
Automatic Design of Digital Synthetic Gene Circuits
Mario A. Marchisio, Jörg Stelling*

Department of Biosystems Science and Engineering and Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland

Abstract

De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing,
brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network.
However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits,
we developed a methodology and a corresponding tool for in silico automatic design. For a given truth table that specifies a
circuit’s input–output relations, our algorithm generates and ranks several possible circuit schemes without the need for any
optimization. Logic behavior is reproduced by the action of regulatory factors and chemicals on the promoters and on the
ribosome binding sites of biological Boolean gates. Simulations of circuits with up to four inputs show a faithful and
unequivocal truth table representation, even under parametric perturbations and stochastic noise. A comparison with
already implemented circuits, in addition, reveals the potential for simpler designs with the same function. Therefore, we
expect the method to help both in devising new circuits and in simplifying existing solutions.

Citation: Marchisio MA, Stelling J (2011) Automatic Design of Digital Synthetic Gene Circuits. PLoS Comput Biol 7(2): e1001083. doi:10.1371/journal.pcbi.1001083

Editor: Jason A. Papin, University of Virginia, United States of America

Received July 22, 2010; Accepted January 13, 2011; Published February 17, 2011

Copyright: � 2011 Marchisio, Stelling. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: We gratefully acknowledge financial support by the EU FP6 projects EMERGENCE (contract 043338) and COBIOS (contract 043379). The funder had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: joerg.stelling@bsse.ethz.ch

Introduction

A central concept of Synthetic Biology [1] is the rational design

of synthetic gene circuits by means of modularized, standard parts,

which are DNA traits with well-defined functions. The field aims

at adapting methods and ideas–such as part composability and

abstraction hierarchy–from (electrical) engineering to biology. Several

computational tools embracing these concepts have been devel-

oped (see [2] for a review). Moreover, some tools permit to realize

circuits in a drag and drop way as it is typical in electronics [3–5].

Nevertheless, de novo design of circuits able to reproduce a target

function is not an easy task and its automation represents a major

challenge in Synthetic Biology.

Previously, François and Hakim [6] showed that small networks

characterized by a desired behavior can be obtained by

evolutionary optimization of a set of independent circuits. Similar

optimization-based tools like Genetdes [7] and OptCircuit [8] use

simulated annealing and mixed integer dynamic optimization,

respectively. These approaches yielded interesting circuit designs,

but they have several inherent limitations. Computational

complexity requires very simplified models that do not represent

basic parts but lump functionalities of entire genes. Similarly,

brute-force optimization can only cope with rather small networks,

and it requires dual optimization of circuit structure and of kinetic

parameter values. Hence, more direct, rational design methods are

desired.

Here, instead of looking for a general solution to the automatic

design challenge, we focus on digital (logical) circuits. These circuits

employ Boolean (binary) logic where input and output signals can

take only two values: 0 (low signal) and 1 (high signal). In the

simplest case, a Boolean gate uses two input signals to compute a

single logical output. More complex digital circuits convert n
inputs into a single output. In both cases, the input-output relation

is represented by a truth table where each entry specifies one of the

possible 2n combinations of input signal values and the

corresponding binary output.

In biology, digital circuits are important for several reasons.

First, logical gates such as those determined by the action of two

different activators on a promoter are abundant in natural systems.

They are often found in association with feed-forward loop (FFL)

motifs and provide more complicated functionalities such as sign

sensitive delays [9,10] and pulse generation [11]. More complex

networks of several FFLs interacting with basic Boolean gates

control sporulation in B. subtilis [12] as well as the neuronal system

of C. elegans [13] (see [14] for a recent review). An analysis of

possible implementations of logical gates could, thus, help further

our understanding of natural biological networks.

In synthetic biology, secondly, complex digital circuits are

required for the construction of biosensors and molecular

computers. Biosensors should respond to well-defined external

cues that may be specified with a truth table. The more inputs can

be sensed, the better is the ability of the (digital) biosensor to

discriminate between similar environmental conditions. Such

biosensors could be integrated, for instance, into bioreactors for

the production of biofuels [15]. Furthermore, they could play an

important role in disease treatment—Anderson et al. [16]

implemented a biosensor that mimics a logical gate to control

bacterial invasion of tumor cells in response to signals from the

tumor environment. Even more complex biosensors could work as

molecular computers that perform a diagnosis on the basis of the

sensed substances and release drugs if necessary [17].

Motivated by these two aspects, several synthetic gene circuits

that implement Boolean logic have been realized experimentally in

the past years (e.g. [18–23]). Most of these circuits rely on

transcriptional control schemes. In fact, it is well known that

bacterial promoters can display logic behavior when controlled by

PLoS Computational Biology | www.ploscompbiol.org 1 February 2011 | Volume 7 | Issue 2 | e1001083

two transcription factors [24–26]. More complex ‘‘Boolean’’

promoters have been engineered, for instance, in mammalian

cells [27]. However, the number of repressors and activators

generally used in synthetic biology is low and the rational

engineering of transcription factors can be a complex process [28].

Alternatively, Boolean gates are achieved in nature by

mechanisms of translation control like base-pairing between

antisense small-RNAs and the mRNA, or structural mRNA

modifications due to the binding of chemical effectors (e.g.

thiamine and tetracycline) to riboswitches and ribozymes

[29,30]. These are complex RNA structures made of two modules:

an aptamer, where a chemical binds, and an actuator that either

undergoes structural modifications in a riboswitch or gets spliced

in a ribozyme as a consequence of the chemical binding. Both

riboswitches and ribozymes can either repress or activate

translation [30]. Furthermore, a tandem riboswitch, where a single

actuator is under the control of two aptamers, has been observed

in B. clausii [31]. With two distinct inputs, it represents a natural

Boolean gate located on the mRNA. Taking these structures as

models, similar synthetic RNA constructs have been engineered

recently [32]. In particular, Win and Smolke [33] have built

complex ribozymes that establish the most common two-input

Boolean gates. Importantly, the design of small RNAs is easy

compared to the design of transcription factors.

Despite these individual successes, synthetic biology fundamen-

tally lacks tools and concepts for automatic computational design.

Logical circuits are suitable starting points for automatic design

because the target function can be defined easily by a truth table.

Here, we combine approaches from electrical circuit design with

our previous model for circuit design with composable parts [4,34]

to develop a method for the automatic design of digital synthetic gene

circuits. It is implemented as an add-on for the process modeling

tool ProMoT [35,36]. The circuits use a set of standard biological

parts and Boolean gates whose kinetic parameters take appropriate

default values without invoking any optimization algorithms. In

addition to previously developed building blocks such as two-

operator-containing promoters, we consider externally controlla-

ble ribosome binding sites (RBSs). The method requires only a

truth table to directly produce several possible circuit designs that

process up to four different inputs to yield a unique, pre-defined

output signal. Design alternatives are ranked according to a

complexity score that reflects the efforts for practical implementation.

