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Abstract

Pulmonary emphysema is a connective tissue disease characterized by the progressive destruction of alveolar walls leading
to airspace enlargement and decreased elastic recoil of the lung. However, the relationship between microscopic tissue
structure and decline in stiffness of the lung is not well understood. In this study, we developed a 3D computational model
of lung tissue in which a pre-strained cuboidal block of tissue was represented by a tessellation of space filling polyhedra,
with each polyhedral unit-cell representing an alveolus. Destruction of alveolar walls was mimicked by eliminating faces that
separate two polyhedral either randomly or in a spatially correlated manner, in which the highest force bearing walls were
removed at each step. Simulations were carried out to establish a link between the geometries that emerged and the rate of
decline in bulk modulus of the tissue block. The spatially correlated process set up by the force-based destruction lead to a
significantly faster rate of decline in bulk modulus accompanied by highly heterogeneous structures than the random
destruction pattern. Using the Karhunen-Loève transformation, an estimator of the change in bulk modulus from the first
four moments of airspace cell volumes was setup. Simulations were then obtained for tissue destruction with different
idealized alveolar geometry, levels of pre-strain, linear and nonlinear elasticity assumptions for alveolar walls and also mixed
destruction patterns where both random and force-based destruction occurs simultaneously. In all these cases, the change
in bulk modulus from cell volumes was accurately estimated. We conclude that microscopic structural changes in
emphysema and the associated decline in tissue stiffness are linked by the spatial pattern of the destruction process.
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Introduction

Emphysema is a chronic obstructive pulmonary disease (COPD)

that commonly occurs in conjunction with chronic bronchitis.

While tobacco smoke is believed to be the primary risk factor for

emphysema [1], other factors such as environmental pollutants

[2], senescence [3,4], nutrition [5–7] and genetic predispositions

[8] can also cause emphysema. Each of these risk factors triggers a

series of interconnected biochemical processes that lead to cell

death and the degradation of protein fibers that reinforce alveolar

walls. Consequently, alveolar walls rupture and abnormally

enlarged airspaces appear. Over time, the destruction of alveolar

walls become progressive and patients experience increased

difficulty in breathing [1]. In clinical settings, doctors rely on

spirometric indices such as the amount of air that can be forcefully

exhaled in 1 second (FEV1) to detect and characterize the

progession of this disease [9]. However, significant destruction of

tissue can occur at the microscopic scale before emphysema can be

detected using FEV1 [10]. In order to develop better diagnostic

methods and to understand how emphysema progresses, it is

essential to first understand the link between microscopic changes

in structure and global measures of function.

Emphysematous patients differ widely in the rate of decline in

lung function as well as their morphometric characteristics.

Despite this apparent heterogeneity, there is data suggesting that

different morphological changes affect differentially lung function.

For instance, in smokers, the decline in lung function is faster for

patients with lesions concentrated in the upper zones of the lung as

compared to patients with a more uniform destruction pattern

[11]. In patients with a1-antitrypsin deficiency, a rare genetic form

of emphysema, FEV1 was found to correlate better with the extent

of destruction evaluated from CT when the destruction is in the

basal part of the lung [12,13]. Further, these macroscale patterns

have also been linked to different microscale structures [14], which

in turn, have also been found to influence functional parameters

such as lung compliance [15]. These findings suggest that there is a

possible link between emphysema pathology, patterns of tissue

destruction and decline in lung function. However, such a

relationship between microscopic patterns of destruction and loss

of function has not been identified.

Previous studies have shown that lung compliance can vary

significantly even when structural measurements made from two

dimensional (2D) sections of the lung did not show any significant

change [15,16]. This apparent lack of structure-function relation-

ship maybe due to the fact that 2D sections do not accurately

represent the true three-dimensional (3D) geometry of lung tissue

and are significantly more error prone because of the noise

introduced by sectioning [17]. Indeed, recent direct measurement
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of 3D alveolar structure has shown that the actual size of an

alveolus measured in 3D is 1.5 times its current 2D estimate [18].

