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Nina Golyandina6, Konstantin Usevich6, Alexander V. Spirov7

1 Mathematics Department, British Columbia Institute of Technology, Burnaby, British Columbia, Canada, 2 Biology Department, University of Victoria, Victoria, British

Columbia, Canada, 3 Instituto de Biofisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 4 Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao

Carlos, Sao Paulo, Brazil, 5 Faculty of Computing, Federal University of Uberlândia, Uberlândia, Brazil, 6 Mathematics and Mechanics Faculty, St. Petersburg State

University, St. Petersburg, Russia, 7 Computer Science and Center of Excellence in Wireless and Information Technology, Stony Brook University, Stony Brook, New York,

United States of America

Abstract

Positional information in developing embryos is specified by spatial gradients of transcriptional regulators. One of the
classic systems for studying this is the activation of the hunchback (hb) gene in early fruit fly (Drosophila) segmentation by
the maternally-derived gradient of the Bicoid (Bcd) protein. Gene regulation is subject to intrinsic noise which can produce
variable expression. This variability must be constrained in the highly reproducible and coordinated events of development.
We identify means by which noise is controlled during gene expression by characterizing the dependence of hb mRNA and
protein output noise on hb promoter structure and transcriptional dynamics. We use a stochastic model of the hb promoter
in which the number and strength of Bcd and Hb (self-regulatory) binding sites can be varied. Model parameters are fit to
data from WT embryos, the self-regulation mutant hb14F, and lacZ reporter constructs using different portions of the hb
promoter. We have corroborated model noise predictions experimentally. The results indicate that WT (self-regulatory) Hb
output noise is predominantly dependent on the transcription and translation dynamics of its own expression, rather than
on Bcd fluctuations. The constructs and mutant, which lack self-regulation, indicate that the multiple Bcd binding sites in
the hb promoter (and their strengths) also play a role in buffering noise. The model is robust to the variation in Bcd binding
site number across a number of fly species. This study identifies particular ways in which promoter structure and regulatory
dynamics reduce hb output noise. Insofar as many of these are common features of genes (e.g. multiple regulatory sites,
cooperativity, self-feedback), the current results contribute to the general understanding of the reproducibility and
determinacy of spatial patterning in early development.
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Introduction

One of the fundamental questions in biology is how embryos

develop reproducibly, and it has many aspects. Here, we focus on

the reproducibility of the spatial gene expression patterns which

determine the body plan. At a broad level, one can ask what the

degree of variability is in a population of embryos - the degree to

which parameters controlling developmental patterning can vary

before major disruptions occur. In recent years, a number of

studies have made quantitative comparisons of developmental

patterns between embryos in the fruit fly, Drosophila melanogaster,

aided by its very well characterized molecular biology. For

instance, there has been a recent focus on spatial precision of the

maternally-derived Bicoid protein (Bcd; Figure 1, green), which

forms an anterior-posterior (AP) concentration gradient [1–5]. Bcd

is a transcriptional regulator of downstream segmentation genes,

and has been studied as a classic example of a positional

information gradient, in which alterations in the gradient shift

downstream patterns in a concentration-dependent manner [6–

10]. It has been shown, though, that Bcd has lower spatial

precision than its downstream targets: the gap gene hunchback (hb;

Figure 1, blue) has a mid-embryo domain boundary at a position

some 2 to 7 times less variable than the corresponding Bcd

concentration threshold [1,4,5,11,12]; and the pair-rule gene even-

skipped starts out with Bcd-like precision but achieves hb-like

precision as its pattern develops [3]. In addition, microfluidic

temperature experiments have shown robust downstream pattern-

ing following extreme disruption of the Bcd gradient [13,14]; and

even with experimentally flattened Bcd gradients, embryos form

gap gene patterns in the correct order [15]. All of this suggests that
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the initial maternal positional information is modified during

development in order for expression patterns to achieve necessary

levels of precision.

In addition to the precision between embryos, spatial patterns

within individual embryos are well-determined, with low cell-to-

cell variability (or nucleus-to-nucleus, for the precellular Drosophila

blastoderm), despite numerous sources of noise. These include: the

state of the DNA; mRNA and protein production; intra- and inter-

cellular compartmentalization; and cellular movements and

ordering. Error control is likely to occur at each these to limit

noise and allow development to proceed. Previous studies have

investigated aspects of this, for instance, at the DNA level [16] and

overall tissue level [17,18]). In this paper, we focus on the noise

which can arise in mRNA and protein production, due to the

inherently random nature of reactions at low copy number. This

builds on a now extensive literature of gene expression noise in

single celled organisms (e.g. [19–24]). But by studying hb

patterning - the initial conversion of the smoothly decreasing

Bcd gradient into a sharp and precise zygotic pattern segmenting

the body (Figure 1) - we focus on spatial noise: what are the

dynamics of noise generation in hb patterning (including, in

contrast to single cells, randomness in transport between nuclei);

and how is noise controlled within the constraints of these

dynamics, producing the nucleus-to-nucleus noise levels observed

for hb? We show that some degree of Hb between-embryo

positional variability can arise purely from randomness in

transcription and translation. But the larger issue is that gene

expression has a strong potential for amplifying the microscopic

randomness of low copy number into indeterminate macroscopic

patterns within an embryo (i.e. with indistinct or missing

boundaries). In the present work, we investigate what dynamic

features and parameter ranges are necessary for hb expression to

overcome this, in order to form determinate pattern.

A broad distinction can be made between gene expression noise

that is external, due to fluctuations in upstream regulator

concentrations or global parameters (e.g. rate constants), and

internal, due to the random nature of reactions (e.g. how many

molecules per unit time are created or destroyed) and transport

(how many molecules arrive in or leave a unit volume in a given

time). Even in the absence of external sources (i.e. with fixed, non-

fluctuating inputs) internal sources will cause fluctuating output.

The amplification of external noise can potentially be significant in

hierarchical signalling, such as in Drosophila segmentation; but data

[4,25] indicate that Bcd delivers a relatively non-noisy signal to

nuclei (discussed further below), which indicates that much of the

observed between-nucleus noise in Hb is generated internally, in

the process of mRNA and protein production.

We directly model the noise production in hb regulation using a

chemical master equation approach [26–28]. This treats each

reaction and transport event with a probability of occurrence per

unit time. At the low copy number of many of the species involved

in transcriptional regulation, stochastic dynamics predominate,

necessitating such a solution method; dynamics generally become

more deterministic for copy numbers in the hundreds and above

[29]. Several of us were involved in a previous project developing a

detailed model of anterior hb expression [30]. This was based on

experimental mapping of the hb promoter [31,32], and simulated

regulation in a core region of the proximal promoter responsible

for anterior zygotic hb expression (green arrows, Figure 2A). The

model included binding/unbinding at 6 Bcd sites (red, Figure 2A)

and 2 Hb self-regulatory sites (blue, Figure 2A); Hb production

and diffusion; and Bcd translation (at the anterior pole) and

Figure 1. Concentration profiles of the morphogenetic proteins Bicoid (Bcd) and Hunchback (Hb). (A) A Drosophila embryo fluorescently
immunostained for Bcd (green) and Hb (blue), about 30 minutes into nuclear cleavage cycle 14. Anterior left, dorsal top. Nuclei at the surface of the
precellular, syncytial blastoderm are visible. (B) Fluorescence intensity against anterior-posterior (AP) position (in percent egg length (%EL), colours as
in A, showing the exponential Bcd gradient and the step-like Hb pattern. From [30].
doi:10.1371/journal.pcbi.1001069.g001

Author Summary

Noise is an intrinsic part of biochemical systems such as
gene regulation networks. Noisy gene expression has been
well documented in populations of single cells, and is likely
a key mechanism in evolutionary change. But in develop-
ing embryos, cells within a tissue must overcome such
variability in order to provide the uniformity required to
coordinate multiple events. Reproducibility and determi-
nacy of the spatial protein patterns preceding tissue
differentiation is a critical aspect of development. In this
study, we use anterior-posterior (AP) segmentation in the
fruit fly (Drosophila) to understand how gene regulation
dynamics control noise. One of the earliest AP patterning
events is the anterior activation of the hunchback (hb)
gene by the maternally-derived Bicoid (Bcd) protein
gradient. This interaction has been very well characterized,
providing the tools for us to develop a stochastic model of
hb gene regulation to make predictions about expression
noise, and to corroborate these experimentally. For hb, we
show that self-regulation is a critical part of controlling
noise, and the multiple Bcd binding sites in the hb
promoter also enhance pattern reproducibility. To the
degree that such features are shared by other genes, these
noise-reducing mechanisms may be common to many
pattern forming events.

