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Abstract

The multidimensional computations performed by many biological systems are often characterized with limited information
about the correlations between inputs and outputs. Given this limitation, our approach is to construct the maximum noise
entropy response function of the system, leading to a closed-form and minimally biased model consistent with a given set
of constraints on the input/output moments; the result is equivalent to conditional random field models from machine
learning. For systems with binary outputs, such as neurons encoding sensory stimuli, the maximum noise entropy models
are logistic functions whose arguments depend on the constraints. A constraint on the average output turns the binary
maximum noise entropy models into minimum mutual information models, allowing for the calculation of the information
content of the constraints and an information theoretic characterization of the system’s computations. We use this
approach to analyze the nonlinear input/output functions in macaque retina and thalamus; although these systems have
been previously shown to be responsive to two input dimensions, the functional form of the response function in this
reduced space had not been unambiguously identified. A second order model based on the logistic function is found to be
both necessary and sufficient to accurately describe the neural responses to naturalistic stimuli, accounting for an average
of 93% of the mutual information with a small number of parameters. Thus, despite the fact that the stimulus is highly non-
Gaussian, the vast majority of the information in the neural responses is related to first and second order correlations. Our
results suggest a principled and unbiased way to model multidimensional computations and determine the statistics of the
inputs that are being encoded in the outputs.
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Introduction

There is an emerging view that the primary function of many

biological systems, from the molecular level to ecosystems, is to

process information [1–4]. The nature of the computations these

systems perform can be quite complex [5], often due to large

numbers of components interacting over wide spatial and

temporal scales, and to the amount of data necessary to fully

characterize those interactions. Constructing a model of the system

using limited knowledge of the correlations between inputs and

outputs can impose implicit assumptions and biases leading to a

mischaracterization of the computations. To minimize this type of

bias, we maximize the noise entropy of the system subject to

constraints on the input/output moments, resulting in the response

function that agrees with our limited knowledge and is maximally

uncommitted toward everything else. An equivalent approach in

machine learning is known as conditional random fields [6]. We

apply this idea to study neural coding, showing that logistic

functions not only maximize the noise entropy for binary outputs,

but are also special closed-form cases of the minimum mutual

information (MinMI) solutions [7] when the average firing rate of

a neuron is fixed. Recently, MinMI was used to assess the

information content in constraints on the interactions between

neurons in a network [8]. We use this idea to study single neuron

coding to discover what statistics of the inputs are encoded in the

outputs. In macaque retina and lateral geniculate nucleus, we find

that the single neuron responses to naturalistic stimuli are well

described with only first and second order moments constrained.

Thus, the vast majority of the information encoded in the spiking

of these cells is related only to the first and second order statistics of

the inputs.

To begin, consider a system which at each moment in time

receives a D-dimensional input x tð Þ~ x1 tð Þ,:::,xD tð Þð Þ from a

known distribution P xð Þ, such as a neuron receiving a sensory

stimulus or post-synaptic potentials. The system then performs

some computation to determine the output y tð Þ according to its

response function P yDxð Þ. The complete input/output correlation

structure, i.e. all moments involving y and x, can be calculated

from this function through the joint distribution

P y,xð Þ~P yDxð ÞP xð Þ, e.g. SyxiT~
Ð

P y,xð Þyxidydx. Alternative-

ly, the full list of such moments contains the same information

about the computation as the response function itself, although

such a list is infinite and experimentally impossible to obtain.

However, a partial list is usually obtainable, and as a first step we

can force the input/output correlations from the model to match

those which are known from the data. The problem is then

choosing from the infinite number of models that agree with those

constraints. Following the argument of Jaynes [9,10], we seek the
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model which avails the most uncertainty about how the system will

respond.

Information about the identity of the input can be obtained by

observing the output, or vice versa, quantified by the mutual

information I y; xð Þ~Hresp{Hnoise [11,12]. The first term is the

response entropy, Hresp~{
Ð

dyP yð ÞlogP yð Þ, which captures the

overall uncertainty in the output. The second term is the so-called

noise entropy [13],

Hnoise~{

ð
dxP xð Þ

ð
dyP yDxð ÞlnP yDxð Þ, ð1Þ

representing the uncertainty in y that remains if x is known. If the

inputs completely determine the outputs, there is no noise and the

mutual information reaches its highest possible value, I ~ Hresp.

