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Abstract

Chromosomal gains and losses comprise an important type of genetic change in tumors, and can now be assayed using
microarray hybridization-based experiments. Most current statistical models for DNA copy number estimate total copy
number, which do not distinguish between the underlying quantities of the two inherited chromosomes. This latter
information, sometimes called parent specific copy number, is important for identifying allele-specific amplifications and
deletions, for quantifying normal cell contamination, and for giving a more complete molecular portrait of the tumor. We
propose a stochastic segmentation model for parent-specific DNA copy number in tumor samples, and give an estimation
procedure that is computationally efficient and can be applied to data from the current high density genotyping platforms.
The proposed method does not require matched normal samples, and can estimate the unknown genotypes
simultaneously with the parent specific copy number. The new method is used to analyze 223 glioblastoma samples
from the Cancer Genome Atlas (TCGA) project, giving a more comprehensive summary of the copy number events in these
samples. Detailed case studies on these samples reveal the additional insights that can be gained from an allele-specific
copy number analysis, such as the quantification of fractional gains and losses, the identification of copy neutral loss of
heterozygosity, and the characterization of regions of simultaneous changes of both inherited chromosomes.
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Introduction

DNA copy number aberration (CNA), defined as gains or losses

of specific chromosomal segments, are an important type of

genetic change in tumors. Various microarray based experimental

platforms [1–7] have made possible the fine scale measurement of

CNAs. Whereas the earlier platforms such as comparative genome

hybridization arrays were designed to measure the total copy

number of both inherited chromosomes, other platforms such as

high density genotyping microarrays [6–8] can measure allele

specific DNA quantity. For alleles that represent known variants of

genes, it would be of biological interest to know which allele has

undergone copy number change [9]. Also, some genetic

mechanisms, such as gene conversion, mitotic recombination,

and uniparental disomy, cause loss of heterozygosity (LOH)

without change in total DNA copy number, and thus can not be

detected through conventional analysis methods relying only on

total copy number. Even in the case where the total DNA copy

number changes, it would be informative to know whether one or

both of the inherited parental chromosomes are involved. Thus, to

construct a more detailed molecular portrait of tumors, we need to

distinguish between the underlying quantities of the two inherited

chromosomes, which we call the parent specific copy numbers.

This paper addresses the problem of parent specific copy

number estimation using allele-specific raw copy number data

from high-density genotyping arrays. We will describe the data in

more detail in the next section. Here, we clarify the differences

between total copy number analysis and parent specific copy

number analysis, and review the background of the computational

treatment of this problem.

The genome of each somatic human cell normally contains two

copies of each of the 22 autosomes, one inherited from each

biological parent. At any genome location, one or both of these

two chromosomes may gain or lose copies, thus creating a change

in total copy number at that location. Microarray experiments for

measuring total copy number produce a sequence of continuous

valued measurements mapping to ordered locations along the

chromosomes. Computational methods can be applied to segment

this noisy sequence of measurements into regions of homogeneous

copy number [10–21], see Lai and Park [22] and Willenbrock and

Fridlyand [23] for a review. Since chromosomes are gained and

lost in contiguous segments, the true total copy number should be

piecewise continuous. This is why change-point models and

hidden Markov models have been very useful for total copy

number estimation.

Total copy number estimates do not reveal which (or both) of

the two inherited chromosomes have been gained or lost, and if a

locus is polymorphic, which (or both) of the alleles have been

affected. This information is now available in data produced by

high density genotyping platforms, which give, at selected single

nucleotide polymorphisms (SNPs), a bivariate measurement

quantifying the two alleles which we arbitrarily label A and B,

PLoS Computational Biology | www.ploscompbiol.org 1 January 2011 | Volume 7 | Issue 1 | e1001060



as shown in the left panel of Figure 1. Some platforms output the

total raw copy number (R), which is the sum of A and B, and the

B-allele frequency (BAF), which is the percentage of B allele raw

copy number among the total allele raw copy number, i.e.,

B=(AzB). The logR quantifies the total copy number, while the

BAF quantifies the imbalance between the two alleles. The right

panel of Figure 1 shows R, the sum of A and B allele intensities,

and BAF. Unlike the total copy number, the allele-specific

measurements are mixtures that depend on the unknown genotype

at each location. For this reason, conventional change-point

models can not be applied to allele specific copy number

estimation.

This problem can be formulated statistically as follows: The

observed A and B intensities form a bivariate sequence whose

underlying distribution undergoes abrupt changes. The distribu-

tions at each location are mixtures. Both the change-points, the

mixture components, and the cluster memberships at each data

point are unknown and must be estimated from the data.

There have been much effort extending existing genotyping and

total copy number segmentation procedures to analyze allele-

specific data. At the probe level, CNAT [24], CN5 [24], CRMA

[25], dChipSNP [26,27], PLASQ [28], and PICR [29] can be

applied to Affymetrix data to produce allele-specific probe-set

summaries at each SNP location. However, just as in the

estimation of total copy number, the allele-specific intensities for

adjacent SNPs should be smoothed to infer the underlying parent-

specific copy numbers. LaFramboise et al. [28] first segmented the

total copy number using Circular Binary Segmentation [30], and

then estimated the parent-specific copy numbers for each segment.

This early approach misses copy neutral loss-of -heterozygosity

(LOH) events, defined as the simultaneous gain of one chromo-

some and balanced loss of the other chromosome resulting in loss

of heterozygosity but no change in total copy number. Many other

existing approaches rely on discrete-state hidden Markov models

[27,31–34], which are hidden Markov models assuming a pre-

specified finite set of underlying states. For example, PennCNV

[32] and QuantiSNP [33] assume that the underlying copy

numbers belong to the integer classes f0,1, . . . ,6g, and that the

allele-specific copy numbers can be described by ‘‘generalized

genotypes’’ AA, AB, BB, A-, B-, AAB, ABB, etc. While these types

of models are very useful for detecting germline copy number

variants in normal tissue, they do not generalize well to genetically

heterogeneous samples. This is because by requiring a fixed set of

pre-defined discrete states, they do not account for the

heterogeneity of cells within the sample, which produces data

with apparently fractional copy number changes rather than the

idealized unit-copy changes. This is especially problematic for

tumor samples, which are usually heterogeneous mixtures of cells

with different genetic profiles. Through titration studies, Staaf et

al. [35] showed that methods relying on idealized genotype states

lose sensitivity when tumors are diluted with normal cells.

The fractional changes in tumors inspired recent approaches

[35,36] that segment both the logR and BAF simultaneously.

