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Abstract: Aside from primary pre-
vention, early detection remains
the most effective way to decrease
mortality associated with the ma-
jority of solid cancers. Previous
cancer screening models are largely
based on classification of at-risk
populations into three conceptual-
ly defined groups (normal, cancer
without symptoms, and cancer
with symptoms). Unfortunately,
this approach has achieved limited
successes in reducing cancer mor-
tality. With advances in molecular
biology and genomic technologies,
many candidate somatic genetic
and epigenetic ‘‘biomarkers’’ have
been identified as potential predic-
tors of cancer risk. However, none
have yet been validated as robust
predictors of progression to cancer
or shown to reduce cancer mortal-
ity. In this Perspective, we first
define the necessary and sufficient
conditions for precise prediction of
future cancer development and
early cancer detection within a
simple physical model framework.
We then evaluate cancer risk pre-
diction and early detection from a
dynamic clonal evolution point of
view, examining the implications of
dynamic clonal evolution of bio-
markers and the application of
clonal evolution for cancer risk
management in clinical practice.
Finally, we propose a framework
to guide future collaborative re-
search between mathematical
modelers and biomarker research-
ers to design studies to investigate
and model dynamic clonal evolu-
tion. This approach will allow opti-
mization of available resources for
cancer control and intervention
timing based on molecular bio-
markers in predicting cancer
among various risk subsets that
dynamically evolve over time.

Introduction

Detection of cancer at an early stage

could significantly reduce cancer mortality

and the overall burden of cancer [1–4].

The most common cancer risk model is

based on the classification of the popula-

tion into three groups: (1) normal without

cancer, (2) asymptomatic cancer (detect-

able and potentially curable), and (3)

symptomatic cancer, [5,6]. This model

has provided a foundation for clinical

approaches to cancer screening and early

detection that have largely been based on

tissue morphological features observed

microscopically or via imaging. Recent

advances in cancer biology and molecular

technology now provide new opportunities

to further refine cancer risk models for use

in the clinic.

Inherited susceptibility and environ-

mental exposures, including infectious

agents, can modulate cancer risk in an

individual over time, but dynamic inter-

actions between these factors and evolving

somatic genetic abnormalities that lead to

cancer are poorly understood. With prog-

ress in molecular biology and genetics, it is

widely believed that a panel of biomarkers

assessing DNA, RNA, proteins, and/or

metabolic processes can eliminate the

shortcomings of morphologic diagnosis

for early detection and cancer risk predic-

tion. In fact, advances in technology have

identified many molecular abnormalities

that develop during neoplastic progres-

sion, some of which are highly associated

with cancer [7–10]. Currently, there is a

quest to find the perfect cancer biomark-

er(s) that could be used to separate

‘‘cancer’’ from ‘‘non-cancer’’. Yet, thus

far, no molecular biomarkers that signifi-

cantly reduce cancer mortality with satis-

factory sensitivity and specificity have

become widely used in the clinic for early

diagnosis or cancer risk prediction in the

general population, although some genetic

tests have been adopted for individuals

with inherited susceptibilities to cancer

[11]. The limited success in identifying

robust biomarkers has been attributed to

inadequate study designs or complexity of

biospecimens [12,13], biased biospecimens

[14], and technologic [13,15] and compu-

tational limitations [16–18]. Although all

of these reasons contribute to the limited

success of cancer biomarker development

to some degree, a fundamental challenge

to be considered for biomarker develop-

ment is the dynamic, stochastic nature of

clonal evolution.

In this paper, we first define cancer

‘‘risk prediction’’ and ‘‘early cancer detec-

tion’’ using two very simple physical

systems. We then introduce the dynamic,

clonal evolutionary concept as it relates to

biomarkers in cancer development and

review the challenges associated with the
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use of molecular markers in a clinical

model. Finally, we present a general

theoretical framework for using imperfect

biomarkers for cancer risk stratification in

the clinic, using a dynamic systems

approach. The goal of this Perspective is

to inspire an integrated approach to

theoretical modeling and biomarker re-

search in cancer risk management by

incorporating a clonal dynamic point of

view.