Simulations on single gates and on networks of different

complexity confirm the validity of our approach by highlighting

accurate representation of the truth table and robustness of the

designed circuits.

Results

A set of biological Boolean gates
In electrical engineering, digital circuits are organized into

Boolean gates that establish basic logical operations. AND gates

perform a multiplication of the input signals: they return a 1 only

when all inputs are high (Fig. 1A; see also Fig. 1C for a definition

of symbols). Similarly, a NOT gate converts a low signal into a

high one or vice-versa and YES gates produce a logical output that

is identical to the input. OR gates compute the sum of (at least) two

inputs; they give a 1 output when at least one input is high.

Complementary operations are performed by negated gates. For a

NOR gate, a 1 results only if all inputs are low (Fig. 1B), and in a

NAND gate, in contrast, a 0 is produced when all inputs are high.

Other gates achieve more complex operations. An XOR (exclusive

OR) gate, for instance, returns a 0 only when all inputs are either

high or low, and a 1 otherwise (see Text S1 for details).

Here, we employ standard biological parts (Fig. 1C), namely

promoters, ribosome binding sites, small RNA (sRNA), protein

(transcription factor and reporter) coding regions, and terminators

for the design of corresponding logical circuits. Biological Boolean

gates arise from the composition of standard parts into one or

more transcription units. However, logic behavior is due only to

particular configurations of promoters and RBSs. For instance, the

AND gate shown in Fig. 1A is composed of one transcriptional

unit with two inputs, namely a chemical (a) and an sRNA (b)

produced by a second transcriptional unit. It is the particular

configuration of the RBS, where either input can activate

translation of the reporter protein, that generates the desired

logical behavior.

More generally, computational approaches for the rational

design of biological Boolean gates, so far, employed either only

activation and repression of promoters [7,8], or exhibited complex

structures embracing more than one single transcription unit (see

[37] for an example). Translational regulation processes–although

experimentally exploited [38]–have been substantially neglected.

The two example gates shown in Fig. 1A–B, in contrast, rely on

our new design for Boolean gates that combines transcriptional

and translational control. Promoters are regulated by the binding

of transcription factors that, in turn, are activated by chemicals. In

addition, we developed mathematical models for RBSs where

basic Booleans gates with one or two inputs are achieved either

through the binding of chemicals to single and tandem

riboswitches or via mRNA base pairing with up to two sRNAs

that act as ‘‘repressors’’ (locks) or as ‘‘activators’’ (keys) [39].

Following [40], cooperativity between the chemical receptors

(aptamers) of tandem riboswitches is reproduced and, as a novelty,

mixed configurations, where one sRNA binding site is accompa-

nied by a riboswitch, are allowed. For example, the NOR gate in

Fig. 1B employs the coupled action of a repressor that acts on the

promoter, and of two chemicals that target the RBS as in a tandem

riboswitch. In our model based on full mass-action kinetics (see

Text S1), we considered only single and tandem riboswitches

[41,42] and neglected ribozymes or more complex synthetic

constructs [43,44]. Note that sRNAs binding sites and riboswitches

Author Summary

Synthetic Biology is a novel discipline that aims at the
construction of new biological systems able to perform
specific tasks. Following the example of electrical engi-
neering, most of the synthetic systems so far realized look
like circuits where smaller DNA-encoded components are
interconnected by the exchange of different kinds of
molecules. According to this modular approach, we
developed, in a previous work, a tool for the visual design
of new genetic circuits whose components are displayed
on the computer screen and connected through hypo-
thetical wires where molecules flow. Here, we present an
extension of this tool that automatically computes the
structure of a digital gene circuit–where the inputs and the
output take only 0/1 values–by applying procedures
commonly used in electrical engineering to biology. In
this way, our method generalizes and simplifies the design
of genetic circuits far more complex than the ones so far
realized. Moreover, different from other currently used
methods, our approach limits the use of optimization
procedures and drastically reduces the computational time
necessary to derive the circuit structure. Future improve-
ments can be achieved by exploiting some more biological
mechanisms able to mimic Boolean behavior, without a
substantial growth of the algorithmic complexity.

Automatic Circuit Design

PLoS Computational Biology | www.ploscompbiol.org 2 February 2011 | Volume 7 | Issue 2 | e1001083

could also lie in the coding region but–without loss of generality–

we neglected this possibility in our model.

Within this framework, one-input NOT and YES and two-input

NOR and AND gates can be realized by single-input/dual-input

promoters respectively, or by appropriately designed RBSs (see

Materials and Methods). Alternatively, when two inputs are

present, one can be sent to the promoter and the other to the RBS.

These new configurations, when the corresponding models were

parametrized with literature and biologically plausible parameter

values, work well in terms of reproducing the desired truth table in

dynamic simulations in silico (see Fig. 1A,B and Text S1). However,

they still require experimental confirmation.

To engineer gates with more than two inputs, we have to

consider that promoter and RBS of the same transcription unit are

Figure 1. Biological Boolean gates. The simple composition of standard biological parts permits to build Boolean gates with different numbers of
inputs. (A) Configuration of a two-input AND gate. A constitutive promoter is flanked by an RBS with two hairpins, one of which coincides with a
riboswitch. These mRNA structures prevent ribosomes from binding the RBS and represent the targets of two different inputs: a chemical, which
binds the riboswitch, and a small RNA, which is complementary to the other hairpin. Only both inputs together remove all structural hurdles and
allow translation initiation. This confers an overall AND logic function to the construct. (B) Configuration of a three-input NOR gate. The RBS contains
a tandem riboswitch that, in its ground state, does not form an obstacle for ribosome binding. However, when at least one input signal (chemical)
reaches the corresponding aptamer, the riboswitch changes its configuration and closes the access to the RBS. Additionally, the promoter is
controlled by a repressor. Hence, RNA polymerase can start transcription only when no negative transcription factor is synthesized. Overall, this gene
produces a reporter protein only when all the three inputs are absent. Thus, it performs a NOR logic operation. (C) Formal symbols of standard
biological parts, pools, and Boolean gates employed throughout.
doi:10.1371/journal.pcbi.1001083.g001

Automatic Circuit Design

PLoS Computational Biology | www.ploscompbiol.org 3 February 2011 | Volume 7 | Issue 2 | e1001083

logically connected by an AND operation. Hence, three-input

NOR/AND gates can be implemented just by connecting a two

input NOR/AND gate on the promoter with an inducible/

repressible RBS or vice versa. Fig. 1B shows an example for such a

NOR gate; despite its higher complexity with three inputs, the

simulation results demonstrate the desired logical circuit behavior.