In many realistic situations however, repeated presentations of the

same inputs produce variable outputs producing a nonzero noise

entropy [14] and lowering the information transmitted.

By maximizing the noise entropy, the model is forced to be

consistent with the known stimulus/response relationships but is as

uncertain as possible with respect to everything else. We show that

this maximum noise entropy (MNE) response function for binary

output systems with fixed average outputs is also a minimally

informative one. This approach is a special closed-form case of the

mutual information minimization technique [8], which has been

used to address the information content of constraints on the

interactions between neurons. Here we use the minimization of

the mutual information to characterize the computations of single

neurons and discover what about the stimulus is being encoded in

their spiking behavior.

Results

Maximum noise entropy models
The starting point for constructing any maximum noise entropy

model is the specification of a set of constraints SAj y,xð ÞT
� �

,

where S:::T indicates an average over the joint distribution P y,xð Þ.
These constraints reflect what is known about the system from

experimental measurements, or a hypothesis about what is

relevant for the information processing of the system. For neural

coding, the constraints could be quantities such as the spike-

triggered average [15–18] or covariance [19–22], equivalent to

SyxiTf g and SyxixjT
� �

, respectively. With each additional

constraint, our knowledge of the true input/output relationship

increases and the correlation structure of the model becomes more

similar to that of the actual system.

Given the constraints, the general MNE response function is

given by (see Methods)

P yDxð Þ~ 1

Z xð Þ exp
X

j

ljAj y,xð Þ
 !

, ð2Þ

where the x-dependent partition function Z xð Þ~
Ð

dyexpP
j ljAj y,xð Þ

� �
ensures that the MNE response function is

consistent with normalization, i.e.
Ð

dyP yDxð Þ~1. The MNE

response function in Eq. (2) has the form of a Boltzmann

distribution [23] with a Lagrange multiplier lj for each constraint.

The values of these parameters are found by matching the

experimentally observed averages with the analytical averages

obtained by from derivatives of log Zð Þ [23].

Binary responses and minimum mutual information
Many systems in biological settings produce binary outputs. For

instance, the neural state y can be thought of as binary, with y~0
for the silent state and y~1 for the ‘‘spiking’’ state, during which

an action potential is fired [13]. The inputs themselves could be a

sensory stimulus or all of the synaptic activity impinging upon a

neuron, both of which are typically high-dimensional [24].

Another example is gene regulation [25], where the inputs could

be the concentrations of transcription factors and the binary

output represents an on/off transcription state of the gene. For

these systems, the constraints of interest are proportional to y. This

is because any moments independent of y will cancel due to the

partition function and any moments with higher powers are

redundant, e.g. y~y2 if y~0 or 1. In this case, the set of

constraints may be written more specifically as yaj xð Þ
� �

and the

MNE response function becomes the well-known logistic function

P y~1Dxð Þ~ 1

1ze{f xð Þ , f xð Þ~
X

j

ljaj xð Þ, ð3Þ

with P y~0Dxð Þ~1{P y~1Dxð Þ. Thus for all binary MNE

models, the effect of the constraints is to perform a nonlinear

transformation of the input variables, f xð Þ, to a space where the

spike probability is given by the logistic function (inset, Fig. 1).

For neural coding, one of the most fundamental and easily

measured quantities is the total number of spikes produced by a

neuron over the course of an experiment, equivalent to the mean

firing rate. By constraining this quantity, or more specifically its

normalized version P y~1ð Þ~SyT, the MNE model is turned into

a minimum information model. This holds because the response

entropy Hresp is completely determined by the distribution P yð Þ,
which is in turn constrained by P y~1ð Þ if the response is binary.

With the response entropy constrained to match the experimen-

tally observed system, maximizing the noise entropy is equivalent

to minimizing information. Therefore, as was proposed in [7], any

model that satisfies a given set of constraints will convey the

information that is due only to those constraints. With each

additional constraint our knowledge of the correlation structure

increases along with the minimum possible information given that

knowledge, which approaches the true value as illustrated

schematically in Fig. 1.

