
Editorial

Ten Simple Rules for Providing a Scientific Web Resource
Sebastian J. Schultheiss*

Machine Learning in Biology Research Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany

Many projects in computational biology

lead to the creation of a small application

program or collection of scripts that can be

of use to other scientists. A natural

progression is to make this tool available

via a Web site or by creating a service for

it, from now on collectively called ‘‘Web

resource.’’

We conducted a survey among provid-

ers and users of scientific Web resources,

as well as a study on availability. The

following rules reflect the experiences and

opinions of over 250 scientists who have

answered our questions and who use Web

resources regularly, as well as our own

experience. The study of availability

allows us to draw objective conclusions

about the characteristics of those Web

resources that are still available and

correlate the features that distinguish them

from disappeared or nonfunctional ones.

These ten simple rules aid you in designing

and maintaining a scientific Web resource

that is available to anyone interested in

using it.

Rule 1: Plan Your Resource

As soon as you are seriously thinking

about offering a Web resource to the

general public, it is a good idea to lay

down some ground rules. Clarify respon-

sibilities in the processes of developing and

maintaining the resource. Discuss these

issues with the senior author or principal

investigator, who is ultimately responsible

for the availability of the resource. Read

more about some ideas to manage respon-

sibility in Rule 2.

Try to think of a good name that is not

already taken and can be easily remem-

bered. Changing the Web address of an

existing resource is hard to do; it’s better to

start off with your own Internet domain

name or a persistent URL. For the latter,

the Online Computer Library Center

offers a Persistent Uniform Resource

Locator (PURL) for a changing Web

address (for an overview, see [1]). It is

essentially a transparent link to wherever

your resource is currently hosted; its

destination can be updated accordingly.

Some decisions early on can greatly

impact the resource over its whole life

cycle. Consider the level of service you

want to offer. Is it a simple tool one step up

from a command-line interface or a whole

framework for large-scale analysis? How

will users be able to access it? Read more

about these options and how to make good

use of the infrastructure available to you in

Rule 4.

Throughout the life of your resource,

there may be many different people

involved in developing and maintaining

it. Documentation is important for both

developers and users of the resource. A

scientific Web resource should be offered

as open source software. Making your

resource a software project at SourceFor-

ge.net, for instance, greatly facilitates

development and maintenance. This also

lets you keep an open channel of commu-

nications with your users, tell them about

any major changes, and get their feedback

to shape future developments.

Eventually, the resource may have

outlived its usefulness. Read Rule 10 to

find out when and how to shut down

operations.

Rule 2: Discuss Respo sibilities

More than 58% of resources are

developed entirely by researchers without

a permanent position who will eventually

move to another institution.

As a graduate student, involve your

advisors early when you consider provid-

ing a Web resource. Chances are, they

already know a way to share the work

load. Discuss the issue of software main-

tenance, both for the time the original

developers are still on site and for the time

they have moved on. Do you want to take

your work with you or leave it behind?

As an advisor, remember that this issue

could come up, at the latest when your

student leaves. As the senior author,

solving such issues are your responsibility.

Feel free to direct students towards using a

certain software framework; creating such

lab rules limits responsibility in a good

way. You can even think of creating an

intergenerational treaty for software main-

tenance among students in different years.

If your resource is used by collaborators

and they think your program is valuable

enough, you could convince them to take

it over. The same is true for one of the

following institutions: If your resource has

a high impact and is useful to many

people, you may be able to convince

someone at the European Bioinformatics

Institute (EBI), National Center for Bio-

technology Information (NCBI), Nether-

lands Bioinformatics Centre (NBIC), or

the PSU Galaxy instance to take over.

Early decisions about the framework used

can have a big impact later on.

Rule 3: Know Your User Base

The most important component to

consider is the Web resource audience.

Come up with a use case: when and how

will another researcher want to use what

you are offering? When you know who

you are developing for, many decisions

become very straightforward. In our

survey, we determined that 36% of Web

resource providers think that only re-

searchers with programming experience

use their resource. If your audience can

manage to run your application on their

own computer, let them. It’s harder to

integrate a Web resource into a scripted

workflow.