Four-input NOR/AND gates are given by joining a promoter and

an RBS both implementing a two-input NOR/AND gate. Thus,

with our model based on composable parts, we can construct

Boolean gates–and consequently digital circuits–regulated by up to

four inputs.

An electronics-based approach to circuit design
In electronic circuit design, the construction of larger-scale

digital circuits from well-defined Boolean gates is a standard

procedure, and several computational methods for this task have

been developed. One of these is called the ‘Karnaugh map

method’ [45,46], which we employ here for the automatic design

of digital biological circuits. The algorithm starts with a truth table

as the input (see Fig. 2 for an example circuit). By re-grouping

(mapping) input-output relations of the specification, it allows a

conversion into a Boolean formula that is usually composed of

several logical terms. More specifically, the method permits to

derive two different descriptions of every digital circuit that, in

electronics, are called POS (Product Of Sums) and SOP (Sum Of

Products, as in the example in Fig. 2) forms. An exclusive OR

(XOR) gate, for instance, is given in POS as (azb):(azb)
whereas in SOP as (a:b)z(a:b), where a and b are the two input

signals and a and b are their negations.

Both classes of Boolean formulas completely specify a circuit

structure in terms of Boolean gates. Such a circuit is organized in

three layers. The first layer contains a NOT gate for each negated

input signal. A second layer employs as many OR/AND gates as

the number of clauses in the corresponding formula–there are

three clauses in our example of Fig. 2. The final layer uses a single

AND/OR gate to gather the outputs of the gates in the previous

layer. Depending on the type of gates in the second and third

layer, the circuit logic is called either OR-AND (POS) or AND-

OR (SOP). With De Morgan’s laws [46], these forms can be

converted into NOR-NOR and NAND-NAND logic, respectively,

such that only one kind of gate is required besides the NOT in the

input layer. A minimal formula involves the lowest number of gates.

For the XOR gate, for instance, POS and SOP solutions are

equivalent and require five gates each (see Fig. S1).

As in electronics, our digital genetic circuits are organized in

three layers (Fig. 2). The POS representation employs the reduced

NOR-NOR logic whereas for SOP only the non-reduced AND-

OR logic is available. NAND gates required for SOP are not

generally applicable since they cannot be built on sRNA regulation

mechanisms (see Materials and Methods). The inputs for our

designed digital circuits are chemicals. We define inducers as

chemicals that activate an activator protein or inhibit a riboswitch

that, in its unbound state, prevents ribosome binding. This kind of

small molecules promote either transcription or translation, which

is necessary for the construction of both OR and AND gates (see

Materials and Methods). Hence, inducers are the input molecules

for circuits in the SOP form. In addition, we call corepressors those

chemicals that activate a repressor protein or provoke a structural

change in a riboswitch such that it will prevent ribosome binding.

Corepressors (1 logic input) set protein or sRNA synthesis to

minimal values (0 logic output). For this reason, they are the

natural input to NOR gates and, as a consequence, to circuits in

the POS form. Overall, both types of input chemicals act directly

on a RBS or indirectly (after binding a transcription factor) on a

promoter.

In contrast to electronics, the input layer of a synthetic circuit

contains YES gates in addition to NOT gates. A YES gate is a

simple transcription unit that synthesizes a transcription factor

when an input chemical is present. On the contrary, NOT gates

can show complex configurations–made of up to three transcrip-

Figure 2. Conversion of a truth table into a circuit scheme via the Karnaugh map method. A Karnaugh map can be considered as a
particular rearrangement of a truth table. Here, three Boolean variables (A, B and C) are taken into account. The values of A are written on the rows
of the Karnaugh map, whereas the values of B and C lie on its columns. The Karnaugh map method permits to derive both the SOP and POS form of
the Boolean expression associated with any truth table. Here, only the SOP calculation is shown (see Text S1 for a more detailed explanation of the
method). The circuit scheme follows straightforwardly: each variable that is negated in one or more clauses (A and C in the example) demands a NOT
gate in the input layer. Every clause corresponds to an AND gate of the internal layer. An OR gate in the final layer gathers and sums the binary
outputs of the internal AND gates. In the example, chemicals, sRNAs and transcription factors regulate the three AND gates that produce a unique
kind of activator able to control the final OR gate.
doi:10.1371/journal.pcbi.1001083.g002

Automatic Circuit Design

PLoS Computational Biology | www.ploscompbiol.org 4 February 2011 | Volume 7 | Issue 2 | e1001083

tion units–that are required to convert an input chemical into

either a protein or a small RNA (see Fig. S2).

Chemicals can act directly on the gates of the second (internal)

layer because they are valid inputs for properly designed

riboswitches. In POS, internal gates are either NOR or NOT;

in SOP, AND or YES. All these gates are single transcription units

regulated by up to four inputs. The easiest way of implementing

the third (final) layer is through a single gate. It corresponds to the

operation of sum (OR, in SOP) or multiplication (NOR, in POS)

that connects the clauses of the Boolean formula. The logic resides

in a one-operator promoter or, less preferably, in a RBS regulated

by a sRNA. All internal gates produce the same regulatory factor:

an activator (or a key) in SOP to reflect the OR logic as in Fig. 2,

and a repressor (or a lock) for the NOR logic in POS.

This single final gate solution, which is the direct translation of a

Boolean formula into a circuit scheme, is clearly minimal in terms

of gene and regulatory factor number. However, we explored

other possible classes of final layer schemes, termed disjoint

solutions (see Text S1 for details), in order to see if structurally

more complex solutions can lead to a better circuit performance.

Notice that these alternative solutions do not have a direct

counterpart in electronics and do not require changes in the

Karnaugh map algorithm. They are constructed by modifying the

final layer of the single (basic) scheme.

Following the above considerations, we developed an algorithm

for automatic circuits design that involves the following basic steps:

(i) reading a pre-defined truth table, (ii) converting it into a

Karnaugh map, (iii) deriving both POS and SOP circuit

expressions, and (iv) implementing a selected solution using

standard biological parts and gates (see Text S1 for details). Note

that as a consequence of the electronics-like approach, only

parameter values for the gates potentially need optimization, but

not the circuit structure. Our current implementation allows the

construction of digital circuits with up to four different inputs.

Hundreds of possible circuit schemes for a given truth table are

computed in just a few seconds (see Text S1); we will discuss

computational limitations of this approach below.

Circuit design alternatives and complexity
The complexity of electronic circuits essentially depends only on

the number of gates—which can be minimized through the

Karnaugh map method. Synthetic biology, however, is distinct

from electronics in two important aspects. Firstly, circuit designs

for a given truth table differ both in gene number, and in the kind

and the quantity of regulatory factors. Both factors affect the

possibilities of achieving a practical implementation of a design.

Secondly, circuit performance and robustness are not guaranteed

in biology due to nonlinear interactions within a designed circuit,

and as a consequence of the circuit’s embedding into a host cell.