Author Summary

Biological systems across many scales, from molecules to
ecosystems, can all be considered information processors,
detecting important events in their environment and
transforming them into actions. Detecting events of
interest in the presence of noise and other overlapping
events often necessitates the use of nonlinear transforma-
tions of inputs. The nonlinear nature of the relationships
between inputs and outputs makes it difficult to
characterize them experimentally given the limitations
imposed by data collection. Here we discuss how minimal
models of the nonlinear input/output relationships of
information processing systems can be constructed by
maximizing a quantity called the noise entropy. The
proposed approach can be used to ‘‘focus’’ the available
data by determining which input/output correlations are
important and creating the least-biased model consistent
with those correlations. We hope that this method will aid
the exploration of the computations carried out by
complex biological systems and expand our understand-
ing of basic phenomena in the biological world.

Maximum Noise Entropy
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The simplest choice is a first order model (MNE1) where the

spikes are correlated with each input dimension separately. This

model requires knowledge of the set of moments SyxiTf g, the

spike-triggered average stimulus. For MNE1, the transformation

on the inputs is linear, f xð Þ~l0z
PD

j~1 ljxj , where the constant

l0 is the Lagrange multiplier for the spike probability constraint.

With knowledge of only first order correlations, we see that the

model neuron is effectively one-dimensional, choosing a single

dimension in the D-dimensional input space l~ l1,:::,lDð Þ and

disregarding all information about any other directions.

With higher order constraints, the transformation is nonlinear

and the model neuron is truly multidimensional. For instance, the

next level of complexity is a second order model (MNE2), in which

spikes may also interact with pairs of inputs. This model is

obtained by constraining SyxixjT
� �

, equivalent to knowing the

spike-triggered covariance of the stimulus, resulting in the input

transformation f xð Þ~l0z
P

j ljxjz
P

i,j lijxixj . Any other

MNE model can be constructed in the same fashion by choosing

a different set of constraints, reflecting different amounts of

knowledge.

The mutual information of the MNE model IMNE is the

information content of the constraints. The ratio of IMNE to the

empirical estimate Iobs of the true mutual information of the

system is the percent of the information captured by the

constraints. This quantity is always less than or equal to one,

with equality being reached if and only if all of the relevant

moments have been constrained. This suggests a procedure to

identify the relevant constraints, described in Fig. 2A. First, a

hypothesis is made about which constraints are important. Then

the corresponding MNE model is constructed and the information

calculated. If the information captured is too small, the constraints

are modified until a sufficiently large percentage is reached. Any

constraints beyond that are relatively unimportant for describing

the computation of the neuron.

As an illustrative example of the MNE method, consider a

binary neuron which itself receives binary inputs (i.e. a logic gate).

If the neuron in question receives n binary inputs, we are

guaranteed to capture 100% of the information with nth-order

statistics because all moments involving powers greater than one of

either y or any xi are redundant. However, different coding

schemes may encode different statistics of the inputs. For instance,

if the neuron receives only two inputs (Fig. 2B), the well-known

AND and OR logic gate behaviors are completely described with

only first order moments [26]. Correspondingly, the first order

model MNE1 captures 100% of the information. Such a neuron

can be said to encode only first order statistics of the inputs, and

the spike-triggered average stimulus contains all of the information

necessary to fully understand the computation. On the other hand,

the XOR gate (Fig. 2C, left) requires second order interactions.

This is reflected by MNE1 and MNE2 accounting for 0% and

100% of the information, respectively. More complicated coding

schemes may involve both first and second order interactions, such

as for the gate shown in the right panel of Fig. 2C. Here, MNE1

and MNE2 account for 10% and 100% of the information,

respectively, and correctly quantify the degree to which each order

of interaction is relevant to this neuron.

Similar situations show up for neurons that receive three binary

inputs. The top panel of Fig. 2D shows an example of a neuron

which only requires second order interactions. The parameters of

MNE3 are exactly the same as MNE2, with the third order

coefficient l123~0. The bottom panel shows an example of a

situation in which third order interactions are necessary.

Correspondingly, MNE3 increases the information explained

over MNE2 from 71% to 100%. These simulations demonstrate

that despite the different coding schemes used by neurons, the

information content of each order of interaction can be correctly

identified using logistic MNE models.