Hunchback Expression Noise
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diffusion. The model, solved at the deterministic level, successfully

predicted Hb boundary position and sharpness for wild-type (WT)

and bcd and hb mutants; and showed that sharpness depends on

bistable dynamics due to hb self-regulation. Following validation

against these macroscopic features, we are now using the model to

investigate noise generation in the hb expression dynamics.

Figure 2B shows the current version of the model; reactions have

been added to explicitly model mRNA synthesis. By simulating

regulation at this level of detail we can determine the relative noise

contributions of, for instance: binding site number and strength;

binding cooperativity; self-regulation; and protein diffusion. Noise

is uniquely generated by each of these aspects, and determinate

pattern formation depends on their associated parameters (e.g.

binding, diffusion, production and decay rates) being within

controlled ranges, as well as on the types of dynamics (e.g. binding

cooperativity, self-regulation). For the hb promoter, there are a

number of experimental tools which allow us to distinguish these

contributions, including the hb14F mutant [33], whose Hb protein

does not bind DNA; and a series of lacZ reporter constructs driven

by fragments of the hb promoter [34]. Data from these embryos, as

well as WT, place constraints on the model parameters, allowing

us to deduce their relative contributions to the generation and

control of hb output noise.

Tkacik et al. [35] recently studied the effects of input (Bcd) noise

on Hb output. This approach assumed that Hb output exclusively

depends on Bcd, in a Hill-type manner. For some cases (hb14F, lacZ

constructs), such complete Bcd dependence may apply. For WT,

however, Hb self-regulation is significant, and greatly influences

the final expression pattern [1,30]. Very recently, Okabe-Oho et

al. [36] published results on a stochastic model of Hb production,

following our previous model [30]. They modelled binding of the

hb promoter, but only considered 4 possible bound-states

Figure 2. Model of the hb promoter. (A) Schematic diagram of a 4776 bp fragment from the hb regulatory region determined by in vitro
footprinting [31,32], adapted from [30, Figure S4]. The Bcd sites (red; A are strongly binding, X are weaker) and first two Hb sites can drive relatively
sharp anterior expression in lacZ constructs in a WT background (e.g. Figure 7D). This region (between the green arrows) has been extensively
studied as the core of the proximal promoter and is the basis of our model. (B) The reaction network based on these core binding sites, involving
binding, unbinding, transcription, translation and decay. B = Bcd protein; H = Hb protein; MB and MH are their mRNAs, respectively. bcd mRNA is
translated at the anterior pole. Bcd and Hb proteins diffuse. b0–6 are the number of Bcds bound to the hb promoter; h0–2 are the number of Hbs
bound to the hb promoter. The subscript refers to the binding order based on strength. Values of the rate constants (k’s) are constrained by
experimental data and are given in Tables S1, S2, S3.
doi:10.1371/journal.pcbi.1001069.g002
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(including that the 6 Bcds or the 2 Hbs bind simultaneously as

groups). Using all of the bound states (all the b’s and h’s in

Figure 2B), has enabled us to build up the binding and production

constants from lacZ construct data with from 1 to 6 Bcd binding

sites of different strengths, and from 0 to 2 Hb sites (together with

WT and hb14F data). This has revealed cooperativity and binding

strength effects which could not be addressed in the 4-state system.

[35] and [36] focused on input noise due to diffusion of regulators

to the promoter. [36] reported that amplification of this type of

noise can depend strongly on Hb diffusivity. We see a similar

sensitivity to Hb diffusivity, but the reproducibility of Hb

boundary sharpness between embryos suggests that diffusivity is

highly constrained (i.e. not a variable parameter); and the steep

boundary indicates a slow diffusivity, i.e. that it is not optimized for

noise reduction. Detection of regulator movement within nuclei is

beyond current techniques. But measurements of Bcd concentra-

tions at whole nuclei resolution [4] indicate that nucleus-nucleus

Bcd fluctuations should be relatively low. At this spatial resolution

(our data is processed into ‘energid’ units, of nucleus plus

surrounding cytoplasm), we observe that relative noise is higher

in hb mRNA than in protein, and that Hb self-regulation

(comparing WT with the hb14F mutant) decreases relative noise

in the protein output. Neither of these effects depend on input

noise: the former (the noise difference between mRNA and

protein) shows the effects of translation; the latter highlights the

effects of self-feedback. Our model predicted these effects from

dynamic principles.

The details of the hb promoter structure matter for determining

expression noise. We predict that binding/unbinding noise

dominates in the absence of self-regulation, and increased binding

site number and strength serves to reduce noise in these cases. In

WT, though, self-feedback produces a bistable mechanism: this

was previously shown to be critical in boundary sharpness [30]; the

present work shows how this mechanism also promotes expression

into a more deterministic, low-noise regime. These results suggest

how evolution may have incorporated binding sites and self-

feedback mechanisms to produce output determinate enough for

robust development.

Results

Experimental data determines model parameters
Published data from WT, the hb14F mutant and the lacZ

constructs indicate probable values of the parameters in the model

(Figure 2B). We describe below how the data can be used to

determine the rates (k-values) sequentially, without the need for a

global parameter optimization. This involves deterministic (no

noise) solution of the model to match macroscopic features of the

data (strength of expression, expression boundary position,

boundary sharpness, timing). This parameter set is then used in

stochastic solutions of the model to make predictions on noise levels

and characteristics, which are corroborated against new experi-

mental data (next section, Stochastic Results). The assumptions

involved in the parameter fitting are not expected to affect the noise

predictions (see Discussion). The main points on parameter fitting

are given here, with further details given in Text S1.

Concentration sets production rates. Gregor et al. [4]

reported a mid-embryo concentration for Bcd-GFP (Green

Fluorescent Protein) of approximately 8 nM, about 700 protein

molecules per nucleus (nuclear volume around (5mm)3). With the

exponential form of the Bcd gradient [3], this corresponds to 7000

molecules per nucleus at the anterior pole. Given these current

best measurements of absolute protein concentration in the cycle

14 blastoderm, a reasonable first estimate for the Hb maximum

would similarly be in the range of 7000 molecules per nucleus.

(Using methods stated to be biased low, Zamparo and Perkins [37]

estimated at least 820–1300 Hb molecules per nucleus – and

roughly equal to the Bcd concentration range found by their

techniques.) The Hb maximum sets the overall transcription rates

in the model (k2,5,10,13,16,19,22,25; Table S1). We have measured

protein intensity in the hb14F mutant to be 15% of WT [30]; this

difference sets the relative values of the Hb-bound transcription

rates (k2,5). For constructs driven by only Bcd sites, Driever et al.

[34] qualitatively scaled the decrease of lacZ intensity with

decreasing Bcd site number; coupled with quantitative in vitro

data [32], these set the relative values of Bcd-bound transcription

(k10,13,16,19,22,25). The trend from k10 to k25 is non-linear, suggesting

that the multiple Bcd sites have a synergistic effect on overall

transcription rate (particularly for more than 3 Bcds bound).