Ideally, complexity and performance/robustness would be con-

sidered simultaneously in identifying the best circuit design, but

performance-based evaluations require large numbers of compu-

tationally expensive circuit simulations, which quickly becomes

prohibitive. Therefore, we propose the workflow for digital circuit

design shown in Fig. 3. Initially, it filters solutions based on a

complexity score that reflects the main constraints for a wet-lab

implementation. Then, only the chosen solution(s) undergoes more

elaborate and time-consuming analysis—and potentially detailed

optimization—steps to establish reliable performance in vivo.

To derive a complexity score, it is important to consider that

each gate must be controlled by unique signal carriers such as

transcription factors and sRNAs to avoid cross-talk between

standard parts. For instance, a repressor binding both to an

internal and to the final NOR gate would make the network fail to

reproduce some truth table entries. Therefore, we estimate the

complexity of a circuit solution as a function of the number of the

regulatory factors involved in the network. Moreover, transcrip-

tion factors and sRNAs determine circuit complexity in different

ways. Beyond the few transcription factors often used in synthetic

biology, such as the LacI, TetR, CI repressors, and the CRP

activator, engineering new efficient transcriptional regulators is

generally time-consuming and difficult. In contrast, sRNAs can be

synthesized more easily, such that regulation via locks and keys

should be employed whenever possible.

With this rationale, we introduce the score:

S~2NR{1z2NA{1zNlzNk, ð1Þ

to characterize a circuit solution’s implementation complexity,

where NR, NA, Nl , and Nk represent the total number of

repressors, activators, locks and keys present in the circuit,

respectively. The circuit complexity increases dramatically–

following a power law–when the same type of transcription factor

is used repeatedly, whereas the sRNA number weighs much less.

Furthermore, solutions that are not particularly complex can exist

despite a rather high number of regulatory factors, provided they

are fairly equally distributed among the four available species (with

a preference for the use of locks and keys). Note that for NR~0 or

NA~0, the corresponding term is removed from Eq. (1). We want

to stress that S does not reflect the quality of a circuit design–the

score is intended to characterize its practical realizability.

To test the validity of this score we considered a complex four-

input circuit (Fig. 4A). We refer to this circuit as test case A (see

Text S1 for more examples). Altogether, we obtained 48 circuit

designs that are compatible with the specifications in principle.

The distribution of complexity scores shows that single-gate

structures are substantially less complex than the disjoint schemes

(see Fig. 4B). Without such a score, evaluating the complexity of a

circuit solution is not straightforward. For instance, Fig. 4C shows

the least complex solution for the test case—for complicated

structures such as this one, a quantification is required.

Next, we were interested in comparing our design alternatives

with existing natural or synthetic circuits that perform identical

logical signal processing. For natural circuits such as bacterial

transcriptional networks, the functions in terms of a truth table are

usually not sufficiently characterized to enable such a comparison.

However, recently Rinaudo et al. [23] constructed Boolean gates

based on RNA interference exclusively and showed their

functional operation in mammalian cells. One implemented

example circuit is shown in Fig. 5A. Note that siRNA production,

which is supposed to be either activated or repressed by

endogenous signals that act as circuit inputs, is not shown in the

gate design explicitly. The exact number of genes required to

engineer this circuit is not known, but since 5 different siRNAs

were necessary for its implementation, we can attribute a

complexity score S~5 to the configuration.

With our method, we re-designed the circuit, that is, we

determined all possible circuit solutions that comply with the truth

table. In less than one second, our tool generated 167 possible

schemes. The least complex circuit (S~2) is in POS and the

‘‘best’’ solution in SOP has a complexity score S~4. Overall, we

found 15 configurations with a complexity score lower than five

that require only between 5 and 7 genes (including the input layer).

One example circuit is shown in Fig. 5B—the more compact

implementation of the logic functions is directly evident from

comparison with Fig. 5A. Importantly, this circuit complexity is

not out of reach for in vivo implementation and, according to our

simulations (see Text S1) our solution would reproduce the

Automatic Circuit Design

PLoS Computational Biology | www.ploscompbiol.org 5 February 2011 | Volume 7 | Issue 2 | e1001083

Figure 3. Workflow for digital gene circuit design. The overall procedure of constructing a digital, synthetic, gene circuit starts with the
network automatic design that uses our computational tool based on the Karnaugh map method (blue boxes). A solution, normally the least complex
one, undergoes other simulations to check and, if necessary, improve its performance and robustness (orange boxes). Finally, if the (optimized)
solution meets the necessary requisites for a faithful reproduction of the corresponding truth table, it is implemented in the lab, otherwise another
circuit solution has to be taken into account.
doi:10.1371/journal.pcbi.1001083.g003

Automatic Circuit Design

PLoS Computational Biology | www.ploscompbiol.org 6 February 2011 | Volume 7 | Issue 2 | e1001083

Figure 4. Example circuit (test case A). Test case A corresponds to the most complex Boolean formulas generated by our tool. (A) Truth table and
Karnaugh map. (B) Solution distribution according to the complexity score. (C) Solution 1 scheme–the least complex one for test case A.
doi:10.1371/journal.pcbi.1001083.g004

Automatic Circuit Design

PLoS Computational Biology | www.ploscompbiol.org 7 February 2011 | Volume 7 | Issue 2 | e1001083

experimental results in [23]. Hence, our tool can provide valid,

alternative designs to the ones so far adopted to build digital gene

circuits in the wet lab (see Text S1 for details). By differentiating

between design alternatives, the score is essential to judge potential

implementability of a designed circuit.

Circuit performance
To better understand the general relations between complexity

and performance, we collected and simulated solutions in POS

and SOP for test case A covering all the possible final layer

structures.

Mainly two factors determine the performance of a logical

circuit, beyond reproducing the truth table in principle: the extent

to which high and low output signals can be practically

distinguished, and the transient dynamics after changes in the

inputs that may–for a certain time–give incorrect results (see

Fig. 6A for an illustration of typical circuit dynamics). To address

the first issue, we computed the steady state signal separation (s).

More specifically, we calculated the absolute signal separation as

the difference between the minimal steady-state output for a

logical 1 (min1) and the maximal 0 output (max0) (see Fig. 6A).

Additionally, we considered the ratio (r) between max0 and min1
to separate between good and bad solutions (see Text S1).

Transient dynamics in circuit states may be critical for practical

performance. In switching between states (or when the circuit is

initialized), high and low outputs are indistinguishable and several

peaks of different heights can be generated before reaching the

final plateau. When a circuit controls other processes, the height

and the duration of these peeks–mainly if associated with 0
outputs–may cause undesired repercussions. We defined the

solution transient as the average area covered by 0 outputs during

the time the circuit takes to get to the steady state (settling time, see

Fig. 6A).

