H) the latency until the initiation of a response

(time-to-first-spike) relative to the SLM stimulation can be used to

estimate the delay between the two layer-specific signals (Figure 8B,

9C,F,I). This is particularly important as it suggests that a single

parameter of the CA1 pyramidal neuron output, i.e. the first spike

latency, can be used to propagate to the cortex the temporal

dispersion between the CA3 and EC network activities.

Assuming that recipient cells can decipher this propagated

information, what could be the functional relevance of discriminating

between clustered and diffused signals? Our working hypothesis is

that each clustered activation of synapses signals the existence of a

fingerprint representing a consolidated memory [21]. Activation of

these fingerprints in the model amounts to re-activation (e.g. for

retrieval/comparison purposes) of these memories. This hypothesis

further implies that each clustered input to the model neuron is

associated with a discrete mnemonic information tag. Activation of

randomly distributed synapses on the other hand is assumed to

represent a novel or non familiar information item which is not

contained in the memory reservoir of the model cell. Under these

assumptions, the information content of neuronal responses to

clustered signals -measured by their variance [88]- should be higher

than the one corresponding to diffused inputs. Our results show that

diffused signals are associated with similar firing patterns (compact

clouds in Figure 6A1, A2) and high predictability (low prediction error

in Figure 7A), indicating that their information content might be

relatively low. Clustered signals on the other hand generate more

distinct neuronal outputs (large clouds in Figure 6B1, B2), thus

hampering prediction attempts (higher prediction error in Figure 7B).

These findings suggest that clustered signals are likely to carry more

specific information than the ones activating random sets of synapses.

The fact that model responses to clustered signals systematically

occur a few (,10–15) milliseconds earlier than for diffused signals, is

also in line with our working hypothesis. Direction-selective activity in

monkey prefrontal cortex has been shown to occur earlier as a

consequence of experience [89], suggesting that reactivation of

existing memories (presumably in the form of clustered signals) leads

to faster responses. Smaller latency in the onset of neuronal responses

after experience induced paradigms has also been observed at the

supplementary eye field of monkeys, in experiments exploring the

processes of action selection [90]. Therefore, the smaller latencies

found in model responses to clustered signals may indicate the

presence of a mechanism for expressing anticipatory behavior.

Single neuron information processing and neural codes
Our findings regarding the role of successive spikes within bursts

in information transfer are in agreement with several other studies.

In sensory systems, bursts not only facilitate synaptic transmission at

unreliable synapses but they also enhance the transmission of

sensory signals in vivo by carrying stimulus-specific information (for a

review see [71]). For example, Oswald et al., report that burst ISIs

encode stimulus amplitude,[72] in the electrosensory lobe of the

weakly electric fish. Moreover, in primate primary visual cortex,

different visual stimuli (contrast-related information) are associated

with different classes of ISIs, with respect to their duration [68,91].

High frequency bursts are also known to occur in the hippocampus

and the CA1 region [92,93] and they have been associated with

information coding. Bursting in pyramidal place cells for example

has been suggested to represent the location of the animal in space,

both through the average firing rate [94] as well as the timing of

bursts with respect to the theta cycle [95]. Here we show that both
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rate and temporal codes may also be used to compactly transfer

such information to recipient cells in the cortex.

Numerous studies have shown that complex, behaviorally relevant

operations can be performed by individual neurons [96]. Examples

include orientation selectivity [97,98], velocity tuning [96,99], motion

detection [100] and many more. These operations are realized via a

set of rules or neural codes whereby the output signal of an individual

neuron encapsulates and transmits information contained either in

the average properties (average ff/ISI) or the precise temporal

characteristics of its firing pattern [101,102,103]. We find that both

strategies can be utilized by the model, but the latter conveys more

information than the former. We show that a rate code (average ff

and/or ISIb) can be used to infer the spatial arrangement of inputs

only if the SR signal is sufficiently delayed (120–160 ms, (0.12–

0.16 s)). For smaller delays, signals that vary solely in their spatial

arrangement are considered iso-response stimuli [104] and cannot be

distinguished by a rate decoder. However, temporal information like

the succession of burst inter-spike-intervals and the response onset

latency, can be used to distinguish the spatial arrangement (clustered

vs. diffused) of input signals across different stimulation protocols over

a wide range of delays (0–240 ms, (0–0.24 s)). Thus, depending on

the delay between layer-specific inputs both a rate and/or a temporal

code may be successful in propagating spatio-temporal information to

downstream cells.