Expression boundaries set Bcd binding constants. In the

Driever constructs, lacZ boundary positions shift according to the

number of Bcd sites and their strength [34]. Earlier DNAse

footprinting mapped 3 strong (A) and 3 weak (X) Bcd binding sites

in the proximal hb promoter [32; see Figure 2A, red]. The Driever

constructs are driven by a number of combinations of A and X sites.

Starting from the construct with a single A site, matching the

posterior lacZ boundary positions for all the constructs sets the Bcd

binding constants in the model (k11,14,17,20,23,26; Table S2; note that

the model numbers the order of binding - 1st Bcd, 2nd Bcd, etc. – not

the location at which a particular binding occurs). Comparison, e.g.

between constructs with 3A vs. 3X sites, allows us to predict relative

differences in strong and weak binding strengths. Earlier in vitro

work [38–40] identified cooperativity in binding up to 3 Bcds, which

we incorporated into the k11,14,17 values. Modelling the positions for

constructs (and hb14F) with 4 or more Bcd sites indicates a further

cooperativity in these additional bindings.

Hb regulation sets the timescale. The posterior shift of the

Hb boundary (specifically the posterior, mid-embryo boundary)

from hb14F to WT sets the binding constants for the 2 Hb sites in the

model (Table S3). The Hb boundary position is fairly steady in WT,

over a period of about 5 to 40 minutes into nuclear cleavage cycle

14 [30, Figure 2CD]. At the same time, sharpness increases by

about 20u, reaching steady values near 30 minutes (sharpening

occurs before the later Hb patterning in the posterior and at

parasegment 4: it is driven by the proximal promoter, Figure 2A

green arrows). This sets the timescale of Hb production and decay:

the steady sharpness and maximum depend on the ratio of Hb

production to decay, but reaching steady values by 30 minutes

constrains the absolute values of these rate constants (faster

production and decay reach steady state faster). Simulations were

initiated with experimental Hb data from the onset of cycle 14,

about 65% of the mature cycle 14 maximum. The Hb protein

diffusivity is also constrained by observed sharpness: if diffusivity is

too high, self-regulation cannot sharpen the boundary - WT

simulations become only marginally sharper than hb14F

(experimental data shows a 15u difference); if diffusivity is too low,

the boundary becomes sharper than experiment. A Hb diffusivity of

0.3mm2/s (equal to the value measured in [41] for Bcd-GFP

diffusion in the vicinity of nuclei) best fits the experimental

observations. Results from [36] suggested fast Hb diffusion as a

means of decreasing noise, but the sharpness and reproducibility of

Hb profiles [30, Figure 1] indicate that diffusivity is tightly

constrained, and may not be optimized for noise control.

Stochastic results
With the parameters thus determined, we modelled WT, hb14F

and the lacZ constructs to predict the mRNA and protein noise

arising from different aspects of transcription and translation.

Hunchback Expression Noise
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Wild-type noise. Figure 3 compares model results and

experimental data for WT hb mRNA and protein. These

simulations do not include Bcd noise: the trends were identical

between simulations with or without Bcd noise (at levels indicated

by the data). The relative independence of Bcd and hb noise is

explored more fully below. Here, we highlight the hb mRNA and

protein differences arising from transcription and translation.

Figures 3A (protein) and 3B (mRNA) show hb output for a WT

simulation; experimental data from a WT embryo is shown in

Figures 3C and D (protein and mRNA, respectively). Noise

statistics (Table 1) are based on concentration differences

(residuals): for simulations, from the difference between the

stochastic and deterministic (dashed line) solutions at a particular

time-point (t = 30 minutes, here); for experiments, from the

difference between data and fit trends (see Methods). Noise is

calculated as the standard deviation of the relative residuals in the

activated region (15–45 percent egg length (%EL)). Since the

model does not include experimental sources of error, noise

comparisons are in terms of relative trends, not absolute levels. To

show the temporal stability of the noise, stochastic results are

displayed at 5 second intervals over the final minute of

computation.

Computations generate the characteristic determinate protein

boundary seen in the data. For mRNA, the model produces a

boundary that is both sharper and noisier than protein, as seen in

the data. The model predicts hb mRNA should have higher noise

than its protein, and this is corroborated in the experimental data

(statistical significance, Table 1). Temporally, the simulations

suggest a mild decrease in mRNA and protein noise as pattern

develops; noise levels for experimental protein data appear steady

in the first 30 minutes of cycle 14.

Many factors can affect noise. We found that hb self-regulation

has a major effect, which is explored in detail in the next section.

Other factors identified in preliminary computations were:

diffusivity - the faster that Hb protein is transported, the more it

smoothes local fluctuations, though at the expense of boundary

sharpness (see also [36]); cooperativity - if binding strength

increases too much for each sequential Bcd (or Hb) bound, there

can be runaway binding events in the posterior half of the embryo,

with ‘spikes’ of activation in nuclei which should be ‘off’; reaction

rate - the faster that reactions occur, the more the protein

concentration displays the high noise conditions (due to low

numbers of binding sites) of the promoter. As an example of this,

Figure 3E shows a simulation in which mRNA and protein

production and decay constants were increased by a factor of 10.

Protein timescales are the most critical in this: WT protein

expression could be generated with all hb mRNA rates increased

by a factor of 1000, but Hb pattern was rapidly destroyed if

translation and protein decay were moderately sped up (as in

Figure 3E). These potential noise sources were largely eliminated

by the parameter fitting described above; i.e. matching macro-

scopic features produced a model parameter set which generated

similar noise levels (or determinacy) to that observed in WT –

perhaps reflecting the biological selection against parameter values

(i.e. rates) which generate noise and threaten pattern.

In between-embryo studies, the drop in positional variability

from Bcd to Hb has been noted [1,5,12,42], from mid-embryo

standard deviations on the order of 2 to 7%EL for Bcd to about

1.0%EL for the Hb boundary. Not all of the Hb variability may be

due to Bcd, however. Figure 3F shows the protein output for 19

independent stochastic WT simulations (all with identical

parameters, including identical Bcd). The standard deviation of

the boundary position is 1.0%EL for this sample – comparable to

values measured between embryos – suggesting that a substantial

proportion of between-embryo variability could stem from

intrinsic fluctuations in expression dynamics.

hb self-regulation decreases noise. hb14F mutants lack self-

regulation, and show much lower protein intensity and slope than

WT (Figure 4A; Tables S1, S2, and S3). The mutation is also

associated with increased noise: simulating hb14F (Figures 4B and

C; statistics in Table 2) by not allowing Hb binding in the

promoter significantly increases both mRNA and protein noise

from WT (c.f. Figures 3A and B; Table 1). (And hb14F model noise

is higher for mRNA than protein, as in WT.) The noise increase is

corroborated by the data, which show significantly higher protein

noise in hb14F (Figure 4A; Table 2) than WT (Figure 3C; Table 1).

We would predict that the higher noise in hb14F would combine

with its lower slope to produce greater downstream positional

errors than WT; therefore that Hb self-regulation plays a dual role

of both sharpening the boundary [30] and reducing noise to

produce determinate WT pattern.

The two stages of transcription and translation are also

important for clean amplification of the WT self-feedback loop:

in preliminary computations, in which only a single generic

‘production’ term was modelled (as in [36]), WT expression was

much noisier. Relative fluctuations in the small number of bound

sites at the promoter are much higher than in the hundreds of

mRNA copies per nucleus (e.g. Figure 3B). Translation from this

latter level can help shield the protein from noise at the promoter.

Noise characteristics highlight the Bcd-independent

aspects of hb expression. Probability distributions for

species’ concentrations are generated by underlying kinetics.

Since the master equation approach models each reaction and

transport event probabilistically, it generates the unique

distributions for each species in a given mechanism. The

difference in kinetics between Bcd gradient formation and hb

expression produces very distinct probability distributions,

showing the extent to which Hb noise is produced de novo,

independently of Bcd noise.