With these metrics, we comprehensively quantified the design

alternatives’ performance as summarized in Fig. 6C for test case A.

Note that for the corresponding simulations, promoter and RBS

basal production rate were set to very low values (0:1% of the

internal gate transcription/translation rate). An example for

simulation results for the least complex circuit design (solution 1)

is shown in Fig. 6B (see Text S1 for the other solutions). After an

initial transient, the 0 and 1 signals are clearly separated indicating

that the circuit operates as specified by the truth table. The settling

time is on the order of a few bacterial generation times, as

observed for other synthetic circuits. In general, for the 8 solutions

investigated in detail, the signal separation of 40–60 protein

molecules (Fig. 6C) appears sufficient for practical detection in a

biological cell. Not unexpectedly, we find a certain correlation

between signal reliability and potentially harmful transients

(Fig. 6C) with increasing circuit complexity. Overall, the

simulations indicate that, for our Boolean gate design and

parameter value choices, all circuits perform the intended

function, but higher complexity may yield better performance.

In any case, current technical limitations let us focus on the less

complex single class circuit schemes in order to find circuit designs

suitable for practical implementation.

In evaluating the performance of automatically designed circuits

we employed standard parameter settings for all parts of the

models, in particular, for the basic logical gates. Apparently,

further optimization of the performance might be possible through

adjustment of the parameters. A comparison of ‘‘standard’’ and

optimized circuits, in addition, could allow us to estimate the

relative quality of the automatic design algorithm. To assess these

aspects, we focus on the least complex circuit scheme for test case

A (solution 1). For instance, to obtain more reliable experimental

measurements, we can aim at improving the circuit performance

by enhancing the signal separation up to about 10{7 M. This

corresponds to a difference between low and high output signals of

approximately 100 proteins in a typical bacterial cell, which is

faithfully detectable by fluorescence microscopy techniques [47].

Using sensitivity analysis, we discovered that only 32 out of the

534 parameters pertaining to the entire network model highly

influence the circuit output signal. Since we want to obtain an

amplification of the signal separation, we can try to modify only

some of the eight sensitive parameters that belong to the final

NOR gate. Remarkably, a *6-fold increase of the promoter

strength produced a clear amplification of the high-level output,

while the low-level output was maintained below 2 protein copies.

Moreover, the new promoter transcription rate is comparable with

published data [48] (see Text S1 for details). Hence, while the

automatically designed circuits may not be optimally functional,

only simple changes may be needed to further improve their

performance.

Figure 5. Comparison of a RNAi-based with an automatically designed circuit. The Boolean formula (a:c:d)z(a:b) is here represented both
(A) as the circuit provided by Rinaudo et al. [23] with 5 different siRNAs and (B) as one of the 167 solutions computed by our tool, using two activators
and one sRNA. Notice that AND1 and AND2 correspond to (a:c:d) and (a:b), respectively. Dashed lines indicate either protein synthesis or input
signal conversion into a regulatory factor (NOT operation). For a better comparison with Rinaudo’s scheme, we do not include the input layer in (B).
doi:10.1371/journal.pcbi.1001083.g005

Automatic Circuit Design

PLoS Computational Biology | www.ploscompbiol.org 8 February 2011 | Volume 7 | Issue 2 | e1001083

Figure 6. Circuit performance. (A) The parameters used to estimate the quality of a digital circuit are reported on the plot of a generic solution (1
outputs lie between the two red lines, 0 outputs on the green surface). (B) Test case A solution 1 simulation. Only the results of four (out of sixteen)
truth table entries are shown. All the 1 outputs lie between the red lines and all the 0 outputs between the green ones. Every simulation consisted of
two steps. First, the system reached a first steady state in the absence of chemicals (not shown). Afterwards, input signals were sent to the circuit. As a
response, the network varied the reporter protein production and settled to a new steady state that describes the output (0 or 1) of the
corresponding entry in the truth table. (C) Signal separation and transient for eight different solution of test case A. Transients have been rescaled
with respect to the solution 1 value.
doi:10.1371/journal.pcbi.1001083.g006

Automatic Circuit Design

PLoS Computational Biology | www.ploscompbiol.org 9 February 2011 | Volume 7 | Issue 2 | e1001083

Circuit robustness
The previous simulations confirmed the validity of our design

method because all the alternative designs faithfully reproduced

the truth table. In evaluating the performance of automatically

designed circuits so far, however, we employed default parameter

settings for all parts of the models. The choice of these parameter

values has been made starting from published data and, where

necessary, by tuning them in order to mimic Boolean gates

properly. For instance, data available for riboswitches [49,50] did

not always fit into our model based on full mass-action kinetics.

We assumed an effector-aptamer affinity close to the one of the

sRNA with its mRNA target site [51] or, without values for these

interactions, we referred to the transcription factor-promoter

system (for details, see Text S1). Thus, the models’ parameter

values are associated with uncertainty, and we therefore analyzed

the impact of uncertainty on circuit performance.

First, we assessed the network robustness against overall

parameter perturbations of the eight optimized solutions of test

case A. Specifically, we evaluated if the signal separation remains

above a (practically measurable) threshold of 75 protein copies

after randomly modifying all 534 network parameters simulta-

neously in a range of +20% of their reference values. Most of the

circuits (six) turned out to be rather robust since more than 60% of

the corresponding simulations returned a signal separation above

this threshold. Hence, uncertainties of parameter values—at least

for unstructured parametric perturbations—do not seem to have a

great impact on the digital behavior of our networks.

From experimental implementations of logical circuits, we know

that transcriptional (and translational) leakage can substantially

affect circuit performance [27]. As the assumed promoter and

RBS basal production rates in our previous analysis were low

enough to be negligible, we next simulated test case A solutions

with increasing values for the basal transcription and translation

rates. As expected, the number of solutions that properly

reproduce the circuit truth table decreases by increasing either

basal production (Fig. 7). Promoters with a leakage rate of 1% of

the internal gate transcription rate–i.e. 10-fold higher than the

initial leakage rate–did not affect the qualitative, but the

quantitative performance of all 8 solutions. With further increase

of the leakage rate up to the 5% of the reference value, 2 solutions

still survive. This might represent a hurdle to the in vivo

implementation since promoters often have a basal rate of this

order of magnitude. Hence, promoters might require several

modifications before being used for digital circuit implementation.

Analogous conclusions hold also for the RBS. In fact, with

translation leakage at 1% of the internal gate translation rate, the

number of valid solutions drops immediately to 3 and none of

them shows digital behavior with higher basal protein production.

Hence, also efficient RBSs are crucial to build reliable digital

circuits. Overall, the differences in sensitivity between design

alternatives can be employed for prioritizing practical circuit

implementations, effectively using robustness as a screening

metric.