Neural coding of naturalistic inputs
In their natural environment, neurons commonly encode high-

dimensional analog inputs, such as a visual or auditory stimulus as

a function of time. It is important to note that the non-binary

nature of the inputs means that the ability to capture 100% of the

information between y and the n inputs with nth-order statistics is

not guaranteed anymore. Often, the dimensionality of the inputs

may be reduced because the neurons are driven by a smaller

subspace of relevant dimensions (e.g. [27–33]). However, even in

those cases we are often forced to use qualitative terms such as

‘ring’ or ‘crescent’ to describe the experimentally observed

response functions. With no principled way of fitting empirical

response functions, the details of the interactions between neural

responses and reduced inputs have been difficult to quantify.

The MNE method provides a quantitative framework for

characterizing neural response functions, which we now apply to 9

retinal ganglion cells (RGCs) and 9 cells in the lateral geniculate

nucleus (LGN) of macaque monkeys, recorded in vivo (see

Methods). The visual input was a time dependent sequence of

luminance values synthesized to mimic the non-Gaussian statistics

of light intensity fluctuations in the natural visual environment

[34–36].

A 1s segment of the normalized light intensity s tð Þ is shown in

Fig. 3A. A previous study has shown that the responses of these

neurons are correlated with the stimulus over an approximately

200 ms window preceding the response. When binned at 4 ms

resolution, which ensures binary responses, the input is a vector in

a 50 dimensional space. However, spikes are well predicted by

Figure 1. The maximum noise entropy (MNE) limit. This cartoon
illustrates the consequences of a minimally informative, MNE response
function. As knowledge of the correlation structure increases (which
amounts to constraining more moments of the conditional output
distribution), the least possible amount of information consistent with
that knowledge increases along the solid line. Below the MNE limit is a
forbidden region where a response function cannot be consistent with
the given set of constraints. All models are bounded from above by the
response entropy, corresponding to a noiseless system. Any response
function above the MNE limit thus involves unknown and uncon-
strained moments which carry information. The information associated
with the MNE response function increases toward the true value as the
knowledge of the distribution tends to infinity. For a binary system, the
response function is a logistic function (inset) in the transformed input
space defined by f xð Þ, cf. Eq. (3).
doi:10.1371/journal.pcbi.1001111.g001

Maximum Noise Entropy
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using a 2 dimensional subspace [29] identified through the

Maximally Informative Dimensions (MID) technique [37].

These two relevant dimensions, shown for a RGC in Fig. 3B,

form a two dimensional receptive field which preserves the most

information about the spikes in going from 50 to 2 dimensions.

The two linear filters are convolved with the stimulus to produce

reduced inputs x1 tð Þ and x2 tð Þ, shown in Fig. 3A. The resulting

input probability distribution in the reduced space is shown in

Fig. 3C. The measured responses of the neuron then form a two-

dimensional response function shown in Fig. 3D, where the color

scale indicates the probability of a spike as a function of the two

relevant input components.

To gain insight into the nature of this neuron’s computational

function and find the important interactions, we apply the MNE

method starting with the first order MNE model shown in Fig. 3E.

The first order model produces a response function which bears

little resemblance to the empirical one and accounts for only 76%
of the information. The next step is a second order MNE model

Figure 2. Using the MNE method for response functions to binary inputs. A) Flowchart representing how to determine the relevant
constraints. The hypothesis that a minimal set of constraints is sufficient is tested by constructing the corresponding MNE model and calculating the
information captured by the model. If the percent information is insufficient, the set of constraints is augmented. B) Response functions and MNE
models for two binary inputs; the true system is shown in black, and first and second order MNE models (MNE1 and MNE2) in yellow and orange,
respectively. The AND and OR gates use only first order interactions; both MNE models explain 100% of the information. C) The XOR gate (left) uses
only second order interactions; MNE1 explains 0% while MNE2 explains 100% of the information. An example of a mixed response function (right),
for which both first and second order interactions are used (10% and 100% respectively). D) Two examples of response functions with three binary
inputs, with MNE3 shown in red. Only second order interactions are necessary for the top gate, with 48%, 100% and 100% of the information
captured by the first, second and third order MNE models. For the bottom gate, the models capture 39%, 71% and 100% of the information,
indicating that third order constraints are necessary. In all cases, I y; xð Þ was calculated assuming a uniform input distribution.
doi:10.1371/journal.pcbi.1001111.g002

Maximum Noise Entropy
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(Fig. 3F), which produces a response function quite similar to the

empirical one in both shape and amplitude, while accounting for

98% of the information. Thus, for this neuron, knowledge of

second order moments is both necessary and sufficient to generate

a highly accurate model of the neural responses.