Simulations of the Synthesis-Diffusion-Decay mechanism of Bcd

patterning (Figure 2B) produce Poisson distributed noise, with a

characteristic variance to mean ratio (VMR) equal to one: n = 6

stochastic simulations averaged VMR = 0.98 (averaged over all

positions; Figure 5A shows a typical result; see also [25,43]).

(Distributions were generated from 1-second separated data points

over 30 minutes of simulation during steady-state, t = 30–60 mins.)

Though there are recent developments regarding the Bcd

mechanism [44–46], these are not expected to strongly alter the

Poissonian character of the noise. The Poisson distribution

generally occurs for equilibrium fluctuations [47] and simple

kinetic mechanisms [48,49].

hb makes a nonlinear amplification of the Bcd signal which is no

longer ‘simple’ kinetics: in the anterior region, hb mRNA shows a

VMR 2–3 times that expected for a Poisson distribution (for n = 6

simulations, mean VMR for the 1–40%EL activated region was

2.4). Figure 5B shows typical hb mRNA VMR, for the same

computation as Figure 5A. Translation produces further strong

noise amplification for the protein, with mean VMR 16 times

higher than Poisson (for 1–40%EL, n = 6). Figure 5C shows typical

Hb protein VMR, for the same computation as Figures 5AB. (We

model a typical [50,36] translation rate of 35 proteins for each

mRNA; higher or lower protein-to-mRNA ratio would give higher

or lower protein VMR, respectively [see also 51 on this effect].

Non-Poisson noise amplification has previously been shown with

translation in yeast [23]; our computations demonstrate the effect

for spatially-distributed expression noise. The different probability

distributions for Bcd, hb mRNA and Hb protein, evidenced by the

increasing deviation from Poisson noise (e.g. Figure 5A to 5B to

Hunchback Expression Noise
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Figure 3. Wild-type (WT) expression noise. (A, B) hb protein and mRNA profiles, respectively, from the model (Figure 2B; 6 Bcd sites (3A, 3X) and
2 Hb sites, or 6B2H), with parameters fit by experimental constraints (Tables S1, S2, S3). Deterministic (no noise) results, dashed line. Stochastic results
are shown over one minute (29–30 minutes into cycle 14), at 5 second intervals (comparable to the experimental heat-fixation time), to show the
slow temporal variability of the noise (same format used in Figures 4, 6, 7). Noise is calculated from the differences between the deterministic and
stochastic results at 30 minutes (Table 1). (C, D) Representative data from a single WT embryo, hb protein and mRNA, respectively, 30–36 minutes
into cycle 14 (same time in Figures 4, 6–8). This shows the characteristic determinate mid-embryo boundary, especially for the protein, which is also
produced by the model. mRNA (B, D) has significantly higher noise than protein (see Table 1 for statistics). (E) Too-fast reaction rates are one factor
that can cause noise to overwhelm determinate expression. Here, reaction rates (transcription, translation, mRNA and protein decay) have been
increased ten-fold from (A, B), producing much higher fluctuation levels (protein noise 25%, mRNA noise 32% - higher than any WT results (Table 1))
and reducing the determinacy of the mid-embryo boundary. (F) Within-embryo noise contribution to between-embryo variability: 19 independent
stochastic simulations of WT protein expression, with a standard deviation in boundary position of 1.0%EL (comparable to experimentally observed
between-embryo variability).
doi:10.1371/journal.pcbi.1001069.g003
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5C), highlights the independent aspects of hb expression from the

Bcd input signal.

hb self-regulation contributes to this non-Poisson noise. For hb-

generated noise only (using a static Bcd gradient), simulations of

hb14F (binding at 6 Bcd and 0 Hb sites, or ‘6B0H’) show a nearly

Poisson VMR for the mRNA (mean VMR = 1.1, n = 6; Figure 5D

is a typical result), less than half the VMR seen in WT (‘6B2H’)

mRNA simulations (mean VMR = 2.3, n = 6; e.g. Figure 5F). In

both 6B0H and 6B2H, translation increases protein VMR six-fold

over mRNA (6B0H mean protein VMR = 6.2, n = 6, e.g.

Figure 5E; 6B2H mean protein VMR = 14, n = 6, e.g.

Figure 5G), but 6B2H starts from a higher mRNA VMR to

produce a higher final protein VMR. Translation creates non-

Poisson noise, so Hb protein is predicted to be non-Poisson with or

without self-feedback. But WT protein is predicted to show a

stronger deviation from Poisson than in hb14F, since the self-

feedback cycle creates non-Poisson noise at the transcriptional

level for hb mRNA. (Other cases without self-feedback are

expected to be like hb14F: in simulations of the single Bcd site

lacZ construct, mRNA VMR was also close to 1 with protein

VMR close to 6.) It should be emphasized that while self-feedback

increases the VMR, the overall noise is lower with self-feedback

than without (Figure 3 vs. Figure 4; Table 1 vs. Table 2): self-

feedback boosts production to higher mRNA and protein

concentrations, which are overall less noisy.

For the concentration range measured for the Bcd-GFP

gradient [4], Poisson fluctuations are very low, about 3–4%

(relative standard deviation) at mid-embryo. At these levels there is

very little difference between hb mRNA and protein noise levels in

simulations with Bcd noise (e.g. Figures 5BC) or without Bcd noise

(e.g. Figures 5FG). The following relations hold at 5% significance:

hb mRNA and protein noise levels are correlated with each other,

but neither are correlated with Bcd noise levels; mRNA noise

levels show no difference in simulations with or without Bcd noise;

protein noise levels appear slightly increased with Bcd noise; and

the VMR trends discussed above show no difference with or

without Bcd noise. While this does not rule out a minor effect from

Bcd noise, the intrinsic noise arising from the kinetics of hb

expression, especially translation and self-feedback, is expected to

be a much greater factor than upstream Bcd fluctuations on

overall hb noise. This is in contrast to the analysis in [4, eqn. 6] and

[35, eqn. 15], in which nucleus-nucleus Hb noise was converted to

Bcd input noise via assuming direct dependence of Hb output on

Bcd input. By directly investigating the effect of the hb kinetics, our

analysis indicates that this assumption is not likely to apply,

especially at the low Bcd noise expected from its measured

concentration [4]; rather, observed Hb noise is likely to be largely

Bcd-independent. Experimental determination of probability

distributions presents new technical and analytical challenges;

the present simulations indicate the hallmarks of the non-Poisson

distributions expected from transcription and translation, to guide

such future work.

Bcd binding site number and binding strength affect

expression noise. The subset of Driever lacZ constructs with

only Bcd binding sites map out the degree to which transcription

depends on Bcd binding (without Hb regulation). Model

parameters were set (‘Experimental data determines model

parameters’ section) to match expression levels and boundary

positions in [34]; stochastic simulations predict the noise

characteristics of the Bcd-dependent expression – these are

summarized in Figure 6 and Table 3. Since these constructs are

made in WT embryos, simulations include the full Hb model

(Figure 2B), plus parallel reactions for production of lacZ and b-

galactosidase from the binding sites appropriate to the construct.