Besides leakage, another source of signal disturbance is given by

the intrinsic random fluctuations present in every biological system

[52]. The robustness of a circuit to intrinsic noise can be evaluated

via stochastic simulations. Since such simulations are rather time

consuming, we examined only the optimized version of test case A,

solution 1. Remarkably, this circuit shows a high robustness to

intrinsic noise; the signal separation of about 100 proteins

achieved in the deterministic case decreases–within a stochastic

framework–only to about 80 proteins at steady state (see Text S1).

This underlines the importance of optimizing the circuit

performance by an amplification of the circuit output that makes

the 1 signals insensitive to fluctuations of the 0 signals and

therefore preserves a reasonable separation between both. Overall,

thus, the automatically designed circuits are remarkably resilient to

model uncertainties and stochastic noise, except for factors such as

transcriptional and translational leakage.

Discussion

We presented a procedure for the automatic design of digital

synthetic gene circuits based on standard biological parts. It borrows

the Karnaugh map method from electrical engineering to translate

a given truth table into a circuit scheme. Fundamentally, the design

method employs a set of (models of) biological parts and Boolean

gates that allow circuit composition. In our in silico implementation,

circuits can have up to four different inputs (chemicals) and a single

output such as a reporter protein. For each scheme, several circuit

designs of different structural complexity and response quality are

generated. We characterized circuit performance through output

signal separation at steady state and via initial transients and found

good solutions for all our simulations.

Figure 7. Circuit robustness. Fraction of valid test case A solutions (out of 8) for different promoter and RBS leakage rates. Leakage rate is
expressed as a percentage of the fixed transcription/translation rate of the gates that belongs to the circuit internal gates.
doi:10.1371/journal.pcbi.1001083.g007

Automatic Circuit Design

PLoS Computational Biology | www.ploscompbiol.org 10 February 2011 | Volume 7 | Issue 2 | e1001083

The main distinction of our method from other currently

available computational tools for automatic circuit design is that

the circuit structure is computed without the need for any

optimization procedure. Optimization as employed in [7,8]

generally is highly compute intensive, especially because it requires

simulation of the circuit behavior for all input combinations at

each evaluation of the optimization function. In addition, we

developed more detailed models for translation—in contrast to the

one-step representation in [7,8]. This implies that translational

controls at the mRNA level can be exploited (alone or together

with promoter regulation) to assemble Boolean gates. Both aspects

lead to a high diversity of possible circuit designs for each truth

table generated by our tool within computational times of only few

seconds.

In terms of computational complexity, note that deriving a

minimal Boolean formula from a truth table is an NP-complete

problem. The traditional Karnaugh map algorithm is known to be

efficient only up to 6 inputs. For more complex systems with a

higher number of inputs or outputs, however, logic synthesis in

electronic circuit design provides by far more efficient algorithms

than the Karnaugh map method [53]. Here, we refrained from

corresponding implementations because it was not clear a priori if

the electronics approach could be transferred to biological systems,

and because implementation is the main bottleneck for synthetic

gene circuits; already the complexity of some of our example

circuits is beyond the limits of the biological digital circuits so far

implemented in vivo.

As another limitation, our model requires more, potentially ill-

characterized or not measurable parameters to specify all the

reactions taking place inside every part. However, different gates

may share identical parts and inside a part, some parameters share

the same value (like the five different mRNA decay rates in a

composite RBS). As a consequence, the net number of parameters

necessary to fully specify a circuit may drop considerably. In test

case A solution 1, for instance, only 187 out of 543 parameters

need specific assignments. Among them, interactions between

transcription factors and promoters are already well-described and

quantitative data are available in the literature. Bigger uncertain-

ties characterize the translational controls we adopted in our

framework; we tuned several associated parameter values to assure

reasonable parts and gate performance. Hence, improvements to

our riboswitch and antisense RNA descriptions are desirable, but

to a certain extent the resulting digital circuits are robust to

parameter perturbations and intrinsic noise. Moreover, the circuit

performance can be drastically improved by acting only on

parameters belonging to the final gate.

We want to stress that the importance of our tool lies in the

rational, automatic design of complex digital circuits with three or

four inputs. As previously explained, basic (two-input) gates have

been found in several biological systems. We do not aim to

reproduce these rather simple gates but we use them as standard

bricks to construct more complex circuits whose structure cannot

be designed in an ad-hoc fashion like other small synthetic gene

circuits. So far, we considered only a limited number of

transcription and translation controls to mimic Boolean behavior.

We plan to extend our tool by other regulatory mechanisms

already used for in vivo implementations of synthetic Boolean gates

such as RNA interference [23], tRNA-mRNA base-pairing [21],

ribozymes [33], and antiswitches [43].

In terms of practical implementations, even though many of the

circuits designed by our tool seem still too large to be implemented

in vivo, recent progress in combinatorial generation of standard

components and their model-based assembly into synthetic circuits

[54] suggests that increasingly complex networks will be feasible–

and realized–in the near future. In particular, exponentially

growing capacities for DNA synthesis [55] and innovative

protocols for the simultaneous cloning of multiple parts into a

single vector [56,57] substantially increase our experimental

capabilities. Also original, powerful designs for RNA-based

Boolean gates [33], and new computational tools for the

automated design of each category of Standard Biological Parts

such as the RBS calculator [58] will be critical factors in these

developments. This will enable novel synthetic signal processing

capabilities for applications as biosensors [15,16] and as molecular

diagnostic computers [17].

Materials and Methods

Logical gates
Promoter-based configurations [24] are available for every

biological gate controlled by one or two inputs: NOT and NOR

gates require simple repressions; YES and AND gates simple

activation (although, in our implementation, activators act always

cooperatively on AND-like promoters); OR gates demand

synergistic activation of transcription (by two activators), and,

finally, NAND gates need cooperativity between two repressors.

Simple activation and repression can be achieved also on the RBS

either via sRNA base-pairing with specific target sequences or by

chemical binding to a riboswitch. Hence, AND, YES, NOR, and

NOT gates can entirely lie on mRNA. On the contrary, since

ribosomes are not recruited by sRNAs, we cannot model OR gates

on the RBS. Furthermore, NAND gates can be realized only by

tandem riboswitches inhibited by the cooperative binding of two

effector molecules but never via sRNA regulation that does not

provide any kind of cooperativity. For details on the implemen-

tation of all gate variants in the three circuit layers we refer to the

Text S1.

Circuit design
We implemented the algorithm for automatic circuit design in

Perl. It reads the number of input signals and the truth table of the

circuit from a text file. Then, it computes and ranks all the possible

circuit solutions, which are logged in a text file. To implement a

specific solution, the program asks for the one to be designed.