Therefore, the problem of relating structural and functional

changes in emphysema is best analyzed in 3D. In this study, we

developed a 3D model of lung tissue which incorporates the

interdependent nature of the lung parenchyma– where upon

destruction of an alveolar wall, the microscopic structure of tissue

rearranges to balance forces [19]. Specifically, we modeled a block

of lung tissue as a tessellation of space filling polyhedra, with each

of the unit cells representing an idealized alveolus (Fig. 1). The

model can be pre-strained and various destruction patterns can be

mimicked by eliminating walls in a spatially random or in a

correlated manner in which elimination is based on force carried

by a face.

Results

We considered a 3D elastic structure formed by tessellating

space filling polyhedral unit cells which mimic alveolar airspace

units in the lung tissue. The entire structure is pre-strained and its

boundaries fixed. We used two kinds of space filling polyhedra:

tetrakaidecahedra (hereafter referred to as ‘‘14-hedra’’) and cubes

(the simplest platonic space filling solid) to mimic the initial

geometry of the alveolar spaces (Fig. 1). The elastic properties of

the alveolar walls are represented by springs connecting the center

of each face to its vertices. The edges of the unit cells also contain

springs which represent the junction of septal walls. To simulate

tissue destruction in emphysema, we removed faces that separate

adjacent polyhedra. This involves breaking the face springs that

span the corresponding face and calculating the new equilibrium

configuration by minimizing the total energy of the system. When

all the walls adjoining an edge are eliminated, the corresponding

edge spring is also considered broken. We assume that the initial

seed of the destruction process is spatially random, however, any

further destruction follows one of the following patterns.

Spatially random destruction. In this method, the faces

selected for removal at every step were randomly chosen from the

network. It is important to note that in this case, the continued

destruction of walls is independent of the history of breaking. This

method mimics the biochemical process where inhaled particles

such as those found in cigarette smoke randomly trigger interstitial

cells to release enzyme that cleave the ECM fibers. In our

simulations, we removed a fixed number N of faces at every step.

Force based destruction. In this method, we imposed a

mechanism for destruction in which the walls carrying the highest

force were broken. This is based on experimental findings that

fibers in an enzymatically weakened ECM can break under the

influence of mechanical forces akin to breathing [20]. As will be

seen later, this mechanism sets up a specific destruction pattern in

which the location of the walls to be removed next depends on the

spatial history of cutting. In our simulations, we removed a fixed

number N of faces at every step.

A mixed pattern. Here we considered a combination of the

above two processes where at each step the same number of faces

N were removed at each step, but certain fraction of the faces lN,

lv1 was eliminated based on force while (1{l)N faces were

eliminated randomly.

Following each step of the destruction process, the network

configuration was obtained using an optimization described in the

Materials and Methods section and the changes in the microscopic

structure of the network were tracked by recording the volume of

every cell in the network. The corresponding change in the

macroscopic mechanical properties of the network was also

obtained by calculating the bulk modulus, K , which indicates

the ability of material to resist a small uniform expansion. A typical

network considered had 512 cells, 1728 faces and 8856 springs.

Structural changes
Fig. 2A shows a ‘‘cut-away’’ view of a pre-stressed cubic network

which serves as the initial network from which faces were removed

Figure 1. Initial geometry of a cuboidal block of tissue built by
tiling space filling polyhedral cells representing idealized
alveoli. Two types of space filling solids were used to approximate
alveoli: tetrakaidecahedra (14-hedra) and cubes (A & C) show the
individual unit cells. Elastic properties of the alveolar wall were modeled
by face springs connecting the center of each face to its vertices.
Additionally, springs were also placed along the edges of the unit cell.
Note that shading is applied for better visualization. (B & D) show the
three dimensional network obtained by tiling the unit cells.
doi:10.1371/journal.pcbi.1001125.g001

Author Summary

Current standards for characterizing microscopic structural
changes in emphysema are based on estimating the
amount of tissue loss using stereological techniques.
However, several previous studies reported that, in
emphysema, there is a lack of correlation between
stereological indices of tissue structure and increases in
lung compliance, which is the inverse of tissue stiffness. In
this study, we developed a novel three-dimensional
computational model to show that the amount of tissue
loss is not the sole determinant of increased lung
compliance in emphysema. A key component that needs
to be considered is the pattern of tissue destruction, which
we demonstrate has a significant effect on the rate of
decline in stiffness. Our findings also indicate that the
heterogeneity observed at the microscopic scale in
emphysema is a signature of the spatial history of the
destruction process. These results highlight the impor-
tance of characterizing the heterogeneity of lung tissue
structure in order to be able to relate microscopic
structural changes to macroscopic functional measures
such as lung compliance.