Since BAF is a mixture of homozygous and heterozygous SNPs, it

cannot be processed using existing segmentation procedures.

Current methods solve this problem through a pre-processing step

that gets rid of the homozygous SNPs. However, identifying the

‘‘homozygous SNPs’’ is nontrivial when the regions of CNA are

unknown, and a segmentation procedure that simultaneously

genotype each SNP while inferring the underlying parental copy

numbers is desirable, unless a matched normal is available.

In light of these recent developments, we need a systematic

stochastic model for parent specific copy number which can

accommodate fractional copy number changes. We propose a

general two-chromosome hidden Markov model for this problem.

The hidden states of the model represent the copy numbers of each

of the two inherited chromosomes, and take value in the continuous

space of real numbers. Thus, unlike discrete state space HMMs, this

model is not limited to idealized unit-copy changes. Computation-

ally efficient fitting algorithms are given that scale well to data

obtained from the current high density genotyping arrays. The

estimation procedure based on the two chromosome model, which

we call Parent-Specific-Copy-Number (PSCN), extends the frame-

work developed in Lai et al. [37] for total copy number analysis.

After segmenting the genome into regions of constant parent-

specific copy number, we identify, for each region, whether both

or only one of the parental chromosomes have changed copies. We

also determine, in regions containing simultaneous gain of one

chromosome and loss of the other, whether the changes are

balanced. Thus, we classify the regions into six different types of

aberrations depending on the status of the two parental

chromosomes: gain of both chromosomes (gain/gain), gain of

only one chromosome (gain/normal), gain of one chromosome

and balanced loss of the other chromosome (balanced gain/loss),

gain of one chromosome and unbalanced loss of the other

chromosome (unbalanced gain/loss), loss of only one chromosome

(normal/loss) and loss of both chromosomes (loss/loss). To our

knowledge, this is the most detailed classification available among

methods for allele-specific analysis. The PSCN method outputs the

copy number for both chromosomes in each segment.

We evaluate the accuracy of the proposed procedure on a series

of simulated tumor titration data provided by Staaf et al. [35], as

well as a new set of simulation data containing a larger variety of

chromosomal aberrations. We then apply the new approach to

223 glioblastoma samples from the Cancer Genome Atlas project

[38], and illustrate through case studies some of the insights gained

from an analysis of allele-specific data.

Results

The Two Chromosome Hidden Markov Model

Let y~ yt~ yA
t , yB

t

� �T
: t~1, . . . , n

n o
be the allele-specific

signals for alleles A and B at n SNPs ordered by their locations in a

Author Summary

Many genetic diseases are related to copy number
aberrations of some regions of the genome. As we know,
each chromosome normally has two copies. However,
under some circumstances, for some regions, either one or
both of the chromosomes change. Genotyping microarray
data provides the copy number of the two alleles of
polymorphic sites along the chromosomes, which make
the inference of the copy number aberrations of the
chromosome feasible. One difficulty is that genotyping
microarray data cannot provide the haplotype of the two
copies of a chromosome. In this paper, we model the copy
number along the chromosome as a two-dimensional
Markov Chain. Using the observed copy number of both
alleles of all the sites, we can determine the parent specific
copy number along the chromosome as well as infer the
haplotypes of the two copies of the inherited chromo-
somes in regions where there is allelic imbalance.
Simulation results show high sensitivity and specificity of
the method. Applying this method to glioblastoma
samples from the Cancer Genome Atlas data illustrate
the insights gained from allele-specific copy number
analysis.

Estimation of Parent Specific DNA Copy Number

PLoS Computational Biology | www.ploscompbiol.org 2 January 2011 | Volume 7 | Issue 1 | e1001060



reference genome. The way of obtaining y depends on the

experimental platform (see ‘‘Data Transformation’’ in Methods).

Our goal is to infer the quantities of the parent specific copy

numbers, which we denote by h~ ht~ h1
t , h2

t

� �T
: t~1, . . . , n

n o
.

By parent-specific, we distinguish between the chromosomes

inherited from the two parents, which we treat as exchangeable

and do not label as maternal or paternal. Let st [S~

AA, AB, BA, BBf g be the configuration at SNP t specifying the

alleles carried by the inherited chromosomes. Let xt~ xA
t , xB

t

� �T

be the true copy numbers of alleles A and B at SNP t. The

relationship between ht, st, and xt is shown in Table 1.

Note that when a somatic event causes a change in copy

number of one or both parental chromosomes at SNP t, the allele-

specific copy numbers xt change, but st remains fixed. For

example, if the inherited genotype is AB, and if h1
t is amplified

two-fold, then the true copy number of allele A would also be

amplified two-fold, but st would still be AB. The observed allele

specific signals yt are assumed to be equal to the true allele specific

quantities plus an independent measurement error,

yt~xtzEt; ð1Þ

where Et*N(0, Sst ) and Sst are state specific error covariance

matrices. The model that relates yt to xt, ht and st is illustrated in

Figure 2.

To model the gains and losses of the two inherited chromosomes,

we assume that h is a Markov jump process with state space <2.

Conceptually, each time h jumps, it can choose between two states:

The normal state (one copy each of maternal and paternal

chromosome), where h must assume a known baseline value m0, or

the variant state, where h picks a new random value from the bivariate

Gaussian N(m,V ). The prior mean m and prior covariance V , along

with the other hyperparameters of the prior, will be estimated by

maximum likelihood. To allow the possibility of the copy number

changing from a variant state to a different variant state, for example,

(2,1)T to (3,1)T , we technically need two identically distributed

variant states in our formulation of the Markov chain. Hence we let

the states be fNormal, Variant1, Variant2g. Then, the dynamics of

the Markov model can be described by the transition matrix

P~

1{p
1

2
p

1

2
p

c a b

c b a

0BB@
1CCA: ð2Þ

The matrix P specifies that if h is in the normal state at SNP t, then at

SNP tz1, h stays in the normal state with probability 1{p, or jumps

Figure 1. An example data sequence taken from a stretch of a TCGA glioblastoma sample (first 10000 SNPs of TCGA sample 02-
0258 chromosome 2) assayed using the Illumina HumanHap 550k SNP array. The left panel shows the A and B allele intensities. The right
panel shows the R and BAF. All x-axes are in mega base pairs.
doi:10.1371/journal.pcbi.1001060.g001

Table 1. Relationship between the inherited allele
configuration st and the true allele specific copy numbers xt.