Event Detection and Prediction
in Deterministic and Stochastic
Systems

In order to better illustrate the problems

associated with event prediction and early

detection, we will introduce two simple

physical systems as shown in Figures 1 and

2. For the purposes of this illustration, we

are interested in determining (1) when the

light bulb will turn on (event prediction) or

(2) whether the light bulb is already on

(event detection).

Event Prediction and Event
Detection in a Deterministic System

We first investigate the question of event

prediction in the deterministic system (for

any given time point or initial state, the

system will always produce the same

outcome) as illustrated in Figure 1. In this

system, all of the switches (S1, S2, S3, and

S39) have been precisely identified and

characterized and the timers in the system

(A, B, and U) are 100% accurate and

clearly observable. In this deterministic

model, the status of the light bulb can

always be predicted perfectly by simply

observing timers A, B, and U (see Figure 1

legend for details). Therefore, the neces-

sary and sufficient conditions for 100%

successful event prediction in this system

are (1) all of the switches in the system are

identified and characterized, and (2) the

timers reflect the exact time (sufficient

conditions) that has elapsed since any two

switches have connected and are observ-

able.

The question of whether the event has

already occurred (light bulb is on) and the

time elapsed after occurrence (event de-

tection) can be answered in Figure 1 by

simply observing cumulative timer C.

Alternatively, it could be determined by

observing the status of switch(es) S3, (S39).

Thus, the necessary and sufficient condi-

tions for event detection can be deter-

mined by simply observing the status of

the final switches or cumulative timer C.

Event Prediction and Event
Detection in a Stochastic System

A stochastic system that may not always

result in the same outcome for any given

time point or initial state is shown in

Figure 2. In this system, one cannot make

a prediction with 100% accuracy as to

when the light bulb will turn on due to the

stochastic nature of switches S2 and S3 (or

S39) and timers A, B, and U. In order to

make a reasonably good prediction as to

when the light bulb will turn on, one will

need to periodically recheck the status of

the switches.

The ‘‘switches’’ in Figures 1 and 2 may

be viewed as similar to the abnormalities

(e.g., DNA mutations/LOH/chromosome

copy gain/loss) that develop during neo-

plastic progression, and the timers as the

time that has elapsed between the genomic

alterations. The event of turning on the

light bulb may be intuitively analogous to

the development of cancer. However,

neither of these models addresses the

complexity of neoplastic progression.

Biological Complexity of
Molecular Markers for Early
Detection of Cancer and Cancer
Risk Prediction

Environmental factors, inherited genetic

susceptibility, and dynamic gene–gene and

gene–environmental interactions can gener-

ate new somatic genetic or epigenetic

alterations in human cells. Some altered

cells continue to divide with a low rate of

genetic or epigenetic alterations, largely

maintaining genomic integrity, whereas

others continue to develop new alterations,

generating new variants on which selection

can act. Several investigators have used

genetic and genomic data to develop models

of neoplastic progression. Nowell proposed

that a single cell gains a selective genetic

advantage over neighboring normal cells,

rendering it ‘‘neoplastic’’ [19]. Genomic

instability and stepwise selection of genetic

variants lead to clonal expansions of viable

Figure 1. A simple deterministic physical system for illustrating event prediction and detection. In this system, an on-off switch, S1, is
connected to a power supply and timer A. Timer A and B or U are each connected to a switch (S2, S3, or S39) that will automatically connect the wire
when the timers count down to 0. Switch S3 or S39 is connected to cumulative timer C, which counts cumulative time since S3 or S39 is switched on
and which is connected to a light bulb that is situated in a metal box (whether the bulb is on or off is not observable directly). Timers A, B (and U), and
C are set to their initial position at 40, 60 (and 80), and 0 seconds, respectively. Timer A starts to count down after S1 is set to the ‘‘on’’ position by
turning power on. Timer A will count down 40 seconds, which will trigger S2 to switch to on position, which then triggers timer B and U to start
counting down (pathway U is used to represent a possible alternative pathway). After timer B runs 60 seconds or U runs 80 seconds, it will set S3 (or
S39) to be connected, respectively, which will trigger timer C to count down and at the same time the light bulb will turn on. If one path (either B/S3
or U/S39) is blocked, then the other one could still function to turn the light bulb on. Event prediction can be made with 100% certainty by observing
timers A, U, or B before the light bulb turns on and event detection can be determined with equal accuracy by observing cumulative timer C after the
light bulb is turned on.
doi:10.1371/journal.pcbi.1001087.g001
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lineages of daughter cells in somatic tissue