Limitations
Our detailed model reproduces closely the electrophysiological

activity of CA1 pyramidal neurons. Nonetheless, sources of

inaccuracy may have been introduced since the experimental data

used to constrain the model are products of in vitro preparations. In

that sense however, model limitations do not significantly differ

from those of the in vitro preparations whose findings are readily

replicated by the model. Moreover, the validity of previous model

predictions has recently been established experimentally [16,18],

lending further support to its realism. Simplifications that have been

adopted in this work include (i) a strictly postsynaptic phenomeno-

logical model of the GABAB receptor desensitization [105] and (ii)

uniform kinetic properties of same-type synaptic receptors through-

out the model cell. Finally, the colocalization of axodendritic

contacts (synaptic clustering) is assumed to result from an adaptive,

learning-driven, mechanism. While this hypothesis was recently

verified experimentally in the auditory system of barn owls [25] and

previously in the hippocampal mossy fiber system of rats [106] [82]

(see for a review [107]), it remains unclear whether such changes

also occur in CA1 pyramidal neurons.

Concluding remarks
We previously showed that the average firing rate of our model in

response to high frequency Poisson trains can be predicted by

knowing the number and dendritic location of activated synapses, via

the use of a simple mathematical equation describing a conventional

2-layer neural network [20]. Here, we show that for different

stimulation protocols activating synapses in the SLM and SR layers

of the model cell, this prediction can be inversed: given the output

pattern of the model, we can infer the arrangement of activated

synapses as well as the temporal difference between activation of the

two pathways. These findings suggest that a single CA1 pyramidal

neuron may be capable of encoding and transmitting spatiotemporal

information about the activity of the EC-hippocampal network to

higher brain regions via the selective use of a rate or a temporal code.

Whether this information-rich pattern can be decoded by recipient

neurons in the subiculum and the deep layers of Entorhinal Cortex

remains unclear, although both of these regions seem to be

associated with the processing of complex input signals

[108,109,110,111]. The importance of our findings will become

greater in light of pending experimental evidence such as in vivo

estimates of the arrival delay between EC and CA3 signals at the

CA1 region during learning and memory tasks and solid evidence

supporting a direct role of clustered versus diffused activation of

synapses in memory processes. However, even in the absence of

these data, our modelling work sheds new light on how key features

of pathway specific incoming signals can be propagated across neural

networks: by showing that a single CA1 pyramidal neuron may act

as a complex computational kernel where inputs are transformed -

both in the time and frequency domains- in order to ensure their

reliable and identifiable transmission.

Methods

Basic properties of the CA1 model
The compartmental model of the CA1 pyramidal neuron was

implemented and run within the NEURON simulation environ-

ment [112]. The model is a refinement of a previously published

model [19] and it contains a large number of ionic and synaptic

mechanisms known to be present in these cells; specifically 15

different types of ionic currents and 4 different synaptic

mechanisms (AMPA, NMDA, GABAA and GABAB). Densities

and distributions of the mechanisms included in the model are

based on published empirical data and are fully described in Text

S1. To replicate the prominent role of the GABAB receptor in the

spike blocking phenomenon, this mechanism has been modified to

exhibit desensitization, a short-term type of plasticity, in response

to high frequency stimulation (see Text S1).

Layer-specific distribution of synaptic inputs
Synaptic inputs to the model cell were positioned within any or

both of the two receiving layers corresponding to the Stratum

Radiatum (SR) and the Stratum Lacunosum Moleculare (SLM)

regions. The SR layer is defined as the apical trunk sections

located within 13.40 and 292.06 microns (1.34?1025 and

2.92?1024 m) from the cell body and the apical oblique dendrites

located within 0 and 300.94 microns (0 and 3.01?1024 m) from the

soma. The SLM layer is defined as the apical trunk sections

located within 324.53 and 346.53 microns (3.25?1024-3.47?1024

m) from the soma and the apical oblique dendrites located beyond

419 microns (4.19?1024 m) from the soma. In all cases location is

estimated by measuring the perpendicular distance of the start

point of each dendritic section from the soma.