Relating Structure and Function in Emphysema
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during the simulation of tissue destruction in emphysema. Fig. 2B,

Fig. 2C and Fig. 2D show three different structures that emerged

after random cutting, force-based cutting and a mixed cutting

pattern, respectively. Despite the different geometries, these

networks have similar values of K .

Decline in stiffness
The results in panels A and B of Fig. 3 show how the mean and

variance of alveolar airspace volumes change as the number of

faces eliminated from the network shown in Fig. 2A is gradually

increased. For the random destruction of faces, the mean volume

increases at a faster rate than for the force-based pattern; however,

this trend is reversed for the variance of cell volumes with the

force-based destruction resulting in a much faster increase in the

variability of airspace sizes. The early rise in the variability in the

force-based simulations is similar to the experimentally observed

early increase in airspace size variability in animal models of

emphysema [18,21]. Fig. 3C shows the corresponding declines in

K : the force-based cutting method results in a fast and apparently

linear decrease in K whereas in the random cutting method, the

decay in K is curved and significantly slower.

Relating changes in geometry to loss of stiffness
Fig. 4A and Fig. 4B show the change in K with respect to the

mean and variance of cell volumes. In Fig. 4A, there is a

considerable spread between the values of K for the random and

the force-based cutting implying a significantly lower macroscopic

stiffness in the force-based case at the same mean cell volume.

Therefore, an important result is that a given macroscopic stiffness

does not correspond to a well defined mean cell volume. However,

the spread decreases considerably when K is plotted against the

variance of cell volumes (Fig. 4B). This suggests that changes in

higher order moments of the cell volumes may provide a better

predictive relation between structural changes and decline in K .

We considered four moments of the cell volume distribution:

the mean m1~vVw and three moments defined by

mn~v(V{m1)n
w

1
n n~2,3,4. Due to the interconnected nature

of the lung parenchyma, we reasoned that the way mn change with

respect to one another during the cutting process, specifically the

cross correlations between the time series mn, obtained from the

model, would be indicative of the spatial pattern in the destruction

process. To analyze the cross correlations in mn, we form the

matrix X~ m1,m2,m3,m4½ �, where each column in X corresponds

to a moment mn and each row corresponds to a step in the cutting

Figure 2. Network of cubic cells with the top removed to reveal
their internal structure. (A) Initial geometry (B) Result of the random
destruction pattern (C) Result of the force-based destruction pattern
and (D) Result of the mixed destruction pattern. Note that networks
B–D have the same drop in Bulk modulus, K , but their internal structure
is very different.
doi:10.1371/journal.pcbi.1001125.g002

Figure 3. Changes in structure and function with gradual
removal of faces. (A) Changes in mean volume (B) Changes in
variance of cell volumes (C) Changes in bulk modulus K .
doi:10.1371/journal.pcbi.1001125.g003

Relating Structure and Function in Emphysema
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process. To reduce dimensionality of the problem, we remove

redundant information in mn using the principal component

analysis [22–25]. This is done by projecting mn onto a new basis

given by the eigen vectors of Cx:
1

n{1
XTX. Fig. 5 shows that

99% of the variability in X is explained by the first two eigen

vectors, P1 and P2 of Cx, so that we only need to consider 2

dimensional data given by the projection of X onto the subspace

defined by P1 and P2. We will refer to this new transformed data

as p1 and p2. Note that p1 and p2 are merely the first four

moments of the cell volumes projected onto a 2D subspace.

We now proceed to obtain structure-function relationships using

the transformed variables p1 and p2. Fig. 6 shows the decline in
~KK~K=K(t~0) plotted against p1 and p2 for random (green

circles) and force-based (red squares) destruction patterns. Also

shown in Fig. 6 is the minimum mean square error fit of the

equation

~KKfit~ap1zbp2zc ð1Þ

to the data obtained from the random and force-based

simulations. Note that a single equation was able to fit both

destruction patterns. The parameters of the fit were a~{0:0243,

b~{0:0448, c~1:012.