and underlies solid tumor progression while

most variant cells or clones do not evolve to

cancer. Later, Fearon and Vogelstein [20]

first proposed a sequence of key genetic

events during the evolution of a normal

colon cell to colon cancer. Barrett et al. [21]

reported the evolution of neoplastic lineages

in Barrett’s esophagus using spatial and

temporal data in individual patients, includ-

ing ordering of early key genetic events, as

well as tracing genetic lineages of viable

clones that produced a cancer and clones

that were not selected for progression to

cancer. Based on molecular data and

population cancer incidence data, a number

of stochastic and mathematical models have

been proposed to evaluate mechanisms of

initiation and development of cancer [22–

26]. In addition, a stochastic system dynam-

ic modeling approach was utilized to study

the mechanisms of cancer genesis and

progression by using combined data from

various molecular biology studies [27]. The

stochastic properties of selected and nonse-

lected chromosomal abnormalities in hyper-

dynamic evolution was further illustrated by

a cell population heterogeneity study in

which the highest level of non-clonal

chromosome aberrations was closely cou-

pled with the strongest tumorigenicity [28].

Many studies have shown that ad-

vanced epithelial malignancies have typi-

cally accumulated large numbers of geno-

mic abnormalities not found in normal

cells, including whole or segmental chro-

mosome copy number amplifications,

deletions, loss of heterozygosity, transloca-

tions, and point mutations [29–35]. Jones

et al. [10] used spatial data from individual

patients with colorectal cancers and re-

ported that times between benign, inva-

sive, and metastatic colon tumors can be

estimated by analysis of the mutations they

have in common and knowledge of the

time it takes for cell division. Although

these biological and genetic models pro-

vide significant insights for understanding

evolution of a normal cell to cancer, all of

them have stochastic characteristics (sim-

ilar to Figure 2), and none of them meet

the conditions required for perfect cancer

risk prediction. This is because the exact

steps and precise time elapsed between

each step cannot be predicted with 100%

accuracy in contrast to Figure 1. As a

consequence, in clinical practice we will

likely have imperfect biomarkers to iden-

tify high risk persons for targeted preven-

tion strategies (cancer risk prediction) and

those with early stage curable cancer for

treatment (combination of cancer risk

prediction and early detection). We next

propose a schematic model that could be

used for modeling cancer risk manage-

ment with consideration of stochastic

characteristics in the evolution of cancer

(Figure 3) and more accurate risk stratifi-

cation using current molecular measure-

ments, as illustrated in Figure 4.

Cancer Risk Prediction, Early
Detection and Management: A
Dynamic Systems Point of View

Modeling the System
Previous models [5,6,36,37] developed

for cancer screening and early detection

have been based on the definition of three

conceptual stages: normal, cancer without

symptoms, and cancer with symptoms.

The analysis of screening for early detec-

tion of cancer was carried out using

assumptions about the statistical distribu-

tions of transition from non-cancer to

cancer and sojourn time. The approach

of using three conceptual stages for

classification of populations for modeling

screening is reasonable. However, these

models can not be easily related to, or

characterized by, the complexity of clonal

evolution as reported by recent genomic

studies using high throughput sequencing

or high density arrays.

One obvious approach is to use molec-

ular or genomic biomarkers to stratify

populations into various risk groups where

each group has its own cancer risk

distribution rather than treating overall

cancer risk as a single distribution pattern

in a population. However, molecular

biomarkers are likely to be imperfect and

have stochastic characteristics (Figure 3),

and thus far, none of them meet the

conditions required for perfect cancer risk

prediction. In practice, one will be using

imperfect biomarkers for both risk predic-

tion and early detection. As shown in

Figure 4, biomarkers could be used to

stratify populations into different risk

groups [38–43]. Each risk group could

then be individually managed, with the

goal of reducing the overall cancer risk

over time, given a set of fixed resources or

time constraints.