st xA
t xB

t

AA h1
t zh2

t
0

AB h1
t h2

t

BA h2
t h1

t

BB 0 h1
t zh2

t

doi:10.1371/journal.pcbi.1001060.t001

Estimation of Parent Specific DNA Copy Number
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to a variant state with probability p. If ht is in a variant state, then at

SNP tz1, it would stay at the same variant state with probability a, or

jump to a different variant state with probability b, or jump back to the

normal state with probability c. One can verify that this formulation

of the Markov chain, with one baseline state and two variant states,

allows for a model with a baseline state and generic ‘‘variant’’ states as

desired. This model extends the one used for the analysis of total copy

number in Lai et al. [37]. This Markov chain has the stationary

distribution c=(pzc),
1

2
p

�
(pzc),

1

2
p

�
(pzc)

� �
. The three-

state Markov chain with transition probability matrix P and

initialized at the stationary distribution is reversible, which provides

substantial simplification for the estimation of h. Practically, the

reversibility of the Markov model implies that we would obtain the

same segmentation going from right to left as we do going from left to

right. Biologically, this seems logical, as there is no known

directionality of copy number aberration events.

We assume that the inherited allele configurations st are

independent multinomial with prior parameters

pAA
t , pAB

t , pBA
t , pBB

t

� �
,

which can be obtained from the genotyping data of a set of normal

control samples. Note that AB and BA cannot be distinguished in

normal samples, so we can set pAB
t and pBA

t to one-half of the

proportion of heterozygotes for SNP t. When these figures are not

available, we have found that a uniform prior usually works

reasonably well. This is because the main purpose of the model is

to estimate the parent-specific copy numbers, with st as surrogate

information. With the large number of data points obtained from

the high density arrays, the posterior for the parent-specific copy

numbers is usually quite insensitive to the prior on st. Note that for

platforms, such as the Affymetrix 6.0 array, have non-polymorphic

copy number markers rather than SNP markers. For those

markers, the prior for st can be set to (1, 0, 0, 0). In this way, the

posterior will always remain at (1, 0, 0, 0) and only the total copy

number information at these markers would contribute to the

overall segmentation.

Note that this model contains many assumptions, including

Gaussianity of the allele specific intensities and Markovicity of the

underlying copy number states. These assumptions allow fast and

explicit analytic formulas to be derived, thus avoiding the need for

Monte Carlo based estimates. For most platforms, the allele-

specific intensities deviate from Gaussianity, despite careful

normalization. Also, there has never been proof that chromosomal

breakages are Markovian. These assumptions are made for

modeling convenience, just as in the total-copy number estimation

problem [11,16,30,37]. It is reassuring that the estimation method

is robust to deviations from both the Gaussian and Markov

assumptions, as we show using the titration data from Staaf et al.

[35] and through our own spike-in studies.

Our primary objective is to estimate the parent specific copy

numbers h, which depend on the observed signals through the

unobserved inherited allele configurations s~ st : t~1, . . . , nf g.
Let S~Sn and H~(<2)n be the set of all possible realizations for s
and h, respectively. We describe below an iterative algorithm to

estimate s and h.

Allele-specific iterative smoothing. Fix stopping threshold

d. Initialize i~0 and s~s(0)~ s
(0)
1 , . . . , s(0)

n

� �
through an initial 4-

group clustering of fyt : t~1, . . . , ng. Repeat:

1. Expectation step: Given s(i), set h(iz1) to its posterior mean

h(iz1)
t ~E½htjs(i), y�, t~1, . . . , n: ð3Þ

Computationally efficient formulas for (3) are given in

Methods.

Figure 2. Overview of the stochastic segmentation model. The Markov sequence fqtg represent the parent-specific copy number, i.e. the
underlying copy numbers of the two inherited chromosomes. For each SNP t, the allele-specific copy numbers xt depend on both qt and the
inherited allele configuration st. The observed allele-specific signals, fytg, are fxtg overlayed with Gaussian noise. st affects fytg in the way that
different type of st can have different covariance structure for the Gaussion noise.
doi:10.1371/journal.pcbi.1001060.g002

Estimation of Parent Specific DNA Copy Number
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2. Maximization step: Given h(iz1), set s(iz1) to its maximum a

posterior value

s(iz1)~argmaxs[SP sjh(iz1), y
� �

: ð4Þ

This can be done easily because given h(iz1), yt is a four-

component mixture of Gaussians at each t, and s
(iz1)
t is simply

the identifier for each mixture component. The exact formula

for (4) is given in Methods.

3. If h(iz1){h(i)
		 		vd, stop and report ĥh~h(iz1), ŝs~s(iz1).

Otherwise, set i/iz1 and go back to step 1.

In each iteration of the above algorithm, the expectation step

estimates ht by its posterior mean given the data and the current

estimate of the configuration states st. Then, st is set to its posterior

mode given the data and the current estimate of ht. Computa-

tionally efficient forward-backward equations for (3) and formulas

for (4) are given in Methods, where we also describe an

expectation maximization procedure for estimating the hyper-

parameters P, m, V , and fSj : j~AA, AB, BA, BBg from the

data, so that they do not need to be specified a priori.

The above algorithm returns a soft segmentation of y in the

form of a Bayesian estimate ĥh for the parent specific copy numbers

at each location. A hard segmentation is sometimes desirable, for

example, to give a sparse representation of the data. A hard

segmentation can be obtained from the soft segmentation as

follows: Compute for each t the one-step Euclidean distance

Dt~ bhhtz1{bhht

			 			. Estimate the change-points to be the locations

where Dt are larger than the threshold, with the constraint that

they must be separated by a pre-chosen minimum number of

SNPs (e.g. 20). The segmentation algorithm starts with the set

t̂t~f0, ng containing only the end points of the sequence.

Change-points are added recursively to the set by maximizing

Dt under the separation constraint, until no more change-point

can be added. We start with a low threshold for Dt(0:01) allowing

some false positives, with most of the false positives eliminated by a

subsequent Wilcoxon Rank-Sum test (p-value threshold of 0:05)

that combines adjacent segments with no significant difference in

mean. We found this to be more accurate than a one-step

procedure using a more stringent threshold on Dt.

Identifying the Type of Aberration
The segmentation divides the genome into regions where the

copy numbers of the two inherited chromosomes are constant. It is

often useful to know, for each region, whether the copy numbers of

one or both parental chromosomes deviate from the normal level.

This involves classifying each region into one of the following six

types of chromosomal change: gain/gain, gain/normal, balanced

gain/loss, unbalanced gain/loss, normal/loss and loss/loss.