The ratio of excitatory to inhibitory synapses is different

between the two layers, according to the anatomical data of [30]:

SRratio of synapses~

75% excitatory mechanisms at the main

apical trunk

25% inhibitory mechanisms at the main

apical trunk

97% excitatory mechanisms at oblique

dendrites

3% inhibitory mechanisms at oblique

dendrites

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

SLMratio of synapses~
84% excitatory mechanisms

16% inhibitory mechanisms

(
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Each excitatory synapse consists of one AMPA and one NMDA

receptor (co-localized) while each inhibitory synapse contains one

GABAA or one GABAB receptor. Both types of inhibitory synapses

are placed in the same dendrites. A fixed number of synapses were

used in all simulations and they were distributed as detailed in

Table 4.

Synaptic currents
To account for the experimentally reported regional differences

in synaptic currents the ratios of GABAA/GABAB and NMDA/

AMPA currents are gradually increased with growing distance

from the soma. According to [113] the ratio of NMDA/AMPA

EPSCs seems to increase with distance from the soma, reaching an

almost two fold increase at SLM synapses as compared to SR

synapses. In our model this increase is implemented as shown by

Equations 1 and 2.

ISRNMDA

ISRAMPA

&1 ð1Þ

ISLMNMDA

ISLMAMPA

&2 ð2Þ

Inhibitory synaptic currents have also been shown to change

with distance from the soma. According to [114] the GABAB-

mediated current is significantly larger at the distal dendrites

(located beyond 250 microns from the soma) compared to

proximal ones whereas the same current is shunted by the

GABAA mediated current in the SR layer. This data is included in

the model according to the Equations 3 and 4:

ISRGABAA

ISRGABAB

&7:5 ð3Þ

ISLMGABAA

ISLMGABAB

&2 ð4Þ

Spatial arrangement of synaptic inputs within the SR and
SLM layers

To study the effect of synaptic arrangement on the firing properties

of the model neuron, we use four different synaptic arrangements. In

the fully diffused arrangement (Exp 1), the location of each

synapse is randomly selected among all dendrites of each layer and all

possible positions along each dendrite. In the fully clustered
arrangement (Exp 2), synapses are divided in equal-sized groups and

positioned (clustered) within a few randomly selected branches (eight

branches in the SR and four branches in the SLM). In the SR
clustered arrangement, synapses within the SR layer alone are

distributed in clusters whereas synapses in the SLM are randomly

scattered (Exp 3). Finally, in the SLM clustered arrangement,

synapses in the SLM layer alone are distributed in clusters whereas

synapses in the SR are randomly scattered (Exp 4). In all cases, both

the dendrites and the synapse positions within each dendrite were

selected using a uniform distribution. Note that clustering refers to

the positioning of synapses within a single dendrite and not tight

grouping of contacts within a certain radius for each dendrite.

Initial stimulation protocol
The initial stimulation protocol used in this work was introduced

by [12]. Synapses in the SR layer are activated simultaneously at a

frequency of 1 Hz, for a period of 10 s. Synaptic currents in this

layer maintain the ratios described before and are calibrated to

evoke a single supra-threshold event (action potential) for each input

signal using a fully diffused synaptic arrangement. Due to variations

in the synaptic arrangement between runs, the abovementioned

stimulation of the SR layer may produce 2–3 action potentials.

Synapses in the SLM layer are stimulated simultaneously with high

frequency sub-threshold bursts (10 pulses at 100 Hz). Each burst is

delivered at a frequency of 1 Hz for 10 s, similar to the SR

stimulation (see Figure 1A, B). The somatic response to combined

SR and SLM stimulation contains an initial excitatory phase and a

long lasting inhibitory phase similar to that described by [12]. The

activation of the two pathways is separated by a temporal delay

ranging between 0–450 ms (0–0.45 s), where synaptic stimulation at

the SLM layer always precedes SR stimulation.