This result was typical across the population of cells, as

illustrated in Fig. 4A by comparing the information captured by

the first order versus second order models. The majority of the

cells were well described by the second order model, accounting

for over 90% of the information. When averaged across the

population, the first order model captured 78% and the second

order model captured 93% of Iobs. These results suggest that the

inclusion of second order interactions are both necessary and

sufficient to describe the responses of these neurons to naturalistic

stimuli.

Since the MNE response function is a distribution of outputs

given inputs, another way to check the effectiveness of any MNE

model is to compare its moments with those obtained from

experiments. The moments constrained to obtain the model will

be identical to the experimental values by construction; it is the

higher order moments, left unconstrained, that should be

compared. In Fig. 4B we show two such comparisons for the

correlation functions C y,x3
1

� �
~S y{SyTð Þ x3

1{Sx3
1T

� �
T and

C y,x1,x2
2

� �
~S y{SyTð Þ x1{Sx1Tð Þ x2

2{Sx2
2T

� �
T, which involve

moments unconstrained in the MNE1 and MNE2 models. In both

cases, the first order model predictions show more scatter than

those of the second order model; the latter does a reasonable job of

predicting the experimentally observed correlations. This result

broadly demonstrates the sufficiency of second order interactions

to model these neural responses, and shows that higher-order

moments carry little to no additional information.

The two-dimensional second order MNE response functions

have contours of constant probability which are conic sections.

The parameter which governs the interaction between the two

input dimensions, l12, is related to the degree to which the axes of

symmetry of the conic sections are aligned with the two-

dimensional basis. For example, if the contours are ellipses, then

l12~0 if the semi-major and semi-minor axes are parallel to the

axes chosen to describe the input space, and l12=0 otherwise (see

inset, Fig. 5). To assess the importance of this cross term, we

compared the performance of second order MNE models with and

without l12. This additional term can only improve the

performance of the model; however, as shown in Fig. 5, the

improvements across the population are small. Thus, the

dimensions found using the MID method are naturally parallel

to the axes of symmetry of the response functions; however, this

does not imply that the response function is separable due to the x
dependence of the normalization term Z xð Þ.

Discussion

For neural coding of naturalistic visual stimuli in early visual

processing, we see that the bulk of what is being encoded is first

order stimulus statistics. While the information gained by

measuring the spike-triggered average is substantial, it is

insufficient to accurately describe the neural responses. A second

order model, which takes into account the spike-triggered input

covariance, adds a sufficient amount of information. Thus the

firing rates of these neurons have encoded the first and second

order statistics of the inputs. Due to the fact that the natural inputs

are non-binary and non-Gaussian, there exists a potential for very

high-order interactions to be represented in the neural firing rate.

It is known that higher order parameters of textures are

perceptually salient [38–40], but it is unknown whether high

order temporal statistics are also perceptually salient. Our results

suggest that such temporal statistics are not encoded in the time-

dependent firing rate, although they could be represented through

populations of neurons or specific temporal sequences of spikes

[41,42].

Jaynes’ principle of maximum entropy [9,10] has a long and

diverse history, with example applications in image restoration in

astrophysics [43], extension of Wiener analysis to nonlinear

stochastic transducers [44] and more recently in neuroscience [45–

47]. In the latter studies, Hresp was maximized subject to

constraints on the first and second order moments of the neural

states fyig and fyiyjg for a set of neurons in a network. The

resulting pairwise Ising model was shown to accurately describe

Figure 3. MNE models for a RGC. A) The normalized luminance s tð Þ
of the visual input, along with the two most informative reduced inputs,
x1 and x2 , shown for a section of the stimulus presented to neuron
mn122R4_3_RGC. B) The two maximally informative dimensions (MID)
for this neuron (error bars are standard error in the mean). Each
dimension is a filter which spans 200 ms before the neural output. The
convolution of these filters with the stimulus produce x1 and x2 , which
are normalized to lie in the range -1 to 1. In this 2-D reduced input
space, the input distribution, C), and observed response function, D),
are shown, discretized into 14 bins along each dimension. White
squares in the input distribution indicate unsampled inputs, while white
squares in the response function indicate no spikes were recorded. The
first order, E), and second order, F), MNE response functions for this cell
explain 76% and 98% of the information, respectively.
doi:10.1371/journal.pcbi.1001111.g003