For each segmented region, we define the major copy number

to be the normalized raw copy number of the more abundant

chromosome, and the minor copy number to be the normalized

raw copy number of the less abundant chromosome. If the two

chromosomes have equal copy numbers, then the major and

minor chromosome labels are assigned arbitrarily. The major and

minor copy numbers are estimated after the hard-segmentation

using a mixture model on the heterozygous SNPs in each region

(which can be identified using ŝs). Then, a t-test is used to compare

the estimated major and minor copy numbers of each region to the

estimated allele copy number of the normal level in the unchanged

segments. The Bonferroni correction is used to adjust for multiple

testing. The technical details are given in Methods. This procedure

allows us to discover and distinguish all of the six types of CNVs.

An additional caveat is that when both parental chromosomes

carry the same haplotype, a balanced gain/loss would be called if

the region were long enough. Without matched data from normal

tissue, it is impossible to distinguish with certainty between

inherited and somatic LOH. However, we rely on the fact that

long regions of LOH are infrequent, and thus the minor allele

frequency of SNPs and the linkage disequilibrium between them

can be used to conduct a test for the probability that an inherited

LOH appears by chance. This haplotype correction only takes

care of the unique common haplotypes, i.e., when a region is

dominated by one haplotype. If a haplotype is not common in that

region, or if there are several haplotypes in that region, this test

loses sensitivity. In this case, paired normal cell information would

be useful. More details are given in Methods.

Results on Simulated Dilution Data from Staaf et al. [35]
Staaf et al. [35] performed a systematic comparison of existing

methods for allele-specific copy number estimation. They created

a simulated dilution data set based on experimental 550k Illumina

data for HapMap sample NA06991. To the diploid HapMap

sample, ten regions of aberrant copy number were added at

increasing fractions to mimic a tumor sample that is contaminated

with normal cells. Here, u% normal cell contamination means u
part normal cells are mixed with 100{u part tumor cells. The

aberrant regions vary by type and length, and represent regions of

hemizygous gains and losses and copy neutral LOH. Since the

locations of the true aberrant regions are known, the specificity

and sensitivity of the detection methods can be evaluated.

We applied PSCN, the R package we developed based on our

method, to this dilution data set and compared it with existing

approaches in an analysis that parallels the insightful analysis in

Staaf et al. [35]. The sensitivity and specificity of results from

PSCN at varying contamination ratios is shown in Figures 3 and 4

overlayed onto plots reproduced from Staaf et al. [35]. In order to

compare with the sensitivity analysis of other models done in the

paper by Staaf et al. [35], we define a ‘‘correct detection’’ to mean

that a true CNA region has been called, but do not require that the

type of CNA (e.g. gain/loss, normal/loss) has been correctly

identified. All the other current procedures only categorize the

CNAs into Gain, Loss and LOH, which are the three types of

CNAs used in the Dilution data in Staaf et al. [35]. We assess the

accuracy of PSCN in a more detailed classification of identified

CNAs based on the six types of chromosomal change in a separate

data set that contains a wider diversity of chromosomal events (see

next section). In the simulated dilution data, the regions vary in

length, magnitude, and type of aberration, with some regions

harder to detect than the others. There is a separate sensitivity plot

for each of the 10 aberrant regions created by [35]. As expected,

for all regions, sensitivity is maintained at a high level up to a

certain contamination ratio, then drops sharply. Since Staaf et al.

and we used very stringent detection thresholds, the specificity is

maintained near 1 for all contamination ratios, as shown in

Figure 4. The sensitivity of PSCN is comparable to SOMATICs

[36], but the latter method has much lower specificity, as shown in

the analysis of Staaf et al., see Figure 4. PSCN achieves good

accuracy compared to the other existing methods, especially

methods based on discrete-state hidden Markov models for high

levels of contamination. The discrepancy between the two

specificity plots in Figure 4 are due to the fact that when an

aberration is called, it may be labeled as an incorrect type (for

example, a copy neutral LOH may be labeled as single copy gain).

When the correct calling of aberration type is required, the

specificity of PSCN is maintained through a higher level of

contamination as compared to existing models. The new model

Estimation of Parent Specific DNA Copy Number

PLoS Computational Biology | www.ploscompbiol.org 5 January 2011 | Volume 7 | Issue 1 | e1001060



can identify the correct aberration type if the normal cell

contamination is below 80%. Above 80%, PSCN gains signif-

icantly in sensitivity compared to existing methods but also

sacrifices slightly in specificity.

Accuracy of Aberration Type Identification
The dilution data set from Staaf et al. [35] contains only three

types of aberrations: hemizygous loss (normal/loss), single copy

gain (gain/normal), and copy neutral LOH (balanced gain/loss).

We created a simulated data set containing all six types of

aberrations: gain/gain, gain/normal, balanced gain/loss, unbal-

anced gain/loss, normal/loss and loss/loss. To make the

simulation resemble real data, we started with the 550k Illumina

data for chromosome 1 of HapMap sample NA06991. To this

normal sequence we imposed six different signal types on six

regions. The positions and magnitudes of the added signals are

shown in Table 2. The top panel of Figure 5 (first row) shows the R

and BAF before the signals are imposed. The middle and bottom

panels show the R and BAF after the signals have been imposed, at

0% and 80% contamination respectively, with true signals

indicated by black lines. Signal becomes weaker when normal

cell contamination increases, and thus are harder to detect. The

estimated parent-specific copy numbers are shown in Figure 6. We

can see from the plots that the estimated parent-specific copy

numbers are very close to the true allele copy numbers. Table 3

shows the largest normal cell contamination under which the

Figure 3. Sensitivity versus normal cell contamination for 10 regions in the dilution data set of Staaf et al. [35]. We overlayed our
results on top of plots reproduced from [35].
doi:10.1371/journal.pcbi.1001060.g003

Estimation of Parent Specific DNA Copy Number
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signals are detectable by PSCN. When normal cell contamination

is less than 80%, our model can detect most of the signals with

both alleles assigned to the correct type. When the normal cell

contamination rises to 90%, our model can still detect three out of

the six CNA regions, but assigns the correct type to only one of the

two alleles. For example, at a high contamination level of 90%,

there is a tendency for a fractional loss of both chromosomes to be

mistaken for a fractional loss of only one of the two chromosomes.

From this study, we see that the correct type of aberration can be

identified robustly for all but the highest levels of normal cell

contamination.

Accuracy of Estimation of Genotype States
Using the dilution data set created from HapMap sample

NA06991, we can also assess the accuracy of PSCN in identifying

the genotype states fstg. Since the genotypes for the SNPs on this

sample are known, we simply compared the estimated fŝstg with

the true values.