Our framework for cancer risk manage-

ment considers the situation in which

members in lower risk groups could

progress to higher risk groups over time

or, alternatively, members in higher risk

groups could regress to a lower risk status.

Such dynamic risk status will need to be

periodically re-evaluated over time using

biomarkers. Patients with cancer will be

treated immediately, while a high risk

group could be provided with an inter-

Figure 2. A simple stochastic physical system for illustrating event prediction and detection. Figure 2 is similar to Figure 1 except that
switches S2 and S3 (or S39) have probabilities of P’1 and P’2 (P’3) being switched to dead ends that will never lead to a pathway that causes the light
bulb to turn on (pathway U is used to represent a possible alternative pathway). The timers (A, B, and U) are also of random nature. In this system, due
to random nature of S2 and S3 (or S39) and timers, one will never be able to determine with precise accuracy when the light bulb will turn on, or
whether it will turn on at all.
doi:10.1371/journal.pcbi.1001087.g002
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Figure 3. Neoplastic evolution, cancer risk prediction, and early cancer detection. (A), (B), and (C) represent evolutionary stages in dynamic
clonal progression to cancer. (A) Early stages of clonal evolution have fewer selected genomic alterations, and most individuals do not progress to
cancer. (B) A minority of individuals will evolve additional genomic alterations, but the majority of these will not progress to cancer. (C) A small subset
of patients will accelerate development of genomic alterations leading to selection of increasing abnormal clones and progression to cancer. These
events are stochastic and there are no biomarkers that perfectly distinguish (A), (B), and (C). In this evolutionary process, most clones may evolve in
directions that do not lead to cancer (dark gray circles), whereas some others retain great potential for future progression to cancer or development
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vention to prevent cancer, such as chemo-

prevention, or monitored more closely for

early detection. The lower risk groups

could be subjected to much less intensive

monitoring. Therefore, early detection

and cancer risk management would com-

prehensively consider a dynamic system

over a period of time that includes (1) the

absolute risk for each risk group (cancer

incidence rates), which is characterized by

molecular biomarkers and estimated

through population studies, (2) a pre-

specified level of late stage cancer reduc-

tion, (3) resources available for cancer risk

reduction or management, (4) the quality

of an individual’s life (effects of false

positive or false negative diagnosis on

quality of life), and (5) competing mortality

due to other causes as shown in Figure 4.

There are many potential mathematical

approaches to quantify or model such a

dynamic system (Figure 4) for cancer risk

management. In this Perspective, we

suggest one possible method using dynam-

ic system optimization to deal with clonal

evolution for cancer risk management

using biomarkers (Text S1).

Discussion and Concluding
Remarks

The development of cancer is a com-

plex process characterized by stochastic

accumulation of mutations and dynamic

evolution of clones [10,31,44–46]. To

date, most biomarkers are not directly

related to evolutionary dynamics, but

instead focus on specific pathways. How-

ever, extrapolating information from path-

ways to evolutionary dynamics remains a

challenge [47]. Recently, genome-based

cell population heterogeneity rather than

commonly shared pathways have been

linked to tumorigenicity [28]. Whole

genome instability measurements are also

closely linked to stages of cancer progres-

sion [29]. This body of evidence indicates

that useful biomarkers can be developed

directly using longitudinal measurements

of genomic instability.

Development of biomarkers for cancer

risk management should consider these

stochastic and dynamic properties over

time in neoplastic evolution. Using bio-

markers for cancer risk management

involves multi-level systems from cells to

individuals to populations. Better ways of

modeling multi-level systems and compre-

hending innate uncertainties in these

systems are areas in which great benefits

could be achieved [48]. We propose a

dynamic system optimization approach to

deal with the practical limitations of earlier

three-stage models (Figure 4 and Text S1).