To test our hypothesis that it is the pattern of destruction that

determines changes in microscopic structure and decline in

function, in Fig. 7 we plot the moments mn from independent

simulations of force-based destruction projected on to the same P1,

P2 basis vectors as shown in Fig. 6. First, we considered force-

based destruction on a network where the prestrain imposed was

1.5 times higher than the original set (magenta squares), we then

considered a force-based destruction on a network made up of 14-

hedral unit cells (blue squares) and finally we considered a

nonlinear spring network where the springs developed force f in

response to strain e as f ~ye + 0:2ye2, (e § 0). Although we only

tested one particular nonlinear force-strain relation, the destruc-

tion pattern does not depend on f (e) since the order in which

springs are chosen for removal in the force-based cutting should

not change for monotonously increasing f (e). The trajectory of ( ~KK ,

p1, p2) in all these cases lie very close to the original force-based

cutting simulations (red squares). We have also added to the plane,

Figure 4. Relationship between the mean and the variance of
cell volumes to the corresponding drop in bulk modulus K for
random and force-based destruction. (A) Changes in K with
change in mean of cell volume. (B) Changes in K with change in
variance of cell volumes.
doi:10.1371/journal.pcbi.1001125.g004

Figure 5. Percent variability in the data explained by each
eigen vector. Note that over 99% of the variability is explained by the
first two eigen vectors.
doi:10.1371/journal.pcbi.1001125.g005

Figure 6. Normalized values of bulk modulus,
~
K from force-

based (red squares) and random destruction (green circles)
plotted against the structure variables p1 and p2. Note that the
data points for both simulations lie on a single plane. The plane shown
is a minimum mean square error fit to Eq. 1.
doi:10.1371/journal.pcbi.1001125.g006

Relating Structure and Function in Emphysema
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data from a random cutting simulation with the initial network

strained to a value 1.5 times higher than the original set (orange

circles). Finally, we also considered a simulation with a mixed

cutting pattern with l = 0.1 (yellow triangles). In all these cases,

the trajectories of ( ~KK , p1, p2) are well approximated by the plane

defined by Eq. 1.

To examine the how well decline in stiffness can be estimated

from structural measurements, we calculate the relative estimation

error given by

error~
~KKfit{ ~KKmodel

�� ��
~KKmodel

|100% ð2Þ

where ~KKfit, given by Eq. 1, is an estimate of stiffness from

structural measurements and ~KKmodel is the actual measured value.

In order to identify the destruction patterns in which structural

changes do not yield information about decline in stiffness (i.e.,

simulations with maximum error), we examine the box plot of

estimation error for each destruction pattern (Fig. 8). We found

that when the destruction pattern is independent (spatially

random), the estimation of decline in stiffness from structure lead

to very high prediction errors (w15%). However, when the

pattern of destruction was spatially correlated (mixed and force

based), the maximum error was less than 8% and the median error

was less than 4%.

Discussion

Traditionally, emphysema is subdivided into two major

categories based on the location of destruction within the

pulmonary acinus [26]. In centrilobular emphysema, which is

more common and often associated with smoking, the destruction

occurs mainly in the distal part of the proximal acinus. In

panacinar emphysema, which is associated with a1 antitrypsin

deficiency, more of the destruction occurs in the distal regions. At

the scale of the whole lung, centrilobular emphysema shows signs

of tissue destruction in the upper zones of the lung (the upper lobe

and the superior segment of lower lobe) while in panacinar

emphysema the destruction mostly involves lower zones and the

anterior margins of the lung. At the microscopic scale, these two

categories have different appearance on histological sections [14].

Further, they have also been shown to have different functional

properties [27]. Saetta et al. [15] found that when human

emphysema patients were classified into four categories based on

patterns observed in 2D histological images ranging from a very

homogeneous destruction pattern to a highly heterogeneous

pattern, the subjects showed a significant difference in static

compliance. These findings suggest that there is a strong link

between the patterns of destruction at the microscopic scale, the

geometry observed on histological sections and macroscopic lung

function. Interestingly however, Saetta and coworkers found no

differences in the mean linear intercept between the different

groups in their study. A similar lack of correlation between tissue

structure, as quantified by the mean linear intercept, and lung

compliance has also been noted in animal models of emphysema

[16].