Table 4 shows the percent of homozygous SNPs that are

misclassified as heterozygous, and vice versa. When the SNP is

classified as homozygous, the determination between the states AA

and BB is trivial, and no errors are made. When normal cell

contamination is extremely low, less than 10%, genotyping errors

are common in regions of loss of heterozygosity (either normal/

loss or gain/loss). This is expected, since in a region with complete

LOH and zero contamination, only one of the two parental alleles

is left, and thus it would be impossible to distinguish between the

homozygous configurations fAA, BBg and the heteryzogous

configurations fAB, BAg. Fortunately, these types of genotyping

errors would not affect the accurate estimation of ht, since the

mean levels for the heterozygous and homozygous tracks merge

for LOH regions under zero contamination. It is slightly

unintuitive that the correct estimation of st depends on the fact

that there is normal cell contamination! This is reflected in Table 4,

where accuracy quickly improves as normal cell contamination

increases, with a total misclassification rate of :54% at 10% normal

cell contamination.

A complete analysis of the misclassification rates of fstg are

given in the Supporting Information file (Text S1).

Analysis of TCGA Glioblastoma Samples
We applied PSCN to 223 glioblastoma samples from the TCGA

project [38]. These samples were assayed using Illumina

HumanHap 550k SNP arrays.

Almost all of the 223 samples analyzed contain substantial copy

number aberrations. Table 5 shows the distribution of the types of

copy number events found in the samples. Of the gain/loss events,

which comprise 45.4% of all of the events, 22.8% are copy neutral

LOH and 22.5% are unbalanced gain/loss. We see from this table

that, among these glioblastoma samples, single chromosome losses

Figure 4. Specificity versus normal cell contamination in the dilution data set of Staaf et al. [35]. We overlayed our results on top of plots
reproduced from [35]. Left panel shows the overall specificity, which is the fraction of SNPs outside of all simulated alletic imbalances that are not
called. The right panel shows the specificity of correct calling of the type of allelic imbalance, i.e., if a truly aberrant region is identified as aberrant, but
of an incorrect type, then it is also considered as a wrong call. Note that the scale of y-axis is different for the two plots.
doi:10.1371/journal.pcbi.1001060.g004

Table 2. Signals imposed on to Chromosome 1.

SNP begin SNP end Major copy number Minor copy number

Gain/Gain 2000 5000 3 2

Gain/Normal 9000 12000 2 1

Balanced Gain/Loss 16000 19000 2 0

Unbalanced Gain/Loss 23000 26000 3 0

Normal/Loss 30000 33000 1 0

Loss/Loss 37000 40000 0 0

‘‘SNP begin’’ and ‘‘SNP end’’ are the indices of the SNP where the added signal begins and ends, respectively. ‘‘Major’’ and ‘‘minor’’ copy numbers are the intensities of
the signal in the two alleles.
doi:10.1371/journal.pcbi.1001060.t002
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or single chromosome gains comprise 49.6% of all the events,

which means that more than half of the events involve change of

both inherited chromosomes.

We now zoom in on two example regions to illustrate the

additional insights gained from parent-specific copy number

analysis. These regions are shown in Figure 7. The figures in the

left panel correspond to the entire chromosome 3 of TCGA

glioblastoma sample 02-0332, while those on the right panel

correspond to the first 10000 SNPs on chromosome 2 of TCGA

glioblastoma sample 02-0258. The top two plots in each panel

show the R and BAF values. The color scheme for these plots show

the segmentation obtained using PSCN. We transformed the R
and BAF values back to the (A, B) raw copy number values, and

fitted two dimensional densities separately to each region in the

segmentation. The contours of the two dimensional density

estimates, delineating the locations of the clusters, are shown in

the third plot from the top in each panel. The color scheme for the

contours is the same as the color scheme for the R and BAF plots.

Finally, the bottom plot of each panel shows the estimated major

and minor copy numbers for each region (we will call this type of

plot the mm-plot). The color scheme of the mm-plot reflects the

gain/loss status of each region, where red represents gain, blue

represents loss, and green represents normal. It is usually difficult

to discern the relative magnitudes of gains and losses from the R
and BAF plots, especially when both inherited chromosomes have

undergone copy number changes. Such relative changes in parent

specific copy numbers can be quantified more easily by examining

the (A, B) contour and mm-plots.

Copy neutral LOH (Balanced Gain/Loss). First, consider

the example region from TCGA sample 02-0332 on the left panel.

There are three instances of copy neutral LOH, colored in purple.

Based on the BAF plot, the loss seems to be complete, that is, it is

carried by almost all of the cells in the sample. The mm-plot also

gives this information, as the estimated major copy number (red

line) is close to 2, and the estimated minor copy number (blue line)

is close to 0. These LOH regions do not change the total copy

number, and thus would not have been detected if the

segmentation were based on the R profile. On the other hand,

an analysis based only on the BAF plot would not have revealed

that the LOH is copy neutral; e.g. in the TCGA sample 02-0258,

Figure 5. Signal of the simulated data by imposing six types of aberrations on chromosome 1 of HapMap sample NA06991. The first
row shows R and BAF before the signals are imposed. The second row shows R and BAF after the signals are imposed, under normal cell
contamination 0%. True signals are indicated by black lines. The third row shows R and BAF after the signals are imposed, under 80% normal cell
contamination.
doi:10.1371/journal.pcbi.1001060.g005
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the LOH region (purple) with similar pattern in BAF is not copy

neutral. The estimates in the mm-plot can only be obtained

through a joint analysis of both the R and the BAF profiles.

Fractional single chromosome gains and losses. Following

the copy neutral LOH regions in chromosome 3 of sample 02-0332,

there is a stretch of alternating gains and losses, colored respectively

in red and blue. The copy of the other parental chromosome in

these regions is one. As seen from the mm-plot, all of these regions

contain changes that affect only one of the two inherited

chromosomes. The changed chromosome may differ across

segments. For example, the paternal chromosome may have been

differed in one segment, and the maternal chromosome in the next.

The copy number of the other chromosome in these regions remain

at the normal level. This fact can not be deduced from total copy

number analysis, as an increase in R can be due to gains of both

inherited chromosomes, or an unbalanced gain of one chromosome

and loss of the other; see the next example (TCGA 02-0258). The

(A, B) contour plot discriminates between these two possible cases.