The 1A construct (pThb3, a single strong Bcd site) is at the limit of

experimental detection [34]. The corresponding ‘on’ levels of

mRNA in the model are on the order of 2 copies per nucleus

(Figure 6A), producing very high noise (Table 3). This produces

random activation along the length of the system and an

indeterminate AP pattern. In constructs with 3 Bcd binding

sites, anterior expression is observed to be more distinct. In

addition to the increased expression with 3 sites, simulations

predict that stronger binding, 3A (Figure 6B, pThb10) vs. 3X

(Figure 6C, pThb12), decreases noise (Table 3). Adding a 4th Bcd

site shows yet higher anterior expression, and the model again

predicts lower noise for stronger binding, 4A (Figure 6D, pThb11)

vs. 4X (Figure 6E, pThb13, Table 3). We predict that increasing

number of sites also decreases noise. This is indicated by the

decrease in noise from 1A to 3A to 4A (Figure 6 A to B to D), and

also by simulations for constructs in which the 3X motif is

multiplied: 2 times 3X (Figure 6F, pThb15) and 3 times 3X

(Figure 6G, pThb16) show progressive reduction of noise from the

single 3X (Figure 6C). Increasing binding sites or binding strength

is associated with increased transcription, producing higher

mRNA concentrations which are not as dominated by noise

(binding site number and expression intensity are experimentally

correlated, Table S1; for stochastic dynamics, stronger binding

increases the bound, transcribing time; a recent study in yeast

shows larger pulses of production with more binding sites [52]).

The developmental effects of noise may also depend on pattern

shape: as binding site number increases, the slope of the expression

pattern sharpens, decreasing the positional effects of concentration

fluctuations. In high noise situations, such as Figure 6A, there are

two types of small number statistics: for DNA, the number of Bcd

binding sites is small; and for mRNA, the numbers of copies

produced per nucleus is also small. As the number of binding sites

increases, the DNA source of the noise is diminished; as

transcription is increased, the mRNA source of the noise is

diminished. To summarize, the model predicts that noise

decreases for stronger binding (4X to 4A; 3X to 3A) and for

increased numbers of binding sites (1A to 3A to 4A; 3X to 2x3X to

3x3X).

Table 1. Noise levels for WT expression, in time.

Time
Model,
mRNAa

Model,
proteina

Experiment,
mRNAb

Experiment,
proteinb

30mins 11 (1.2) % 5.3 (0.92) % 47 (22) % 5.1 (0.89) %

20mins 13 (1.7) % 6.3 (1.7) %

10mins 14 (1.4) % 7.2 (1.5) %

Noise is a standard deviation using relative residuals, calculated byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
stoch{detð Þ=det½ �2

m{1

r
, where stoch and det are the stochastic and deter-

ministic solutions at each position (energid), respectively; for experimental data,
replace stoch with background-removed intensity and det with the trend found
by 2D SSA (see Methods). This measure is calculated for the activated region,
15–45%EL (proximal promoter dependent).
aAverage of the noise levels (standard deviation in brackets) for the 19
simulations shown in Figure 3F. mRNA was noisier than protein in every
simulation (and p,0.01, for t-test on differences, for each time). The simulation
in Figure 3AB has average noise levels (11% for mRNA, 5.4% for protein).

bn = 3 embryos. mRNA was noisier than protein in each embryo (and p,0.05 for
t-test). The embryo in Figure 3CD has noise of 22% for mRNA and 4.8% for
protein. (Limiting analysis to the strongest mRNA expressing region, 30–
45%EL, average mRNA noise decreases (to 25%) and becomes less variable
(8.0% std. dev.), while protein noise remains stable (mean, 5.7%; std. dev.,
1.3%), increasing the significance for their difference.)

doi:10.1371/journal.pcbi.1001069.t001
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The effect of Hb binding sites on expression noise. In

addition to the WT-hb14F comparison above, lacZ constructs with

Hb binding sites shed some light on the role of Hb in noise control.

pThb1 has 6 Bcd sites (3A3X), but only one Hb site (6B1H). A

simulation is shown in Figure 7A; lacZ for a pThb1 embryo is

shown in Figure 7B. The pThb5 construct is driven by the 3A3X

Bcd sites and 2 Hb sites, the core of the WT proximal promoter

(green lines, Figure 2A): Figure 7C shows a simulation; Figure 7D

shows lacZ for a pThb5 embryo. The simulations suggest a slight

drop in noise with addition of the 2nd Hb (statistics in Table 4), and

the experimental data support this. The first Hb binding has a

minor effect (reflected in its minor posterior shift compared to

hb14F). Binding of the 2nd Hb in the model increases expression

and creates a sharper boundary. In the pThb8 construct the 6B1H

promoter (Figures 7A, B) is doubled; simulating this (Figure 7E)

doubles production and decreases noise (to similar levels to pThb5;

but the boundary is not sharp in the absence of the 2nd Hb site).

Finally, for the pThb2 construct, with 4 Bcd sites (2A2X) and 1 Hb

site, we predict (simulation, Figure 7F) a loss of determinacy and

an anterior shift compared to 6B1H (Figure 7A). The expression

and noise (Table 4) are comparable to the 4A construct (Figure 6D,

Table 3), suggesting the 1 Hb site may compensate for the two

weak X sites in pThb2.

Evolution. In Drosophila, highly-conserved domains exist

within the hb promoter across at least 7 species (found with the

EDGI server [53]). The hb promoter is also a well conserved motif

for studying the evolution of early AP patterning across flies

[54,55; Wunderlich et al., 50th Drosophila Conference Proceedings,

p. 74]]. It has been shown that Bcd strong (A) and weak (X) sites

are found across several species of flies, but that the number of sites

varies (Table 5). These varied promoters all create long-germ band

type Hb patterns, dividing the embryo roughly into anterior and

posterior halves. Therefore, a model of Hb patterning should be

robust to forming WT pattern over the natural variation seen

across these species, from 4 Bcd sites in Drosophila virilis to 10 Bcd

sites in Musca domestica. In our model, we have altered the Bcd

binding as described in Table 5, adding or removing Bcd sites

from the WT D. melanogaster model (Figure 2). We have modelled

other species as having 2 Hb binding sites and early Hb pattern as

in D. melanogaster. The model is robust to this degree of cross-

species variability. We predict slight posterior shifts for species with

more binding sites than D. melanogaster. With 4 binding sites the

model predicts some anterior shifting of the mid-embryo border

and loss of expression in the anterior-most regions; this latter

depends on the relative contributions of Bcd and early Hb. Noise

levels are predicted to be somewhat higher for D. virilis, with 4 Bcd

sites, but the other species’ promoters should produce similar noise

levels to D. melanogaster (Table 5).

Variability between DNA copies. Experimental resolution

is reaching the level to visualize transcripts coming off the

different copies of a gene within each nucleus (nuclear dots [56];

Figure 8A). Such data holds the best promise for measuring

transcriptional/translational noise, distinct from noise generated

by other sources (e.g. transport). We simulated transcription

occurring at two independent promoters (A and B) per nucleus,

with the resulting mRNA being translated into a pooled protein.

This was done for WT (6B2H), the hb14F (6B0H) mutant, and

pThb5 lacZ expression (shown in Figure 8B). Figure 8C shows

mRNA intensity per nuclear dot for the pThb5 embryo in

Figure 8A, for comparison. The model predicts that hb14F and

WT mRNA should have higher and lower variability than pThb5

lacZ, respectively: variability decreases from 6B0H to pThb5 to

6B2H, with no overlap between sets of simulations (Table 6;

predictions, as above, are for relative trends, not absolute

experimental values). For 6B0H simulations (hb14F), the (pooled)

Hb protein does not feed back on transcription to synchronize the

A and B promoters; any relation between A and B is due to the

shared Bcd input signal. For 6B2H simulations (WT), feedback of

the pooled Hb protein onto the promoters provides an averaged

signal which decreases the variability between A and B

transcription. The intermediate variability of pThb5 reflects

that the pooled Hb binds the lacZ-expressing promoters, but

there is no self-feedback of the lacZ protein (b-galactosidase) on

these promoters. The influence of self-feedback on reducing noise

by boosting concentration was discussed above; here we predict

that self-feedback also reduces variability from independent

transcription at multiple promoter copies.