Data generation and analysis
Each different synaptic arrangement experiment (Exp. 1–4) was

repeated 100 times, for each of the 34 different temporal delays (0–

300 ms, with a 10 ms step, 350, 400, and 450 ms (0–0.3 s with a

0.01 s step, 0.35, 0.4 and 0.45 s)). From the pool of the 13600

recordings, we select those recordings where activation of SLM

synapses alone results in sub-threshold events and activation of SR

synapses alone results in action potential generation at a frequency of

1–3 Hz, both assessed at the soma. This filtering step resulted in a total

of 62 recordings for each delay and each arrangement experiment.

The average firing frequency of the model cell is calculated

according to the formula:

ffaverage~
1

10N

XN

i~1

NoSExp Mi
ð5Þ

and the average Inter-Spike Interval (IŜSIb) within bursts

according to the equation:

IŜSIb~
1

N

XN

i~1

ISIbExp Mi
ð6Þ

where N is the number of trials (N = 62), NoS is the number of

spikes counted over each trial, and Exp_M, M = 1,2,3,4

corresponds to the four different synaptic distribution experiments.

Table 4. Distribution of synaptic mechanisms in the model
cell.

NMDA AMPA GABAA GABAB

receptors receptors receptors receptors

SR main apical trunk 48 48 16 16

SR oblique dendrites 62 62 2 2

SLM 27 27 5 5

Soma 0 0 5 5

The SR main apical trunk section consists of the apical trunk dendrites located
beyond 13.40 (1.34?1025 m) and up to 292.06 (2.9206?1024 m) microns from
the soma whereas SR oblique dendrites correspond to the side branches found
within 0 to 300.94 microns (3.0094?1024 m) from the soma. The SLM layer
contains the thick apical dendrites located within 386 to 424.75 microns
(3.86?1024 to 4.2475?1024 m) from the soma and the side branches located
beyond 419 microns (4.19?1024 m) from the soma. The soma receives only
inhibitory input.
doi:10.1371/journal.pcbi.1001038.t004
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Blockade of biophysical mechanisms
To evaluate the contribution of specific biophysical mechanisms

in spike blocking and burst generation in the model neuron, we

reduce their conductance by 90%. In experiments where the

NMDA or GABAB conductances are blocked, the AMPA/

GABAA conductances are enhanced in order to counteract the

reduced excitation and inhibition, respectively.

Model refinement and Robustness Analysis
To test the validity of our conclusions under different stimulus

conditions, we used three additional stimulation protocols in a

refined version of the model. The refinements included (a) the

addition of inhibitory contacts activated by SC inputs and

terminating on the dendrites in the SLM layer (10% of the

inhibitory inputs to the SLM), (b) the addition of inhibitory

contacts activated by PP inputs and terminating on the soma (10%

of the inhibitory inputs to the soma), (c) a 2.5 ms delay between the

activation of excitatory and inhibitory inputs, to account for the di-

synaptic activation of PPRinterneuronRCA1 and SCRinter-

neuronRCA1 pathways.

Protocol 1 (low frequency). SR is stimulated with 10

suprathershold pulses at 1 Hz, leading to a firing frequency of 1-

2 Hz. SLM is stimulated with 10 events at 1 Hz, each event

consisting of 5 subthreshold pulses at 100 Hz. The two layers are

stimulated with a delay ranging from 0–350 ms (0–0.35 s), with

the SLM activated prior to the SR. When activated together, the

average firing frequency of the model ranges from 4–5 Hz to less

than 1 Hz, depending on the delay and the synaptic arrangement

as shown in Figure S2A in Text S1.

Protocol 2 (theta). SR is stimulated with 10 suprathershold

pulses at 4 Hz, leading to a firing frequency of 2–4 Hz. SLM is

stimulated with 10 events at 4 Hz, each event consisting of 3

subthreshold pulses at 100 Hz. The two layers are stimulated with

a delay raging from 0–160 ms (0–0.16 s), with the SLM activated

prior to the SR. When activated together, the average firing

frequency of the model ranges from 9–11 Hz to less than 2 Hz,

depending on the delay and the synaptic arrangement as shown in

Figure S2B in Text S1.