Maximum Noise Entropy
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the distribution of network states P yð Þ of real neurons under

various conditions. Since then the application of the Ising model to

neuroscience has received much attention [48,49], and it is still a

subject of debate if and how these results extrapolate to larger

populations of neurons [50]. Temporal correlations have also been

shown to be important in both cortical slices and networks of

cultured neurons [47].

In contrast to maximum entropy models that deal with

stationary or averaged distributions of states, the goal of

maximizing the noise entropy is to find unbiased response

functions. This approach is equivalent to conditional random

field (CRF) models [6] in machine learning. The parameters of a

CRF are fit by maximizing the likelihood using iterative or

gradient ascent algorithms [51] and have been used, for example,

in classification and segmentation tasks [52]. The parameters of

MNE models may also be found using maximum likelihood, or as

was done here, by solving a set of simultaneous constraint

equations numerically. Another example of a maximum noise

entropy distribution is the Fermi-Dirac distribution [23] from

statistical physics, which is a logistic function governing the binary

occupation of fermion energy levels. Thus, in the same way that

the Boltzmann distribution was interpreted by Jaynes as the most

random one consistent with measurements of the energy, the

Fermi-Dirac distribution can be interpreted as the least biased

binary response function consistent with an average energy.

However, to our knowledge, this method has never been used in

the context of neural coding to determine the input statistics which

are being encoded by a neuron and create the corresponding

unbiased models.

Previous work has applied the principle of minimum mutual

information (MinMI) [7] to neural coding, thus identifying the

relevant interactions between neurons [8]. We have shown that

the closed-form MNE solutions for binary neurons constitute a

special case of MinMI, since the response entropy is fixed if the

average firing rate is constrained. In general, the MinMI principle

results in a self-consistent solution that must be solved iteratively to

obtain the response function. The reason why MNE models are

closed-form is that the constraints are formulated in terms of

moments of the output distribution instead of the output

distribution itself. In addition to the case of binary responses,

MNE models can become closed-form MinMI models for any

input/output systems where the response entropy can be fixed in

terms of the moments of the output variable. Examples include

Poisson processes with fixed average response rate or Gaussian

processes with fixed mean and variance of the response rate. The

Figure 4. Second order MNE models are sufficient across the population. A) A direct comparison of the percent information captured by
MNE1 and MNE2 . No cells are sufficiently modeled with a first order model, but most are with the second order model. The average information
captured is 78% for MNE1 and 93% for MNE2. B) Comparison of experimentally measured values to theoretical predictions for higher-order
unconstrained moments. Predictions for C y,x3

1

� �
, left, and C y,x1,x2

2

� �
, right, show a dramatic improvement when second order interactions are

included in the model.
doi:10.1371/journal.pcbi.1001111.g004

Figure 5. Importance of the mixed second order moments. A
comparison of the percent of the information captured by a second
order model (MNE2) that constrains Syx1x2T (i.e. l12=0) and a second
order model with l12:0. For most cells, the information increases only
slightly for l12=0, indicating that little information is gained by
constraining this moment. (Inset) The parameter l12 determines the
angle between the axes of symmetry of the response function and the
basis of the input space.
doi:10.1371/journal.pcbi.1001111.g005

Maximum Noise Entropy
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framework for analyzing the interactions between inputs and

outputs that we present here can thus be extended to a broad and

diverse set of computational systems.

Our approach can be compared to other optimization

techniques commonly used to study information processing. For

example, rate-distortion theory [11,12,53,54] seeks minimum

information transmission rate over a channel with a fixed level

of signal distortion, e.g. lossy image or video compression. In that

case, the best solution is the one which transmits minimal

information because this determines the average length of the

codewords. In our method, we also obtain minimally informative

solutions, not because they are optimal for signal transmission, but

because they are the most unbiased guess at a solution given

limited knowledge of a complex system.