Discussion

The Bcd-Hb system has received a great deal of study over

several decades, making it one of the best characterized systems for

understanding the mechanistic details of positional specification by

gradient reading. We have used binding site information for the hb

promoter in conjunction with quantitative imaging to develop and

test a stochastic model of expression dynamics. This has allowed us

to characterize the noise inherent in gene expression due to the

low copy number of DNA (numbers of promoters and binding

sites) and mRNA. Identifying how noise is controlled in spatial

gene expression patterns is a fundamental problem; the dynamics

at the hb promoter provide a model for how this might occur in

many patterning events. Modelling the variability in the data, in

Figure 4. The absence of hb self-regulation. (A) Protein expression in a homozygous hb14F mutant embryo (whose Hb protein cannot bind
DNA); noise is significantly higher than WT (c.f. Figure 3C). (B) Simulation of hb14F protein expression: 6 Bcd binding sites and no Hb binding in the
promoter (6B0H). Noise is higher than WT. (C) mRNA for the same simulation: noise is higher than protein (B), and higher than for WT mRNA
(Figure 3B). See Table 2 for statistics.
doi:10.1371/journal.pcbi.1001069.g004

Table 2. Noise levels in the absence of hb self-regulation.

Experiment hb14F

proteina

(Figure 4A)

8.9 (2.7) %

Model 6B0Hb 6B0Hb

mRNA protein

(Figure 4C) (Figure 4B)

26 (3.7) % 11 (1.5) %

an = 3 embryos, hb14F protein noise is higher than WT protein noise (t-test,
p,0.05).

bAverage of the noise levels (standard deviation in brackets) for 17 simulations
with WT Bcd binding but no Hb binding (6B0H), at t = 30 mins. mRNA noise
was higher than protein in every simulation (and p,0.01, for t-test on
differences). The simulation in Figure 4 has average noise levels (29% for
mRNA, 11% for protein). Both mRNA and protein noise are higher in 6B0H
simulations than in WT simulations (t-test, p,0.01).

doi:10.1371/journal.pcbi.1001069.t002
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addition to modelling average features, provides an extra

experimental dimension for refining and validating models of

gene regulation.

Prior work has focused on the effects of Bcd noise on Hb [35].

However, we experimentally observe statistically significant noise

reduction in the process of translation and due to Hb self-

Figure 5. Noise signatures for Bcd, hb mRNA and Hb protein. (A, B, C) Variance to mean ratio (VMR) by position, for Bcd (A), hb mRNA (B), and
Hb protein (C), all from the same computation. Bcd dynamics (synthesis-diffusion-decay) produce a VMR of 1, characteristic of Poisson-distributed
noise. hb mRNA (B) has a variance 2 to 3 times that for a Poisson process. Translation increases the deviation from Poisson for the protein (C). The
non-Poisson character of the mRNA distribution is largely due to Hb self-feedback: compare (D), mRNA in the absence of Hb self-regulation (6B0H
simulation of hb14F, c.f. Figure 4), to (F), mRNA with self-regulation (WT 6B2H). Translation increases protein VMR about six-fold over mRNA, both
without self-regulation (E) and with self-regulation (G). VMR is higher for both mRNA and protein with self-regulation, since the high protein VMR
feeds back on mRNA transcription. Bcd noise has little effect on the hb mRNA or protein noise: the different VMRs point to different probability
distributions (A vs. B and C), and there is negligible difference between simulations with Bcd noise (B, C) and without (F, G). I.e., the noise generated in
transcription and translation dominates the noise transmitted from upstream regulator fluctuations.
doi:10.1371/journal.pcbi.1001069.g005
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feedback, which validate model predictions: our study points to the

critical aspects of intrinsic noise arising in Hb production,

independent of external fluctuations. For the noise levels

associated with Bcd’s measured concentration [4], we see little, if

any, effect of Bcd concentration fluctuations on hb production.

External noise is overshadowed by intrinsic noise arising in

binding site occupancy and modulated through transcription and

translation. Work in [36] indicated that promoter occupancy noise

could be reduced by fast Hb diffusion. However, the steep angle of

the Hb boundary suggests a slow diffusivity not optimized for noise

reduction. Our work suggests several mechanisms in the hb

dynamics which reduce noise.

In the absence of Hb self-feedback, as in the hb14F mutant and

the lacZ reporter constructs, output is noisier - less shielded from

the noise of binding site occupancy. Fitting the binding strengths

and production rates associated with 6 individual Bcd sites and 2

Hb sites to the lacZ data has enabled us to predict the degree to

which increasing number and strength of binding sites (Bcd and

Hb) can buffer promoter occupancy noise. Such basic noise

reduction may have evolved fairly independently of other

mechanisms; our computations suggest hb noise is similarly

controlled in flies with between 4 and 10 Bcd sites.

Self-feedback is a major component of WT Hb expression [1],

responsible for large changes in protein production and boundary

sharpness from hb14F to WT [30]. We observe a significant effect of

self-feedback in reducing protein noise levels (Figures 3C vs. 4A;

Tables 1 and 2). Our calculations indicate self-feedback is

responsible for a change in anterior mRNA levels from roughly

30 (hb14F, Figure 4C) to roughly 200 copies per nucleus (WT,

Figure 3B), from a noise-dominated to a more deterministic

regime [29], which in turn reduces translational variability in WT.

In addition, we predict that self-feedback reduces variability

arising from transcription at multiple promoters within nuclei

(Table 6).

We predict that the noise reduction seen with translation

(Figure 3C vs. 3D, Table 1) is similarly due to a concentration

difference, since one copy of mRNA makes multiple copies of

protein (Figure 3A vs. 3B; Figure 4B vs. 4C; Tables 1 and 2).

Translation is expected to produce non-Poisson hb probability

distributions, distinct from the Poisson noise expected for Bcd.

Such non-Poisson ‘bursting’ noise has been characterized in yeast

[23], in which protein variance scales with mean concentration but

with a VMR far greater than for a Poisson process, due to

amplification of noisy low mRNA copy number. For hb, we expect

deviations from Poisson to be stronger in protein than mRNA, and

strongest with self-feedback than without. The observation of

lower relative noise in WT protein than either WT mRNA or

hb14F protein suggests that its higher concentration overcomes the

non-Poisson bursting effects. (A purely Poisson-distributed WT Hb

would be expected to have even lower noise and show larger

differences with both WT mRNA and hb14F protein.)

Published data [4,30,32,34,38,41,57] places distinct constraints

on any model of the hb promoter, for rates of regulator binding

and production. Conclusions can be made from these regarding

the relative values of these constants (e.g. relative WT and hb14F

Hb levels indicate that WT production rates are 7 times higher;

early vs. mid-cycle 14 data indicates Hb production needs to

increase concentration by about 50% in 30 minutes), and these

conclusions can be followed through for their implications for

relative noise differences. If absolute concentrations were higher or

lower than estimated, absolute noise levels would be lower or

higher, respectively; but the relative results would hold. We have

made noise predictions at energid (nucleus plus associated

cytoplasm) resolution for mRNA and protein output for: WT;

the hb14F mutant; 11 lacZ reporting constructs with various

combinations of binding sites; and 4 other species of flies.

Enhancing our confidence in the model, we have corroborated

model predictions at this resolution for: higher mRNA than

protein noise; higher hb14F than WT noise; and the indication of

noise decrease due to the 2nd Hb site, comparing the pThb1 and

pThb5 constructs. In addition to these, the model illustrates the

reduction in noise available from increasing binding site number

and strength; the role of moderate cooperativity and slow protein

timescales for limiting noise; and the degree to which within-

embryo noise can generate between-embryo variability. These

results indicate the degree to which hb noise amplitudes are

determined by expression dynamics, and how these dynamics

produce hb probability distributions distinct from Bcd’s.