In this study, we found that the decline in lung tissue stiffness

was significantly influenced not only by the amount of tissue loss,

but also by the spatial pattern of the destruction process (see

Fig. 3C), whereby to achieve the same 60% drop in ~KK , nearly

twice as many faces had to be removed in the random destruction

as compared to the force-based destruction. This conclusion is in

agreement with previously published observations from 2D models

[10]. We also found that these two cutting methods resulted in

very different geometries (Fig. 2), with the correlated destruction

leading to more heterogeneous structures. This finding has

important implications on the characterization of emphysema

from histological sections. Our results indicate that the heteroge-

neity in microscopic structure observed in the early stages of

emphysema [18,21], is an indicator of the pattern of destruction

and hence is also indicative of the extent of decline in tissue

stiffness. One possible reason for the disconnect between structure

and compliance noted above maybe due to the fact that currently

accepted standards for quantifying structural changes in emphy-

sema do not account for the patterns in tissue destruction [28].

In a recent study [29], we examined the relation among alveolar

structure, tissue composition and lung function. Specifically,

respiratory compliance C was correlated to biochemical and

structural parameters of the mouse lung before and after elastase-

induced emphysema. Interestingly, C did not correlate with bulk

measures of soluble type I collagen, type III collagen or elastin.

There was, however, a strong association between C and the mean

equivalent diameter of airspaces (Deq), and a much stronger

relation between C and the area weighted mean diameter (D2)

Figure 7. (A) The decline in
~
K plotted as a function of p1 and p2

for different cutting methods. (B) shows the side view of the plane.
The plane shown here is not a new fit, but is the same plane as shown
in Fig. 6 which fits data from new simulations reasonably well. Data
shown here correspond to force-based cutting simulations on a 14-
hedral network (blue squares), a network with nonlinear springs (green
squares), network at 1.5 times higher pre-stress compared to those
shown in Fig. 6 (magenta squares). Simulation of mixed cutting patterns
(yellow triangles) and Random cutting at higher pre-stress (orange
circles). The red squares and the green circles are the same ones shown
in Fig. 6 and correspond to force-based and random cutting simulations
respectively.
doi:10.1371/journal.pcbi.1001125.g007

Relating Structure and Function in Emphysema

PLoS Computational Biology | www.ploscompbiol.org 5 April 2011 | Volume 7 | Issue 4 | e1001125



with R2 values of 0.675 (pv0:01) and 0.933 (pv0:001),

respectively. Since D2 includes higher order moments of the

distribution of diameters [30], it is highly sensitive to structural

heterogeneities and hence patterns. Thus, there is now experi-

mental data showing that it is not the mean airspace size, but its

heterogeneity that determines function in agreement with the

network analysis we presented here.

Several previous publications have used different 3D models to

examine the elasticity of normal lung tissue. Kimmel and

Budiansky [31] employed a dodecahedral model to calculate

elastic moduli for small deformations about a state of uniform

expansion. More sophisticated models have later been proposed to

examine non-uniform, large deformations [32–34]. Denny and

Schroeter [33] also examined, using 3D models, changes in tissue

elasticity when the relative amount of collagen versus elastin is

perturbed as happens in the early stages of emphysema. However,

to the best of our knowledge, the change in tissue elasticity

associated with destruction of alveolar walls and its relation to

structural changes have not been examined thus far.

In order to examine how our results compare to observations in

real emphysema, it is important to consider the factors that

influence K in real lung tissue and the limitations of the present

model. In this study, we considered a small block of tissue far away

from the major airways and devoid of ducts. The tissue network of

the lung is usually classified into 3 interdependent compartments:

a peripheral tissue system consisting of the pleural membrane and

the interlobular membranes, an axial system which forms the

alveolar ducts and surrounds the mouth of alveoli where they join

the ducts and the fiber network that forms the alveolar septa

[35,36]. Since the predominant structural change in emphysema is

destruction of alveolar septa [37,38], it is only this part of the lung

tissue that we considered in this study.