If we examine the cluster centers corresponding to the heterozygotes

in the red and blue segments we see that for any one cluster, only

one of the A and B coordinates is significantly shifted from the

corresponding coordinate of the normal AB cluster (coded in gray).

This is evidence that the copy number of only one of the

chromosomes has changed in these regions. The positions of the

heterozygote cluster centers of the red and blue regions indicate only

a partial gain and loss, as their shifts from normal are only a fraction

of that expected in a complete event. The estimated major and

minor copy numbers in the mm-plot quantifies the partial change

explicitly, with the major copy numbers at around 1.5 for the gain

and the minor copy numbers at around 0.5 for the loss. Assuming a

Figure 6. Copy number estimation of PSCN on the simulated data by imposing six types of aberrations on chromosome 1 of
HapMap sample NA06991. Top panel: no normal cell contamination. Middle panel: normal cell contamination 60%. Bottom panel: normal cell
contamination 80%. In all panels, solid lines denote estimated allele copy numbers and dashed lines denote true copy numbers.
doi:10.1371/journal.pcbi.1001060.g006
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linear signal response curve for the Illumina platform in the range

between 0 and 3 fold change in DNA quantity, this translates to

about 50% of the cells in the tumor sample carrying the aberrations

coded in blue and red.

The same reasoning can be applied to the red and pink regions

of chromosome 2 of TCGA sample 02-0258 (right panel), which

contains a fractional gain. By teasing apart the copy numbers of

each inherited chromosome, we are now able to characterize and

quantify these fractional changes.

Simultaneous unbalanced gain and loss of both

chromosomes (unbalanced gain/loss). Now consider the

example region color coded in purple from TCGA sample 02-

0258 in the right panel. The R plot suggests that there is a gain in

total copy number. However, the BAF plot reveals that there

seems also to be an almost complete loss of heterozygosity in this

region. Loss of one of the inherited chromosomes is necessary for

loss of heterozygosity. Thus we conclude that the region colored in

purple contains both a gain of one as well as an almost complete

loss of the other inherited chromosome. Indeed, as the mm-plot

shows, the estimated major and minor copy number fold changes

for this region have values of 3 and 0, respectively. The gain and

loss of the two inherited chromosomes is thus unbalanced,

suggesting that this region may have experienced multiple

mutations. This region is immediately followed by a gain of only

one of the two inherited chromosomes (see the mm-plot), of

magnitude roughly equal to the difference between the deviations

of the major and minor copy numbers from normal. This suggests

the hypothesis that this sample first experienced a gain of one of

the inherited chromosomes that covered the purple and red

regions, then a LOH which caused a gain of the already amplified

chromosome and a simultaneous loss of the other inherited

chromosome. Our analysis of the TCGA data shows that these

types of unbalanced gain and loss events are quite common.

Discussion

We have developed a method for simultaneous estimation of

parent-specific DNA copy number and inherited genotypes for

tumor samples using allele-specific raw copy number data. The

model and estimation procedure start with transforming allele-

specific data into A and B intensities, which may vary across

experimental platforms. The model assumes that the A and B

allele intensities should be roughly symmetric, roughly variance

stabilized and have approximately bivariate Gaussian errors.

Indeed, the model is quite robust to the violation of the bivariate

Gaussian error assumption. The model gives satisfying results even

if this assumption is heavily violated. More details are shown in the

the Supporting Information file (Text S1). We illustrated the

method and evaluated its performance on both published and

newly generated dilution data sets on the Illumina platform.

A rigorous assessment using in silico titration data provided by

Staaf et al. [35] shows that PSCN has good accuracy. The

proposed method does not require paired normal samples.

However, if such samples were available, then they can be used

to further improve accuracy and to distinguish between inherited

LOH and somatic LOH. In such cases, st can simply be set to the

genotypes inferred from the normal samples.

PSCN is not platform specific, and we have also applied it to

data from the Affymetrix Genotyping 6.0 array, with an example

analysis given in the Supporting Information file (Text S1). The

Table 3. The largest tolerable percentage for normal cell contamination under which the type of aberration can be correctly
detected (left column), and under which the type of aberration can be correctly identified for one of the two alleles when both
alleles are different from normal (eg. Gain/Gain identified as Gain/Normal) (right column).

Correct Type Estimated for both alleles Correct Type Estimated for one allele

Gain/Gain 70 90

Gain/Normal 85 Not applicable.

Balanced Gain/Loss 80 90

Unbalanced Gain/Loss 85 90

Normal/Loss 85 Not applicable.

Loss/Loss 65 80

All numbers are in percent.
doi:10.1371/journal.pcbi.1001060.t003

Table 4. The number of misclassifications of each type in the identification of st on the NA06991 dilution data set, at different
levels of normal cell contamination.

Normal Contamination (%) Homozygous ? Heterozygous Heterozygous ? Homozygous Misclassification Rate (%)

0 1285 2791 9.7

5 986 1 2.3

10 228 0 .54

25 20 0 .048

50 93 0 .22

90 39 0 .093

There are 42037 SNPs total.
doi:10.1371/journal.pcbi.1001060.t004
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segmentation accuracy of PSCN seems to be reasonable for

Affymetrix data, but can potentially be improved significantly by

better probe-level normalization. This is due to the fact that the

BAF of Affymetrix data is much noisier than the BAF of Illumina

data, which makes the estimation of fstg much more difficult.

Bengtsson et al. [39] have shown that much of the variation in the

BAF of Affymetrix data are due to probe-specific effects that can

be removed if a matched normal sample is available. Another

promising method for probe-level normalization of Affymetrix

data is the probe raw copy number composite representation

(PICR) model of Wan et al. [29], which uses probe sequence

information and physico-chemical modeling to estimate binding

affinity. However, since the PICR model relies on mismatch

probes, it is only applicable to Affymetrix platforms prior to the 6.0

array. Thus, better probe-level normalization of Affymetrix 6.0

data for unmatched samples is still an important problem for

further investigation.

An overview of an analysis of the TCGA glioblastoma samples

reveal that a substantial fraction of copy number changes are

copy-neutral loss of heterozygosity events. These events would not

have been found using analyses based only on total copy number.

Cases of unbalanced simultaneous changes in the copy numbers of

both inherited chromosomes were also found. It would be of

interest to quantify the frequency of such changes among different

cancer subtypes and in other types of tumors.

A final point that we would like to emphasize is the

quantification of fractional changes, as exemplified by the two

case studies on the TCGA glioblastoma samples. Since this

requires teasing apart the quantities of the two inherited

chromosomes, it can only be achieved through allele-specific

estimates. The fraction of cells that carry each copy number event

is important for downstream analyses, such as quantifying normal

cell contamination and studying tumor microevolution. The

parent-specific copy number estimates obtained from the proposed

method provides a starting point for these types of investigations.