The goal of this Perspective is to link the

dynamic, stochastic elements of clonal

evolution in neoplastic tissues in patients

followed over time. This would be best

accomplished by collaborations between

mathematical modelers and laboratory

researchers in longitudinal experimental

design, modeling, and parameter estima-

Figure 4. Cancer risk stratification and dynamic risk management using molecular biomarkers. Clinical patients or the general
population could be stratified objectively using molecular biomarkers. A set of robust and validated biomarkers is expected to stratify the majority of
patients into either high or low risk groups, and assign fewer patients to the intermediate risk group. The cancer risks of each group could be
managed with consideration of individual risk, risk-benefit assessment, quality of life available resources, and dynamic progression characteristics of
each group to achieve overall optimized results.
doi:10.1371/journal.pcbi.1001087.g004

of resistance to interventions to prevent or treat cancer (white circles), depending on selective pressures. Only a minority of the evolving clones will
eventually acquire the capacity to become cancerous (red circles), and progression to cancer can occur by multiple possible pathways, also illustrated
in the figure. The initial cancer cells may continue to divide locally and produce future metastases (purple circles in red block). The gray bar
surrounded by dashed lines at the bottom of the figure illustrates the use of biomarkers in a clonal evolutionary system. Biomarkers with increasing
specificity and sensitivity would shrink the gray block from either side toward the small center red bar, at the conceptual transition between non-
cancer and cancer. A biomarker with perfect sensitivity and specificity would exactly correspond to the position of the red bar with perfect separation
of cancer and non-cancer. Thus far, no biomarkers satisfy the necessary and sufficient conditions for precise cancer risk prediction or early cancer
detection (as in Figure 1).
doi:10.1371/journal.pcbi.1001087.g003
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tion oriented to practical application for

cancer risk management.

There are fundamental differences be-

tween our concept and the commonly

used three-stage (normal, cancer without

symptoms, and cancer with symptoms)

model for cancer screening: (1) we evalu-

ate cancer risk prediction and early

detection from a dynamic clonal evolu-

tionary point of view and its implication

for cancer risk management in clinical

practice; (2) based on stochastic clonal

evolution, we propose a framework to

guide future biomarker research to more

accurately stratify patients into various risk

groups, where each risk group has a

different cancer risk distribution, thereby

permitting an adaptive cancer risk strate-

gy; and (3) we propose that mathematical

models be developed for cancer risk

management that can be expanded for

modeling specific cancer or management

aspects, allowing optimization of available

resources and intervention timing based

on particular biomarker sensitivity and

specificity in predicting cancer among

various risk groups that dynamically

evolve over time (Text S1). In addition,

points (2) and (3) above take into account

clonal dynamics in cancer development,

including both progression and regression

depending on dynamic selective condi-

tions. Models using biomarkers for cancer

risk management should allow optimiza-

tion of various specific and objective

functions dynamically, which is different

from the traditional medical decision tree

approach. Note that we addressed intrinsic

stochastic properties of clonal dynamics in

cancer development, as distinct from issues

such as noise due to measurement error in

biomarker studies.

In summary, effective prevention and

early diagnosis strategies are critical to

reducing the cancer burden. We analyzed

the biological basis for using biomarkers

for cancer risk prediction and early

detection. This analysis shows that if and

only if biological pathways for cancer

development are fully determined and

quantified as in Figure 1, can perfect

accuracy for cancer risk prediction and

early detection be achieved. With the

advances of molecular technology and

knowledge, biomarkers could reach a high

level of accuracy in cancer risk prediction

and early detection and could be used to

guide clinical monitoring and interven-

tions but likely will never be perfectly

accurate. We propose that evaluation of

biomarker effectiveness for cancer risk

prediction and early detection be conduct-

ed with consideration of cancer evolution-

ary dynamics and dynamic optimization

modeling for risk management.

Supporting Information

Text S1 A dynamic optimization ap-

proach for cancer risk management and

early detection. In S1, we present a

framework of mathematical modeling for

cancer risk management using biomarkers

with consideration of stochastic clonal

evolution in neoplastic progression.

Found at: doi:10.1371/journal.pcbi.

1001087.s001 (0.03 MB DOC)
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