At the other end of the optimization spectrum is maximization of

information [1,13,55]. The goal in that case is to study not how the

neuron does compute, but how it should compute to get the most

information, perhaps with limited resources. This strategy has been

used to find neural response functions for single neurons [56,57], as

well as networks [58,59]. When confronted with incomplete

knowledge of the correlation structure, a maximum information

approach would choose the values of the unconstrained moments

such that they convey the most information possible, whereas the

minimum information approach provides a lower bound to the true

mutual information, and allows us to investigate how this lower

bound increases as more moments are included. If the goal is to

study the limits of neural coding, then maximizing the information

may be the best procedure. If, however, the goal is to dissect the

computational function of an observed neuron, we argue that the

more agnostic approaches of maximizing the noise entropy or

minimizing the mutual information are better-suited.

Methods

Ethics statement
Experimental data were collected as part of the previous study

using procedures approved by the UCSF Institutional Animal

Care and Use Committee, and in accordance with National

Institutes of Health guidelines.

Maximum noise entropy model
A maximum noise entropy model is a response function P yDxð Þ

which agrees with a set of constraints and is maximally unbiased

toward everything else. The constraints are experimentally

observed moments involving the response y and stimulus x,

SAj y,xð ÞT
� �

, where SAjT~
Ð Ð

dxdyAj x,yð ÞP xð ÞP yDxð Þ, which

must be reproduced by the model. The set of C constraints,

including the normalization of P x,yð Þ, are then added to the noise

entropy to form the functional

Hc~Hnoisez
XC

j~1

lj

ð ð
dxdyAj x,yð ÞP xð ÞP yDxð Þ, ð4Þ

with a Lagrange multiplier lj for each constraint. Setting
dH c

dP yDxð Þ~0 and enforcing normalization yields Eq. 1. For a

binary system, y~0 or 1, all the constraints take the form

yaj xð Þ
� �

, and the partition function is Z xð Þ~1zef xð Þ, where

f xð Þ~
X

j
ljaj y,xð Þ:

The values of the Lagrange multipliers are found such that the

set of equations

SAjT~

ð
dxP xð Þ L

Llj

logZ xð Þ
� 	

, ð5Þ

is satisfied, with the analytical averages on the right-hand side

obtained from derivatives of the free energy log Z [23].

Simultaneously solving this set of equations has previously been

shown to be equivalent to maximizing the log-likelihood [51].

Physiology experiment
The neural data analyzed here were collected in a previous study

[29] and the details are found therein. Briefly, the stimulus was a

spot of light covering a cell’s receptive field center, flickering with

non-Gaussian statistics that mimic those of light intensity fluctua-

tions found in natural environments [35,36]. The values of light

intensities were updated every 12:5ms (update rate 80Hz). The

spikes were recorded extracellularly in the LGN with high signal-to-

noise, allowing for excitatory post-synaptic potentials generated by

the RGC inputs to be recorded. From such data, the complete spike

trains of both RGCs and LGN neurons could be reconstructed [60].

Dimensionality reduction
The neural spike trains were binned at 4 ms resolution, ensuring

that the response was binary. The stimulus was re-binned at 250 Hz

to match the bin size of the spike analysis. The neurons were

uncorrelated with light fluctuations beyond 200 ms before a spike,

and the stimulus vector s tð Þ was taken to be the 200 ms window (50

time points) of the stimulus preceding t. Just two projections of this

50-dimensional input are sufficient to capture a large fraction of the

information between the light intensity fluctuations and the neural

responses (84% for the example neuron mn122R4_3_RGC, and

85% on average across the population). The two most relevant

features of each neuron were found by searching the space of all

linear combinations of two input dimensions for those which

accounted for maximal information in the measured neural responses

[37], subject to cross-validation to avoid overfitting. Each of the two

features, f1 and f2, is a 50-dimensional vector which converts the

input into a reduced input, calculated by taking the dot product, i.e.

x1 tð Þ~f1
:s tð Þ. The algorithm for searching for maximally informa-

tive dimensions is available online at http://cnl-t.salk.edu.
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