Then, all the necessary biological parts are generated and joined

into gate-devices. Devices and pools are subsequently connected to

each other to finalize the circuit design. We assign default values

(see Text S1) to the kinetic parameters in order to reproduce

correct Boolean behaviors. Our tool creates MDL (Model

Definition Language [35]) files that fully specify single parts,

devices and the whole circuit. They serve as inputs for ProMoT,

where the circuit can be visualized and, if needed, parameter

values can be changed. Furthermore, ProMoT allows to export the

circuit code into formats suitable for simulations such as Matlab

(MathWorks, Nantucket/MA) and SBML [59].

Circuit analysis
Since the model of standard biological parts and pools is fully

based on mass-action kinetics (see [4] and Text S1), circuit time-

dependent behavior can be simulated both through deterministic

and stochastic solvers. For our deterministic simulations, we used

the (slightly modified) Matlab codes generated by ProMoT: they

are called by another Matlab script that permits to obtain all the

entries of a truth table within a single run. The Matlab files for test

case A (solution 1) are provided as Protocols S1, S2. We performed

our stochastic simulations with COPASI [60] that contains an

implementation of the Gibson-Bruck algorithm [61]. The SBML

Automatic Circuit Design

PLoS Computational Biology | www.ploscompbiol.org 11 February 2011 | Volume 7 | Issue 2 | e1001083

file (level 2, version 1) for test case A (solution 1) is provided as

Protocol S3.

Sensitivity analysis and kinetic parameter value optimization

were performed in Matlab. In particular, we calculated the

normalized sensitivity values of the circuit output (fluorescent

protein concentration) with respect to all the circuit kinetic

parameters at steady state conditions.

As for the parameter optimization, we used the ‘‘gaSB’’ function

(standard genetic algorithm with elitism [62]) and the ‘‘Manual

Tuning’’ option of the SBPD extension package for the SBtool-

box2 [63] for Matlab (version 7.8).

Supporting Information

Figure S1 Different three-layer implementations of an XOR

gate in electronics. (A) SOP representation: AND-OR and

NAND-NAND logic. (B) POS representation: OR-AND and

NOR-NOR logic. In both cases, one logic can be derived from the

other one through De Morgan’s laws: ab~azb and azb~a:b.

Found at: doi:10.1371/journal.pcbi.1001083.s001 (0.21 MB TIF)

Figure S2 Schemes of YES (A) and NOT (B,C) input gates both

in SOP and POS representation. Notice that the standard

biological part (promoter or RBS) where the gate output acts is

shown at the bottom-right corner of each gate.

Found at: doi:10.1371/journal.pcbi.1001083.s002 (0.05 MB PDF)

Protocol S1 Matlab file - test case A, solution 1.

Found at: doi:10.1371/journal.pcbi.1001083.s003 (0.18 MB

TXT)

Protocol S2 Matlab file - test case A, solution 1 simulation.

Found at: doi:10.1371/journal.pcbi.1001083.s004 (0.00 MB

TXT)

Protocol S3 SBML file - test case A, solution 1.

Found at: doi:10.1371/journal.pcbi.1001083.s005 (0.45 MB

XML)

Text S1 Automatic design of digital synthetic gene circuits.

Additional background, methods, and results.

Found at: doi:10.1371/journal.pcbi.1001083.s006 (2.77 MB PDF)

Acknowledgments

We thank the colleagues of the Computational Systems Biology Group -

ETH Zurich, Michael Rempel, and Henning Schmidt for helpful

suggestions and discussions.

Author Contributions

Conceived and designed the experiments: MAM JS. Performed the

experiments: MAM. Analyzed the data: MAM. Contributed reagents/

materials/analysis tools: MAM. Wrote the paper: MAM JS.

References

1. Endy D (2005) Foundations for engineering biology. Nature 438: 449–453.

2. Marchisio MA, Stelling J (2009) Computational design tools for synthetic
biology. Curr Opin Biotechnol 20: 479–485.

3. Goler JA (2004) BioJADE: A Design and Simulation Tool for Synthetic
Biological Systems. Technical report, MIT, Cambridge, MA.

4. Marchisio MA, Stelling J (2008) Computational design of synthetic gene circuits

with composable parts. Bioinformatics 24: 1903–1910.

5. Chandran D, Bergmann FT, Sauro HM (2009) Tinkercell: modular cad tool for

synthetic biology. J Biol Eng 3: 19.

6. François P, Hakim V (2004) Design of genetic networks with specified functions

by evolution in silico. Proc Natl Acad Sci U S A 101: 580–585.

7. Rodrigo G, Carrera J, Jaramillo A (2007) Genetdes: automatic design of
transcriptional networks. Bioinformatics 23: 1857–1858.

8. Dasika MS, Maranas CD (2008) Optcircuit: an optimization based method for
computational design of genetic circuits. BMC Syst Biol 2: 24.

9. Mangan S, Zaslaver A, Alon U (2003) The coherent feedforward loop serves as a

sign-sensitive delay element in transcription networks. J Mol Biol 334: 197–204.

10. Kalir S, Mangan S, Alon U (2005) A coherent feed-forward loop with a sum

input function prolongs flagella expression in escherichia coli. Mol Syst Biol 1:
2005.0006.

11. Mangan S, Itzkovitz S, Zaslaver A, Alon U (2006) The incoherent feed-forward

loop accelerates the response-time of the gal system of escherichia coli. J Mol
Biol 356: 1073–1081.

12. Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, et al. (2004) The
program of gene transcription for a single differentiating cell type during

sporulation in bacillus subtilis. PLoS Biol 2: e328.

13. Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Topological generalizations of
network motifs. Phys Rev E Stat Nonlin Soft Matter Phys 70: 031909.

14. Alon U (2006) An Introduction to Systems Biology. Boca Raton, FL, USA:
Chapman & Hall/CRC Press. 301 p.

15. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev
Genet 11: 367–379.

16. Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006) Environmentally controlled

invasion of cancer cells by engineered bacteria. J Mol Biol 355: 619–627.

17. Kahan M, Gil B, Adar R, Shapiro E (2008) Towards molecular computers that

operate in a biological environment. Phisica D 237: 1165–1172.

18. Weiss R, Basu S (2002) The device physics of cellular logic gates. In: Proceedings

of NSC-1: The First Workshop on Non-Silicon Computing; 3 February 2002;

Cambridge, MA, USA. pp 54–61.

19. Stojanovic MN, Stefanovic D (2003) A deoxyribozyme-based molecular

automaton. Nat Biotechnol 21: 1069–1074.

20. Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid

logic circuits. Science 314: 1585–1588.

21. Anderson JC, Voigt CA, Arkin AP (2007) Environmental signal integration by a
modular and gate. Mol Syst Biol 3: 133.

22. Frezza BM, Cockroft SL, Ghadiri MR (2007) Modular multi-level circuits from
immobilized dna-based logic gates. J Am Chem Soc 129: 14875–14879.