The R package for PSCN is registered on R-Forge (http://

r-forge.r-project.org/) under project name PSCN.

Methods

Data Transformation
The proposed model is not platform specific, and can

theoretically be applied to any type of allele-specific copy number

data where the errors on the raw copy number values of the alleles

can be normalized to approximately adhere to a bi-variate

Gaussian distribution. As we show below, the Gaussian error

assumption allows for explicit analytic formulas for the posterior

mean of the underlying inherited chromosome copy numbers, thus

bypassing the need for computationally intensive Monte Carlo

methods. For most platforms, the raw allele-specific raw copy

number values must be properly normalized for this error model

to be a good approximation. However, as we mentioned in the

Discussion section, the model is quite robust to the violation of the

Gaussian error assumption.

A unified approach that gives satisfying results for data from

both Illumina and Affymetrix platforms is as follows. Since

Rt~AtzBt, BAFt~Bt=(AtzBt)

we have

At~Rt(1{BAFt), Bt~RtBAFt

Note that the ‘‘BAF’’ given by the Illumina platform [6] is not the

intuitive quantity (B=(AzB)), but the arc-tangent of the ratio of B
raw copy number versus A raw copy number scaled to [0,1]. Use

BAF� to denote the so called BAF given by Illumina, then

At~Rt



1ztan(BAF�t p



2)

� �
, Bt~Rt{At:

For PSCN we use yt
A~At, yt

B~Bt.

Explicit formulas for h given y and s
We give here exact formulas for the conditional expectation (3).

Let dz denote the probability distribution that assigns probability 1

to the value z. Denote by Yi,j~(yi, . . . , yj), and Si,j~(si, . . . , sj).
A brief outline of the estimation procedure is as follows: First,

conditioned on all data to the left of t, ht is distributed as a mixture

of Gaussians:

htj(Y1,t, S1,t)*ptdm0
z
Xt

i~1

qi,tN(mi,t, Vi,t), ð5Þ

where the formulas for computing the parameters of the mixture

pt, qi,t, mi,t, and Vi,t are given below. We call (5) the forward filter.

Since by our model fhtg is a reversible Markov chain, we can

reverse time and obtain a backward filter that is analogous to (5):

htz1j(Ytz1,n, Stz1,n)*~pptz1dm0
z
Xn

j~tz1

~qqj,tz1N(mtz1,j , Vtz1,j),
ð6Þ

where the parameters ~pptz1, ~qqj,tz1, mtz1,j , and Vtz1,j , as for the

forward filter, are given in explicitly computable form below. The

Bayes theorem can then be used to combine the forward filter (5)

and backward filter (6) to derive the posterior distribution of ht

given the complete sequence Y1,n, which is a mixture of normal

distributions

htj(Y1,n, S1,n)*atdm0
z

X
1ƒiƒtƒjƒn

bi,j,tN(mi,j ,Vi,j) ð7Þ

whose parameters can be derived from the forward and backward

filters as described below. This forward-backward procedure can

be reduced to O(n) computation time by the BCMIX algorithm

[40]. From (7), it follows that the conditional expectation in

Equation (3) can be computed as

E(htjY1,n, S1,n)~atdm0
z

X
1ƒiƒtƒjƒn

bi,j,tmi,j : ð8Þ

Table 5. Distribution of types of copy number aberrations
across all events found in the 223 glioblastoma samples.

Event type % count

gain/gain 3.6 1315

gain/normal 21.0 7773

balanced gain/loss 22.9 8568

unbalanced gain/loss 22.5 8352

normal/loss 28.6 10598

loss/loss 1.4 521

doi:10.1371/journal.pcbi.1001060.t005
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The forward filter. Let Xst
be allele assignment matrices

depending on st:

Xst~
1 1

0 0

 !
1fst~AAgz

1 0

0 1

 !
1fst~ABg

z
0 1

1 0

 !
1fst~BAgz

0 0

1 1

 !
1fst~BBg:

Let Kt~max sƒt : hs~ . . . ~ht, hs{1=hsf g denote the nearest

change-point at a location less than or equal to t. Define

pt~P(ht~m0jY1,t, S1,t), qi,t~P(hKt=m0, Kt~ijY1,t, S1,t)

for 1ƒiƒt. The conditional distribution of ht, given Yt and the

event that Kt~i and hKt=m0, is N(mi,t,Vi,t), where

Figure 7. Example regions from TCGA sample 02-0332 chromosome 3 (left) and TCGA sample 02-0258 chromosome 2 (first 10000
SNPs) (right). The plots, in order from the top, show the R values, BAF values, (A, B) contours and estimated major and minor copy numbers. The
top three plots are color coded by the segmentation estimated using our procedure. In the color coding of the bottom plot, red represents gain, blue
represents loss, and green represents normal.
doi:10.1371/journal.pcbi.1001060.g007
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Vi,j~ V{1z
Xj

t~i

X T
st
S{1

st
Xst

 !{1

,

mi,j~Vi,j V{1mz
Xj

t~i

X T
st
S{1

st
yt

 !

for j§i. It follows that the posterior distribution of ht given

Y1,t, S1,t is the mixture of normal distributions and a point mass at

m0 given by (5). Let wm,V denote the density function of the N(m,V )

distribution, i.e.,

wm,V (y)~(2p){1 det(V ){1=2 exp {
1

2
(y{m)T V{1(y{m)

 �
:

Making use of ptz
Pt

i~1 qi,t~1, it is possible to show as in Lai

et al. [37] that the conditional probabilities pt and qi,t can be

determined by the recursions

pt!p�t :~ (1{p)pt{1zcqt{1½ �lB (ytjst), ð9Þ

qi,t!q�i,t :~
(ppt{1zbqt{1)y



yt,t, i~t,

aqi,t{1yi,t{1



yi,t, ivt,

(

where qt~
Pt

i~1 qi,t~1{pt, lB(ytjst)~exp yT
t S

{1
st

Xst m0{
�

m0
T X T

st
S{1

st
Xst m0

.
2Þ, y~wm,V (0) and yi,j~wmi,j ,Vi,j

(0) for iƒj.

Specifically, the mixture probabilities in (5) are

pt~p�t

.
p�t z

Pt
i~1 q�i,t

h i
and qi,t~q�i,t

.
p�t z

Pt
i~1 q�i,t

h i
.