In our model, we only considered the recoil forces provided by

the protein fibers that make up the ECM. However, the walls of

the alveoli are coated with a liquid layer that provides surface

tension at the air liquid interface. The value of surface tension is

lowered by surfactant released by epithelial cells [39]. Surface

tension forces act in two ways, they provide a recoil pressure [40]

and, additionally, they distort the parenchymal geometry thereby

providing an indirect contribution to the recoil forces [41]. The

problem of how surface tension changes in emphysema may affect

functional properties has been studied using models [42].

However, a recent experimental study suggested no change in

surface tension in the lung due to emphysema [43]. Since the

airspace sizes are generally larger in emphysema, surface forces

likely decrease and the effect of surface tension may not be

important in affecting the process of tissue destruction. Hence, we

neglected the contribution of surface tension to elastic recoil.

We simulated tissue destruction in a pre-strained network with

the outer boundary fixed. In this case, during the destruction

process, the total volume of the network is conserved. If we

changed the boundary condition to a pressure boundary

condition, which is perhaps more realistic, then, as tissue is

destroyed, the whole network would expand outward thereby

increasing the total volume. In this case, a network with such a

boundary condition would distribute stresses differently after an

Figure 8. Box plot of the relative error in estimating K from structure. The error is expressed as percentage of the real value of K . The
simulations corresponds to (A) Mixed cutting pattern, (B) Random Cutting at a higher pre-strain, (C) Force-based cutting at a higher pre-strain,
(D) Random cutting at a lower pre-strain, (E) Force based cutting at a lower pre-strain, (F) Force-based cutting on smaller size system with 128 cells,
(G) Force-based cutting on system with 14-hedral cells, (H) Force-based cutting on system with nonlinear stress-strain relationship. Note that in all the
correlated cutting mechanisms (mixed and force-based), the maximum error is less than 8%. In all the simulations, the median error was less than 4%.
doi:10.1371/journal.pcbi.1001125.g008

Relating Structure and Function in Emphysema
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alveolar wall is destroyed and the pattern of force-based

destruction would be somewhat different from a fixed boundary

condition. Nevertheless, the pressure boundary is also not fully

consistent with physiology since the distending stress around the

lung is maintained by the balance of the nonlinear chest wall

elasticity and the changing lung recoil during the progression of

emphysema. These issues represent significant additional compu-

tational challenges and will have to be examined in future studies.

Before concluding, we note the following implication of the

modeling results to disease progression. As Fig. 3C demonstrates,

the pattern of tissue destruction has a significant impact on the rate

of stiffness decline. Whether or not correlated patterns develop

depends on the presence or absence of mechanical forces. In the

normal lung, mechanical forces are present everywhere due to the

negative pleural pressure surrounding the lung. However, these

forces are not sufficient to rupture the tissue. In the diseased lungs,

enzymatic damage weakens the tissue and lowers its failure

threshold allowing mechanical forces of breathing to rupture the

alveolar septal walls [20]. Thus, a lack of heterogeneity in the

emphysematous tissue structure implies that mechanical forces are

small or not dominating the destruction process and, consequently,

the progressive nature of the disease must be driven by biological

mechanisms that produce strong enzymatic tissue digestion. This

may have further implication for treatment since enzymatic

activity may be attenuated pharmacologically whereas eliminating

mechanical forces is not feasible since it would lead to lung

collapse.

To summarize, we have developed a 3D computational model

and a general framework to relate structural changes characterized

by the cell volume distribution to functional changes. Our

simulations demonstrate that different destruction mechanisms

lead to grossly different microscopic destruction patterns which in

turn result in different cell volume distributions and macroscopic

declines in function for the same amount of tissue loss. It is

therefore important to consider both the total amount as well as

the spatial history of the destruction process in an attempt to relate

structure to function. Further, our results suggest that changes in

variability and higher order moments of the alveolar dimensions

are not only important in determining changes in function but

observing the corresponding structural patterns may also provide

insight into the mechanism of disease progression. Finally,

appropriate application of the uncovered structure-function

relations to real lungs may in the future help evaluate the efficacy

of therapies or novel drugs.