We have also taken data at intra-nuclear resolution, imaging

transcript production from different copies of the promoter within

each nucleus. This is at current technical limits of spatial resolution

(though recent very high resolution studies with GFP [58,59] are

promising for bcd). Data analysis and modelling at this level shows

promise for separating transcriptional noise from other types, such

as from inter-nuclear transport. (See [60] for a recent study

showing the effect of promoter state on pattern synchrony at this

degree of resolution.)

Only Bcd and Hb regulation, at the specified binding sites, are

considered in the model. The dynamics of this core promoter

region reproduce many of the deterministic and stochastic features

of Hb activation in the anterior region. Additional Hb sites, such

as those in the distal P1 promoter, are known to affect later,

posterior expression – any effect of these sites in early expression

would be incorporated into the 2 Hb sites of the current model.

Additional Bcd sites would not be expected to greatly influence

expression, based on Musca and the simulations with up to 10 Bcd

sites. The positioning of final expression patterns, especially later

in cycle 14, do depend on other factors, such as inhibition by other

gap genes (e.g. [61]). (Head gap genes are likely involved in the

lower Hb expression at 0–15%EL, e.g. Figure 3C [15].) The

region of 40–50%EL, where the Hb boundary interprets a

marginal decrease in the Bcd gradient, is promising for quantifying

Figure 6. The effects of Bcd binding site number and strength on noise; simulations of lacZ constructs with Bcd binding sites only.
(A) A single strong Bcd site (1A, pThb3 construct); very low and noisy expression, with much posterior activation (statistics for this Figure given in
Table 3). (B) Three strong sites (3A, pThb10); expression is stronger and less noisy than (A). (C) Three weak Bcd sites (3X, pThb12); expression is noisier
than (B). (D) Four strong sites (4A, pThb11); expression is stronger and less noisy than (B). (E) Four weak sites (4X, pThb13); expression is noisier than
(D). (F) Doubling of the 3X promoter; noise is less than (C). (G) Tripling of the 3X promoter; lower noise again than (F). Noise decreases for increasing
strength and increasing number of binding sites.
doi:10.1371/journal.pcbi.1001069.g006

Table 3. Noise levels, varying Bcd binding.

Model 1A 3A 3X 4A 4X 2x(3X) 3x(3X)

(Fig. 6A) (Fig. 6B) (Fig. 6C) (Fig. 6D) (Fig. 6E) (Fig. 6F) (Fig. 6G)

82% 64% 82% 47% 102% 48% 30%

For the simulations shown in Figure 6.
doi:10.1371/journal.pcbi.1001069.t003

Hunchback Expression Noise

PLoS Computational Biology | www.ploscompbiol.org 12 February 2011 | Volume 7 | Issue 2 | e1001069



these factors. In preliminary computations, reduced or missing

initial Hb gave reduced expression in this parasegment 4 region.

Similar phenotypes are observed with some gap mutations [62].

Incorporation of other regulators in the model would permit

exploration of their relative contributions to Hb noise in this

region.

Hb itself forms a morphogenetic gradient, controlling the

expression of a number of other gap genes in early segmentation,

Figure 7. The effects of Hb binding site number and strength on noise. (A) Simulation of lacZ expression from 6 Bcd sites (3A3X) and one Hb
site (in a WT background), compare to (B) lacZ expression in an embryo with the pThb1 promoter construct. (C) Simulation with 6 Bcd sites and 2 Hb
sites, compare to (D) lacZ in a pThb5 embryo (promoter indicated by green arrows in Figure 2A). Comparison of (C, D) and (A, B) indicates that the 2nd

Hb increases expression and slope and may slightly decrease noise. Noise statistics for this Figure are in Table 4. (E) Simulation of the pThb8
construct, a doubled 6B1H sequence. (F) Simulation of the pThb2 construct, which has a shorter fragment of the hb promoter, with 1 Hb site and 4
Bcd sites (2A2X1H); the model predicts increased noise for this truncated promoter.
doi:10.1371/journal.pcbi.1001069.g007
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potentially at higher precision than Bcd [63]. The mechanism of

secondary (Hb) gradient formation is in contrast to those for the

primary (maternal) gradients, which do not form by spatially-

distributed gene expression. The present work, therefore, has

focused on how transcription and translation kinetics can be

controlled to provide a determinate and precise secondary

gradient for specification of the segmentation patterns. While

our study has shown the importance of the details of promoter

structure and expression dynamics (such as self-feedback) on hb’s

expression noise, many of the noise motifs found here will be

applicable to other genes (for instance, dependence on binding site

number, non-Poisson amplification in transcription and transla-

tion). In this way, characterizing hb noise serves as a model for how

zygotic gene expression gives rise to the determinate and reliable

expression patterns underlying development.

Methods

Simulations
The model in Figure 2B was computed with the MesoRD

software ([27]; http://mesord.sourceforge.net). This package

allows deterministic (used for parameter fitting) or stochastic (used

for noise prediction) solution of mechanisms involving reaction

and diffusion. A kinetic scheme is entered as elementary reactions

(Figure 2B), and rate constants (values in Tables S1, S2, S3) and

diffusivities (for Hb and Bcd proteins, see Tables S2, S3 for values)

are specified for the model species. Geometry was specified as a

one-dimensional series of 100 subvolumes (each a 5mm cube),

corresponding to the energids (nucleus plus cytoplasmic neigh-

bourhood) along the AP axis. Computations solve for model

species densities in each subvolume, according to the specified

reactions and between-subvolume diffusion. In deterministic

simulations (for parameter searches), we used a 4th order Runge-

Kutta solution method. For matching to data, boundary position

and sharpness were determined at half-maximal concentration.

For stochastic solutions, MesoRD solves the reaction-diffusion

master equation, in which each reaction and diffusion event has a

probability (set by the macroscopic rate constants) of occurring in a

unit of time. The software implements the next subvolume

queuing method [26,27,64] to significantly improve memory and

processing requirements, making computation possible for the

number of species and subvolumes in the hb model. All

computations are run in real units (mm, s, etc.).

Parameter determination
Model parameters were determined by fitting macroscopic

features of published data: boundary position and angle,

expression levels, and timescales. As described in the Results,

building up from the lacZ data to hb14F and WT constrains the

values of the binding rates and diffusivities in the model. Further

details are given in Text S1.

Experimental data
Fly stocks, staining and imaging were as in [30]. Whole mount

embryos were imaged by laser confocal scanning microscopy, from

WT Oregon-R, hb14F, and the lacZ construct (pThb1,5; [34]) lines.

All embryos were heat fixed and immunostained for Hb protein.

Fluorescent in situ hybridization (FISH) was used for mRNA

determination, for hb and for lacZ, following the method of [65].

Images were collected using an HC PL APO 206 objective and

variable digital zoom (1.2–1.56). Fluorophores were excited by laser

at different wavelengths (488, 555, and 647 nm), and detected via a

Table 4. Noise levels, varying Hb binding.

Model 3A3X1H 3A3X2H 2x(3A3X1H) 2A2X1H

(Figure 7A) (Figure 7C) (Figure 7E) (Figure 7F)

24% 16% 16% 47%

Experiment pThb1a pThb5b

(Figure 7B) (Figure 7D)

8.0 (0.75) % 6.3 (2.5) %

For the simulations and embryos shown in Figure 7.
aAverage (std. dev. in brackets), n = 2.
bAverage (std. dev. in brackets), n = 3.
doi:10.1371/journal.pcbi.1001069.t004

Table 5. Simulation results, other flies.

Bcd sitesa 3A,1X 3A,4X 5A,4X 6A,4X

Species Drosophila virilis Lucilia Calliphora Musca

Position of boundary
(%EL)

43 48 49 49

Sharpness (degrees) 85 83 83 83

Bcd binding WT melanogaster 3A, plus 4th

Bcd binds as X4 (see Table S2).
WT 3A3X, plus 7th Bcd
binds as X6.