Protocol 3 (theta burst). This protocol is used in [41] and

was implemented in the model for validation purposes. SR is

stimulated with 10 suprathershold pulses at 5 Hz, leading to a

firing frequency of 3–5 Hz. SLM is stimulated with 10 events at

5 Hz, each event consisting of 5 subthreshold pulses at 100 Hz.

The two layers are stimulated with a delay raging from 0–160 ms

(0–0.16 s), with the SLM activated prior to the SR. When

activated together the average firing frequency of the model ranges

from 10–12 Hz to less than 5 Hz, depending on the delay and the

synaptic arrangement as shown in Figure S2C in Text S1. As in

[41], both GABAA (decreased by 70%) and GABAB (decreased by

80%) conductances are reduced in this protocol.

Return Maps
To investigate the existence of inter-relationships between

successive ISIb values, we produce three-dimensional Return

Maps for the fully clustered and the fully diffused synaptic

arrangements and five different delays (20, 60, 100, 120 and

160 ms (0.02, 0.06, 0.1, 0.12, 0.16 s). This is done by constructing

separate vectors each of which contains the series of ISIb values for

a specific delay and a specific arrangement over the 62 repetition

trials:

Vd~ Vd1
,Vd2

,:::,Vd62

h i
ð7Þ

where Vd1
is the series of successive ISIb values obtained from the

first trial, Vd2
is the series of ISIb values obtained from the second

trial and so on. Each vector is then used to generate a 3D graph

showing each ISIb, as a function of its preceding and succeeding

ISIb values (Figure 6 and Figure S1 in Text S1). Regions in this

3D space where data points appear in tight clusters suggest high

similarity and/or correlation between successive ISIb values. To

quantify variability and differences between the return maps we

used the normalized entropy statistic [115] and the two-sample

Kolmogorov-Smirnov test for evaluating significant differences

between density histograms of the Vd vectors.

Hierarchical clustering of ISIb patterns for fully clustered

and fully diffused arrangements and in all Protocols was performed

using the dendrogram function in Matlab (Similarity function:

Spearman Rank correlation, Linkage: Complete). For each

arrangement and delay, the median ISIb pattern is estimated by

taking the median of each ISIb value throughout the somatic firing

response over the repetition trials.

Time-to-first-spike for fully clustered and fully diffused

arrangements as a function of the delay was assessed for all

Protocols using the boxplot function in Matlab. Boxes indicate the

lower quartile, median and upper quartile values while the lines

extending from each end of the boxes (whiskers) show the extent of

the rest of the data. Outliers are data with values beyond the ends

of the whiskers. If there is no data outside the whisker, a dot is

placed at the bottom whisker.

Variability of individual neuronal responses was done

to investigate the variability of responses within the same synaptic

arrangement using the local variance metric described in [58].

Prediction error analysis was done to investigate the presence

of deterministic structure in the data using the non-linear

prediction algorithm by Kantz and Schreiber [116]. Analysis of

the ISIb time series using this method (TISEAN software) is based

on the theory of non-linear deterministic dynamical systems. The

parameters used were: time delay = 6 (calculated from the

autocorrelation function), embedding dimension = 10 (calculated with

the false nearest neighbors from TISEAN software), number of

neighbors = 8, prediction step, Dk = 10. The prediction error is

calculated as the average value of the squared difference between

the predicted IŜSIbnzDk
and the real ISIbnzDk

future values [54]:

PEISIb
Dkð Þ~ IŜSIbnzDk

{ISIbnzDk

h i2
� �

ð8Þ

IŜSIbnzDk
~

1

Ue ISIbnð Þj j
X

ISIbi
[ISIbn

ISI
bizDk

ð9Þ

where Ue denotes the adjacent neighbor in which at least 8

neighbors are within its limits.

Simulation methods
All simulations in this study were carried out within the

NEURON simulation environment [112], using the variable time

step method (CVODE). Simulations were performed using two

xeon servers and a cluster of 64 dual Opteron 242 with 1 Gbyte

main memory CPU systems interconnected with a Gigabit

Ethernet.

Supporting Information

Text S1 This file contains tables and figures (both with titles and

legends) than have been mentioned in the main text. That is,
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Tables S1–S5, Figures S1–S6. It also describes in detail some

analysis that was not included in the article and the mathematical

formulas of the mechanisms used in the model (ionic currents,

receptors, passive properties) as well as their distribution

throughout the model neuron.

Found at: doi:10.1371/journal.pcbi.1001038.s001 (6.97 MB

DOC)
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