Materials and Methods

We consider a cuboidal block of lung tissue which we model as a

3D structure formed by tiling space filling polyhedra, each of

which represents an idealized alveolus. In this study, we used two

kinds of space filling polyhedra: the cube, the simplest platonic

space filling solid and the 14-hedron, a solid with 8 regular

hexagons and 6 square faces [32,34,44,45]. The initial geometry of

a block of lung tissue composed of either cubes or 14-hedra is

shown in Fig. 1.

Elastic properties
To model the elastic properties of the alveolar wall, each face of

an idealized alveolus has linear hookean springs connecting its

vertices to its centroid (Fig. 1A and Fig. 1C). Additionally, springs

are also placed along the edges of the polyhedron. These face and

edge springs represent the combined effect of collagen and elastin

fibers that are considered to be the two major force-bearing

components that make up the alveolar wall. For small strains, we

will assume that these springs develop a force f in response to an

applied strain e as

f ~
ye e w 0

0 e ƒ 0

�
ð3Þ

The assumption here is that all the springs are made of the same

material so that the constants y is a property of the material

analogous to the Young’s modulus. It should be noted that springs

in the model do not support compression. Consequently, the

networks shown in Fig. 1 are inherently unstable and will collapse

when subjected to a shear deformation. In order to stabilize the

model, it is necessary to apply a pre-strain to the structure.

Pre-strain and boundary conditions
The model is capable of being pre-strained in 3 different ways.

1. Fixed Boundary: The entire network is subjected to a uniform

expansion and the vertices along the faces that make up the

exterior boundary (boundary nodes) are fixed. When the entire

network is stretched out uniformly, individual springs become

stretched and the equilibrium configuration is then determined by

minimizing the total energy of the network given by

U~
X

j

1

2
ljyjej

2 ð4Þ

where ljs are the unstretched lengths of the springs and the

summation is carried out over all the springs in the network.

2. Force boundary: To each boundary node, ni, an external

force ~ffi is applied. The set of forces f~ffig determine the boundary

condition. The equilibrium configuration is calculated by

minimizing the free energy, UF which takes into account the

internal energy of the spring network U and the work done by the

external forces f~ffig. The minimization is carried out on UF ,

changes in which are defined by:

DUF ~DU{
X

i

~ffi
:D~rri ð5Þ

where U is given by Eq. 4 and ~rri is the position vector of the

boundary node ni.

3. Pressure Boundary: A negative external pressure (P) can be

applied to the entire network and the equilibrium configuration

can be calculated by minimizing the free energy UF which

accounts for the total internal energy of the network and the work

done by the applied pressure P. The change in free energy DUF is

given by

DUF ~DU{PDV ð6Þ

where U is given by Eq. 4 and V is the current volume of the

expanding network. In the model, a face is composed of a set of

non-overlapping triangles, so that the pressure acting on a

triangular facet with outward normal area vector ~SSi generates a

force ~ffi~(P=3)~SSi to act on the three nodes that make up the

triangular facet. The network is then allowed to reach an energy

minimum as described below. As the network equilibrates, the

change in geometry of the network causes the vectors f~SSig to

change. The new set of area vectors f~SSig and forces on the

boundary nodes f~ffig are updated. The minimization procedure is

Relating Structure and Function in Emphysema
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repeated until the change in f~SSig between two successive

minimization steps falls below a preset error bound.

Numerical optimization. Idered in this study had more than

5000 nodes. For such a high dimensional system, it is difficult to

ascertain the exact nature of the energy surface. Starting with the

assumption that Eq. 4–6 lead to an energy surface with multiple local

minima, the simulated annealing algorithm [46,47] was first used to

minimize the energy of the network. This technique uses a control

parameter usually referred to as temperature (T ) which is set to a high

value initially. The system is perturbed by moving every node by a

small amount and the resulting configuration is accepted based on the

probability p~e{(DU=T ) where DU is the associated change in free

energy. These steps are repeated until the system reaches thermal

equilibrium at which point the temperature is reduced. In our

simulations, we found that the global minimum achieved using this

method was the same regardless of the starting temperature. Since

zero temperature minimization corresponds to moving every node in

the opposite direction of the local gradient vector of the energy

surface, it was concluded that the energy surface is convex with only

one minimum and the energy minimization was done using a

gradient-descent algorithm. The equilibrium criteria were set based

on the condition that both the magnitude of the maximum resultant

force in the network and the magnitude of the mean resultant force in

the network are below certain specified thresholds. While the former

is a stricter condition for local deformations, the latter is the stricter

condition for uniform deformations.