As Lucilia, plus 8th & 9th

Bcds as A3.
As Calliphora, plus 10th

Bcd as A3.

Noise level: protein 18% 4.9% 5.2% 4.4%

mRNA 24% 13% 11% 13%

aNumbers of strong (A) and weak (X) Bcd binding sites from [54,55]. All simulations run with D. melanogaster WT 2Hb sites and early Hb.
doi:10.1371/journal.pcbi.1001069.t005
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Figure 8. Variation within nuclei, transcription from two copies of the promoter. (A) lacZ mRNA labelling (pink) at nuclear dot resolution in
a pThb5 embryo (nuclei in blue), 30–36 minutes into cleavage cycle 14 (c.f. Figure 7D). (B) Computed lacZ mRNA levels, for two equal and
independent promoters, A (blue) and B (red), at 30 minutes; the simulation shown has a relative noise between A and B of 31%, an average value (see
Table 6 for statistics). (C) Comparable plot of intensity against AP position for the embryo in (A), A–B dot pairs are coloured as in (B). This data has A–B
relative noise of 17%.
doi:10.1371/journal.pcbi.1001069.g008
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filterless spectral separation system. Channels were scanned

sequentially. The microscope was set so that maximum expression

was 255 on an 8-bit scale. To reduce photomultiplier noise, each

image was scanned sequentially 16 times and the results averaged.

Image processing
Raw images from the confocal microscope, 102461024 pixels,

were cropped and rotated for standardization. Each energid (each

nucleus plus its cytoplasmic neighbourhood) was identified by

Voronoi tessellation [66]. See Text S2 for details (Figures S1, S2).

Averaged pixel intensities within each energid (Figure S3) were

used for comparison to simulation output. Data was used from a

10% DV (dorsoventral) strip, centred on the AP midline, in order

to minimize geometric distortion from the embryo periphery.

Background fluorescence for these lateral images follows a half

ellipsoid (c.f. [67]). We found the parameters of the ellipsoid for

each image by a Genetic Algorithms technique (c.f. [68]). An

initial visual inspection of the data for each embryo was needed to

estimate the approximate height of the background. The

quantitative measure of fitting quality for a given set of parameters

was based on minimizing the distance between the data points and

the ellipsoid surface. Previous approaches used preliminary

statistical analysis of the dynamics and positioning of areas of

zero specific signal (i.e. areas where all fluorescence was

background), requiring large datasets [67]. Our supervised

evolutionary search gives a much more efficient method for

directly analyzing each image.

Statistics
Singular Spectrum Analysis (SSA) [69], a non-parametric

technique with an adaptive filter, has been recently used for

separating confocal intensity data into components [70,71]. Its

extension, 2D-SSA [72], was applied to the 2D (AP and DV)

intensity surface; the leading components of the decomposition

give the pattern’s trend. Noise was then quantified from the

difference of each energid’s intensity to the trend value at each

position (i.e. local residuals). See Text S3 (Figures S4, S5, S6, S7,

S8, S9, S10, S11, and S12) for more detail on the SSA data

analysis. Noise measures were calculated from the anterior

expressing regions (15–45% EL) as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
½(data{trend)=trend�2

m{1

s
,

where data is the average pixel intensity for an energid and trend is

the SSA-extracted trend at that position (i.e. the noise measure is a

standard deviation for the relative residuals). Noise was calculated

similarly for simulation output, from the difference of the

stochastic output and the deterministic solution at each position

(see Table 1 footnote).

Supporting Information

Figure S1 Nuclear identification of a single WT embryo probed

for the Hb protein (same embryo and data as Figure 3CD in the

main text). Image processing routines were developed in order to

identify the nuclei of the embryos. Protein data are used at this

stage, due to the clear visualization of the nuclei, with the

drawback that regions where the protein is not expressed cannot

be detected (such as in the posterior of this image).

Found at: doi:10.1371/journal.pcbi.1001069.s001 (0.06 MB PDF)

Figure S2 Energid identification. Application of the generalized

Voronoi diagram to the image in Figure S1 (WT embryo, Hb

protein). Blue mesh shows the energid boundaries identified by the

Voronoi diagram, overlying the original Hb protein image.

Found at: doi:10.1371/journal.pcbi.1001069.s002 (0.09 MB PDF)

Figure S3 Visualization of the quantified protein and mRNA

patterns. Dots (centred on the energids) are colourmapped by the

average pixel intensity of each energid. (A) WT embryo, Hb

protein (same data as Figure 3C in main text). (B) WT embryo, hb

mRNA (same data as Figure 3D in main text). (C) Embryo with

the pThb5 construct, lacZ mRNA expression (same data as

Figure 7D in main text).

Found at: doi:10.1371/journal.pcbi.1001069.s003 (0.12 MB PDF)

Figure S4 SSA fitting - nuclear centres and cropping rectangle.

Found at: doi:10.1371/journal.pcbi.1001069.s004 (0.04 MB PDF)

Figure S5 SSA fitting - nuclear centres and regular interpolation

grid.

Found at: doi:10.1371/journal.pcbi.1001069.s005 (0.03 MB PDF)

Figure S6 SSA fitting - regularized data.

Found at: doi:10.1371/journal.pcbi.1001069.s006 (0.08 MB PDF)

Figure S7 SSA fitting - trend on the regular grid.

Found at: doi:10.1371/journal.pcbi.1001069.s007 (0.03 MB PDF)

Figure S8 SSA fitting - W-correlations for window 33633 (black

- 1.0, white - 0.0).

Found at: doi:10.1371/journal.pcbi.1001069.s008 (0.02 MB PDF)

Figure S9 SSA fitting - effect of window size. AP data (blue) and

trend (black). Trend is along the AP axis, and expression is from a

15% DV wide strip around this.

Found at: doi:10.1371/journal.pcbi.1001069.s009 (0.03 MB PDF)

Figure S10 SSA fitting - effect of number of components. Trend

and data along the AP axis. Trend is given by 2 components (c.f. 3

components in Figure S9).

Found at: doi:10.1371/journal.pcbi.1001069.s010 (0.03 MB PDF)

Figure S11 SSA fitting - residual plots, for different numbers of

components, in 15% wide strip around the AP axis.

Found at: doi:10.1371/journal.pcbi.1001069.s011 (0.03 MB PDF)

Figure S12 SSA fitting - noise vs. trend, with moving statistics

(left - absolute, right - relative), showing multiplicative noise.

Found at: doi:10.1371/journal.pcbi.1001069.s012 (0.03 MB PDF)

Table S1 Relative intensities in different experiments set

production rates.

Found at: doi:10.1371/journal.pcbi.1001069.s013 (0.03 MB PDF)

Table S2 Bcd binding strengths.

Found at: doi:10.1371/journal.pcbi.1001069.s014 (0.04 MB PDF)

Table S3 Hb binding strengths.

Found at: doi:10.1371/journal.pcbi.1001069.s015 (0.04 MB PDF)

Text S1 Deterministic modelling and experimental constraints

set parameters.

Found at: doi:10.1371/journal.pcbi.1001069.s016 (0.05 MB PDF)

Text S2 Image processing and analysis.

Found at: doi:10.1371/journal.pcbi.1001069.s017 (0.02 MB PDF)

Table 6. Noise for simulations with two independent
promoters per nucleus.

6B0H (hb14F) lacZ (pThb5) 6B2H (WT)

46–60%, avg. = 49% 24–35%, avg. = 30% 16–20%, avg. = 18%

Noise is calculated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
½(A{B)=((AzB)=2)�2

m{1

s
, where A, B are the mRNA at

each transcription site, for 15–45%EL. n = 6 for each group of simulations.
doi:10.1371/journal.pcbi.1001069.t006
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Text S3 Trend extraction with 2D-SSA.

Found at: doi:10.1371/journal.pcbi.1001069.s018 (0.03 MB PDF)
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