23. Rinaudo K, Bleris L, Maddamsetti R, Subramanian S, Weiss R, et al. (2007) A

universal rnai-based logic evaluator that operates in mammalian cells. Nat

Biotechnol 25: 795–801.

24. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, et al. (2005)

Transcriptional regulation by the numbers: applications. Curr Opin Genet

Dev 15: 125–135.

25. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, et al. (2005)

Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 15:

116–124.

26. Silva-Rocha R, de Lorenzo V (2008) Mining logic gates in prokaryotic

transcriptional regulation networks. FEBS Lett 582: 1237–1244.

27. Kramer BP, Fischer C, Fussenegger M (2004) Biologic gates enable logical

transcription control in mammalian cells. Biotechnol Bioeng 87: 478–484.

28. Desai TA, Rodionov DA, Gelfand MS, Alm EJ, Rao CV (2009) Engineering

transcription factors with novel dna-binding specificity using comparative

genomics. Nucleic Acids Res 37: 2493–2503.

29. Majdalani N, Vanderpool CK, Gottesman S (2005) Bacterial small rna

regulators. Crit Rev Biochem Mol Biol 40: 93–113.

30. Isaacs FJ, Dwyer DJ, Collins JJ (2006) RNA synthetic biology. Nat Biotechnol

24: 545–554.

31. Sudarsan N, Hammond MC, Block KF, Welz R, Barrick JE, et al. (2006)

Tandem riboswitch architectures exhibit complex gene control functions.

Science 314: 300–304.

32. Serganov A, Patel DJ (2007) Ribozymes, riboswitches and beyond: regulation of

gene expression without proteins. Nat Rev Genet 8: 776–790.

33. Win MN, Smolke CD (2008) Higher-order cellular information processing with

synthetic rna devices. Science 322: 456–460.

34. Marchisio MA, Stelling J (2009) Synthetic gene network computational design.

In: Proceedings of the IEEE International Symposium on Circuits and Systems,

ISCAS 2009; 24–27 May 2009; Taipei, Taiwan. pp 309–312.

35. Ginkel M, Kremling A, Nutsch T, Rehner R, Gilles ED (2003) Modular

modeling of cellular systems with ProMoT/Diva. Bioinformatics 19: 1169–1176.

36. Mirschel S, Steinmetz K, Rempel M, Ginkel M, Gilles ED (2009) Promot:

modular modeling for systems biology. Bioinformatics 25: 687–689.

37. Terzer M, Jovanovic M, Choutko A, Nikolayeva O, Korn A, et al. (2007) Design

of a biological half adder. IET Synthetic Biology 1: 53–58.

38. Benenson Y (2009) Rna-based computation in live cells. Curr Opin Biotechnol

20: 471–478.

39. Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, et al. (2004)

Engineered riboregulators enable post-transcriptional control of gene expression.

Nat Biotechnol 22: 841–847.

40. Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, et al. (2004) A

glycine-dependent riboswitch that uses cooperative binding to control gene

expression. Science 306: 275–279.

41. Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger

rnas directly to regulate bacterial gene expression. Nature 419: 952–956.

42. Breaker RR (2008) Complex riboswitches. Science 319: 1795–1797.

Automatic Circuit Design

PLoS Computational Biology | www.ploscompbiol.org 12 February 2011 | Volume 7 | Issue 2 | e1001083

43. Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators of

eukaryotic gene expression. Nat Biotechnol 23: 337–343.
44. Beisel CL, Smolke CD (2009) Design principles for riboswitch function. PLoS

Comput Biol 5: e1000363.

45. Karnaugh M (1953) The map method for synthesis of combinational logic
circuits. Transactions of the American Institute of Electrical Engineers 72(9):

593–599.
46. Kuphaldt TR (2007) Lessons In Electric Circuits (Volume IV-Digital). Available:

http://www.ibiblio.org/obp/electricCircuits.

47. Gordon A, Colman-Lerner A, Chin TE, Benjamin KR, Yu RC, et al. (2007)
Single-cell quantification of molecules and rates using open-source microscope-

based cytometry. Nat Methods 4: 175–181.
48. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional

regulators. Nature 403: 335–338.
49. Wickiser JK, Cheah MT, Breaker RR, Crothers DM (2005) The kinetics of

ligand binding by an adenine-sensing riboswitch. Biochemistry 44:

13404–13414.
50. Rieder R, Lang K, Graber D, Micura R (2007) Ligand-induced folding of the

adenosine deaminase a-riboswitch and implications on riboswitch translational
control. Chembiochem 8: 896–902.

51. Franch T, Petersen M, Wagner EG, Jacobsen JP, Gerdes K (1999) Antisense

RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a
general U-turn loop structure. J Mol Biol 294: 1115–1125.

52. Samoilov MS, Arkin AP (2006) Deviant effects in molecular reaction pathways.
Nat Biotechnol 24: 1235–1240.

53. Hachtel GD, Somenzi F (2006) Logic Synthesis and Verification Algorithms.
Secaucus, NJ, USA: Springer-Verlag New York, Inc. 600 p.

54. Ellis T, Wang X, Collins JJ (2009) Diversity-based, model-guided construction of

synthetic gene networks with predicted functions. Nat Biotechnol 27: 465–471.
55. Tian J, Ma K, Saaem I (2009) Advancing high-throughput gene synthesis

technology. Mol Biosyst 5: 714–722.

56. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling:
a one-pot dna shuffling method based on type iis restriction enzymes. PLoS One

4: e5553.
57. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, et al. (2009)

Enzymatic assembly of dna molecules up to several hundred kilobases. Nat

Methods 6: 343–345.
58. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome

binding sites to control protein expression. Nat Biotechnol 27: 946–950.
59. Hucka M, Finney A, Sauro H, Bolouri H, Doyle J, et al. (2003) The systems

biology markup language (SBML): a medium for representation and exchange of
biochemical network models. Bioinformatics 19: 524–531.

60. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, et al. (2006) COPASI–a COmplex

PAthway SImulator. Bioinformatics 22: 3067–3074.
61. Gibson MA, Bruck J (1999) Efficient Exact Stochastic Simulation of Chemical

Systems with Many Species and Many Channels. Caltech Parallel and
Distributed Group technical report 026, Caltech, Pasadena, CA, USA.

62. Streichert F, Ulmer H (2005) Javaeva: A java based framework for evolutionary

algorithms. Technical Report WSI-2005-06, Wilhelm-Schickard-Institut für
Informatik (WSI), Centre for Bioinformatics Tübingen (ZBIT), Eberhard-Karls-

University Tübingen, Germany.
63. Schmidt H, Jirstrand M (2006) Systems biology toolbox for matlab: a

computational platform for research in systems biology. Bioinformatics 22:
514–515.

Automatic Circuit Design

PLoS Computational Biology | www.ploscompbiol.org 13 February 2011 | Volume 7 | Issue 2 | e1001083