The smoothing estimate. Since fhtg is a reversible Markov

chain, we can reverse time and apply the same steps as in the

forward equations to obtain (6), in which the weights ~pps, ~qqj,s can be

obtained by backward induction using the time-reversed

counterpart of (9):

~pps!~pp�s : ~ (1{p)~ppsz1zc~qqsz1

� �
lB (ysjss), ð10Þ

~qqj,s!~qq�j,s : ~
(p~ppsz1zb~qqsz1)y



ys,s j~s,

a~qqj,sz1ysz1,j

.
ys,j jws,

8<:
where ~qqsz1~

Pn
j~sz1 ~qqj,sz1~1{~ppsz1. Since for any set A,

P(ht [AjYtz1,n)~
Ð
P(ht [Ajhtz1)dP(htz1jYtz1,n), it follows

from (6) and the reversibility of fhtg that

htjYtz1,n* (1{p)~pptz1zc~qqtz1½ �dm0
z(p~pptz1zb~qqtz1)N(m,V )

za
Xn

j~tz1

~qqj,tz1N(mtz1,j ,Vtz1,j):

The recursions for deriving the components of the mixture for (7)

are exactly the same as those for the earlier model limited to total

copy number in Lai et al. [37]:

at ~a�t



At, bi,j,t~b�i,j,t

.
At, At~a�t z

P
1ƒiƒtƒjƒn

b�i,j,t,

a�t ~pt (1{p)~pptz1zc~qqtz1½ �=c,

b�i,j,t ~
qi,t(p~pptz1zb~qqtz1)=p, iƒt~j,

aqi,t~qqj,tz1yi,tytz1,j

.
(pyyi,j), iƒtvj:

(

and we refer the reader to Lai et al. [37] for their derivation.

Estimation of st

The variables st are assumed to be i.i.d., with

st*Multinomial(pAA
t , pBA

t , pAB
t , pBB

t ):

The inherited allele configurations s is assumed to be independent

of h, so

P(s j h,y)!P(y j s,h)P(s j h)~P(y j s, h)P(s),

where

log P(yjs,h)~
1

2

Xn

t~1

{(yt{Xst ht)
T S{1

st
(yt{Xst ht)

h
{

log jSst jz2 log p
st
t

�
zC,

ð11Þ

where C is a constant. Each component of the above sum can be

maximized separately to give, for each t,

ŝst~argmaxc[S {(yt{Xcht)
TS{1

c (yt{Xcht){log Scj jz2log pc
t

� �
:

Region Characterization
Let fwi, i~1, . . . , mg be A and B intensities of heterozygous

SNPs for segments at normal state and fvi, i~1, . . . , ng be A and

B intensities of heterozygous SNPs for the segment being tested.

Then, wi, vi follow the model:

Normal State : wi*N(m0, s2
0), i~1, . . . , m,

Changed State :
vi*piN(m1, s2

1)z(1{pi)N(m2, s2
2),

i~1, . . . , n; pi*Bernoulli(pi):

For the normal state, we can estimated the parameters easily as

m̂m0~�ww~
Xm

i~1

wi=m;

ŝs2
0~

Xm

i~1

(wi{�ww)2



(m{1):

For the target segment, m1, m2, s2
1, s2

2 can be estimated by EM

algorithm:

Step 1: Initialize: m(0)
1 ~0:9, m(0)

2 ~1:1, s2
1

(0) ~1, s2
2

(0) ~1,
s2

2
(0)~1, p

(0)
i ~0:5, i~1, . . . , n

Step 2: Set

p(1)
i ~p(0)

i w
m

(0)
1

,s2
1

(0) (vi)

�
p(0)

i w
m

(0)
1

,s2
1

(0) (vi)z(1{p(0)
i )w

m
(0)
2

,s2
2

(0) (vi)

� �
,

where

w
m,s2 (v)~exp {

(v{m)2

2s2

( )
(
ffiffiffiffiffiffi
2p
p

s){1:
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Step 3: Set

m(1)
1 ~

Xn

i~1

p(1)
i vi

,Xn

i~1

p(1)
i ,

m
(1)
2 ~

Xn

i~1

1{p
(1)
i

� �
vi

,Xn

i~1

(1{p
(1)
i ),

s2
1

(1)~
Xn

i~1

p
(1)
i vi{m

(1)
1

� �2

,Xn

i~1

p
(1)
i ,

s2
2

(1)~
Xn

i~1

1{p
(1)
i

� �
vi{m

(1)
2

� �2

,Xn

i~1

(1{p
(1)
i ):

Step 4: Stop if m
(1)
1 {m

(0)
1

� �2

z m
(1)
2 {m

(0)
2

� �2

z s2
1

(1){
�

s2
1

(0)Þ2z s2
2

(1){s2
2

(0)
� �2

vd0, where d0 is a pre-chosen threshold

(PSCN has default value 10{7). Otherwise, set m
(0)
1 ~m

(1)
1 ,

m
(0)
2 ~m

(1)
2 , s2

1
(0)~s2

1
(1), s2

2
(1)~s2

2
(0), and go back to step 2.

The motivation of the initial and default settings are as follows.

For segment with changed states, the goal is to estimate minor and

major copy number. It is expected that the minor copy number

would be less than or equal to 1 and the major copy number would

be larger than or equal to 1, so the initial values for m1 and m2 are

set to 0.9 and 1.1 respectively. Although it is possible that both

chromosomes in a segment are gained or lost, a small discrepancy

of the initial values of m1 and m2 will also be a good start. Also, it is

expected that the numbers of AB and BA states in a segment is

similar, so the initial value of p is set to 0.5. The initial values for

s1 and s2 can be quite arbitrary, with 1 being a reasonable value

to use. d0 is set to be 10{7, which is small enough to indicate a

convergence of the iterative algorithm.

Denote the estimated parameters by m̂m1, m̂m2, ŝs2
1, ŝs2

2, p̂pi. To test

the hypothesis H0 : m1~m0, the standard t-statistic is

T1~
m̂m0{m̂m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝs2
0

m
z

ŝs2
1Pn

i~1 p̂pi

s

Under H0, the distribution of T1 is t with degree of freedom

mzn{2, so p-value can be calculated and compared with the

level of the test. The null hypothesis that m2~m0 needs also be

tested, by replacing m̂m1 with m̂m2 in the above equation.

Supporting Information

Text S1 Supporting materials for PSCN.

Found at: doi:10.1371/journal.pcbi.1001060.s001 (0.28 MB PDF)
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