Once faces are removed from the network, the equilibrium

configuration can only be calculated numerically by minimizing the

total free energy of the system. However, in the case of an intact

network, it is possible to derive analytic expressions for the elastic

moduli and compare them to the values obtained from the

computational model. To verify that our computational model, in

the supplementary material (see supplementary information file

Text S1), we considered two simple cases (1) A single cube for which

the equilibrium configuration after applying a pressure change or a

shear deformation can be easily calculated and (2) An intact cubic

network of consisting of several cubes where we compare theoretical

values of K to those obtained from the numerical model.

Measurements
Changes in the microscopic structure of the network as a result of

tissue destruction are tracked by recording the volume of every cell

in the network. The change in macroscopic mechanical properties

of the network are also tracked by measuring the bulk modulus, K
which indicates the ability of the material to resist a small uniform

expansion and the shear modulus, G which is a measure of the

materials ability to resist small iso-volume shape distortions.

Calculating cell volumes. Initially, all the cells in the

network consist of convex polyhedra. However with the

destruction of faces, cells can assume non-convex configurations.

To calculate the volume of non-convex polyhedra, we use the

Gauss divergence theorem which states that the volume integral of

the divergence of a vector field ~FF over a closed region V is equal to

the surface integral over its bounding surface S.ð
V

+:~FFdV~

ð
S

~FF :~ddS ð7Þ

where ~ddS is the outward normal vector to the surface S.

By setting the vector field ~FF~xizyjzzk, Eq. 7 becomes

V~

ð
V

dV~
1

3

ð
S

(xizyjzzk):~ddS ð8Þ

For a non-convex polyhedral cell enclosed by non overlapping

triangular facets, Eq. 8 states that the volume of the cell is simply

the sum of signed volume of tetrahedra formed by a triangular

facet with area vector ~ddS as its base and the origin as its apex.

Calculating the bulk modulus. The bulk modulus, K can

be measured from the model under any boundary condition and

does not require the bounding box to be cuboidal. To measure K ,

we apply a small pressure change dP to the network. If the

network is under a fixed boundary condition, before applying dP,

we switch to a force boundary condition by adding an external

force to each boundary node which has the same magnitude as the

resultant force acting on that node but acts in the opposite

direction. The boundary nodes are then allowed to move freely.

After equilibrating the network, the resulting volume expansion

dV is measured and K can be calculated as K~V (dP=dV).

Principal Component Analysis
Principal Component Analysis (PCA) also known as the

Karhunen-Loève transform or the Hotelling transform [22–25] is

a common method for removing correlations in an input data set.

This is done by projecting the input data onto a new basis which is

derived from the original data set. Let X: x1,x2 � � � xn½ � represent

the original data set with the vector xk representing different

observations of n correlated input variables. We first form the

covariance matrix Cx given by

Cx:
1

n{1
XTX ð9Þ

Cx is a square matrix whose diagonal elements Cii are the variance

of the ith variable in X and Cij are the covariance of variables

corresponding to i and j. Next we find the eigen vectors

P: p1,p2 � � � pn½ � and eigen values li of Cx. The original data set,

X, can be transformed to a new data set by projecting X on to the

new basis defined by the eigen vectors P. The advantage in doing

this is that, depending on the level of correlation in X, flig usually

decrease extremely fast and only the first few vectors in the new basis

of P need to be considered, so that the new projected data is usually

of lower dimensionality than the original set.

Supporting Information

Text S1 In this supplement, we verify the accuracy of our

computational model by comparing analytically calculated values of

elastic moduli of a single cube as well as the bulk modulus of an intact

cubic network with values obtained from the computational model.

Found at: doi:10.1371/journal.pcbi.1001125.s001 (0.23 MB PDF)
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