On the flip side, 64% of resources are

also used by researchers without program-

Citation: Schultheiss SJ (2011) Ten Simple Rules for Providing a Scientific Web Resource. PLoS Comput
Biol 7(5): e1001126. doi:10.1371/journal.pcbi.1001126

Editor: Philip E. Bourne, University of California San Diego, United States of America

Published May 26, 2011

Copyright: � 2011 Sebastian J. Schultheiss. This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Funding: This work was funded by the TL Stiftung Tuebingen, Germany: http://www.tl-stiftung.de/
foerderpreise.php. The author holds a position at the Max Planck Society, Germany: http://fml.mpg.de. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: sebi@tuebingen.mpg.de

PLoS Computational Biology | www.ploscompbiol.org 1 May 2011 | Volume 7 | Issue 5 | e1001126

n

ming experience. They will appreciate a

graphical user interface. If you know your

users personally, they can give you ideas

about how to make the interface fit their

needs. Just watching collaborators or

students use your software or programs

like it will tell you a lot. Get users involved

early and include them in the development

process. As long as the Web resource is in

use, you can solicit feedback from users

and see if their needs have evolved (cf.

Rule 7).

Constant monitoring of usage patterns

and access statistics can be achieved by

tracking who visits the Web resource page.

If your institution is not already collecting

these data from visitors, you can set up a

free Web analytics tool within minutes.

Most scientists will come to your Web

site via a search engine. Use the indexing

power of the search engine spiders by

putting, for example, the paper title,

abstract, and keywords on the page. When

you follow the tips about naming your

resource in Rule 1, it should be easy to

find.

Rule 4: Use Services Available
to You during Development

The finest way out of much of the strife

with hosting and availability is to find

someone else to take care of it. If you work

on a larger campus or cooperate with

someone at an institution that already runs

several scientific Web resources, get in

touch with the administrators to set up

your tool on an established server. Such

decisions can greatly influence the soft-

ware development process. Be aware of

the Web address you use to publish your

resource. It’s best to use a persistent URL

or your own domain name for the

resource to make sure it is always available

under the published address (cf. Rule 1).

Estimate the number of potential simul-

taneous users. Together with the memory

and compute time requirements, this will

tell you about the kind of infrastructure

you will have to provide to make the

resource usable even with many queries

coming in at the same time. In an age of

high-throughput experiments, this can be

a lot. To get an estimate on the number of

simultaneous queries your setup can

handle, you can perform a stress test,

sending a high number of requests with a

script from an external source.

If your requirements seem enormous,

consider optimizing your program further

and finding redundancies between indi-

vidual queries that can be pre-computed

and stored. You can also offer an interface

to a cloud-computing on-demand re-

source, so users are paying for their own

computing time. Providing your own

large-scale computing infrastructure can

be very costly.

You will have to think about a user

interface for your resource. Here, an

existing framework can save you a lot of

time. Examples include Taverna [2],

where you provide a description of the

input and output in the Web resource

description language. Your resource is

accessed from a client workbench, in

which users can connect your program’s

output to others to create workflows. It still

runs on your own servers and you have to

provide the necessary software infrastruc-

ture for that.

Galaxy [3] is a customizable workbench

that you can download and run on your

own Web server. It lets you integrate any

command-line tool with a few lines of

XML; moreover, it even lets you connect

your own tools with the pre-packaged ones

to create transparent workflows for your

users. You don’t need to think about file

management and pretty user interfaces,

and for those time-intensive jobs, you can

easily connect your Galaxy instance to a

compute cluster or even run it in the

cloud.

If you want to build an interface from

scratch, there are also frameworks that

make this task easier. Aside from the

classic Apache, SQL, and PHP combina-

tion, there are a few more modern

alternatives: take a look at Ruby on Rails,

Tomcat, Pyjamas, or CherryPy.

Rule 5: Ensure Portability

Make sure that you can still install and

run the software on another machine. If

you want your software to be available

three years from now, consider this

strongly. Chances are that the server you

are developing on will be replaced or

software is updated, which often breaks

the functionality. Ensuring portability also

makes it easier for computational biolo-

gists to install your software locally. Ask a

colleague to install the resource from

scratch on another computer and you’ll

see where the pitfalls are.

A brute-force approach to portability is

creating a virtual machine (VM). If you

have a server where your resource runs

just fine, back up its hard disk and restore

it in a VM like VirtualBox. That way, you

have a running version of your server in a

single file. The VM approach is a

steamroller tactic for resources with very

intricate dependencies. This is a way to

provide users with the necessary disk

image to run your resource on the

compute cloud. However, it is still advis-

able to provide information on how to set

up your program from scratch. Together

with source code comments and a high-

level user manual, these three layers of

documentation will ensure portability.

Rule 6: Create an Open Source
Project

Your source code should be public if the

results are used in scientific publications.

This is needed for reproducibility (read

more about this in Rule 8).

To make your life easier, it is a good

idea to place your source code in a

repository such as SourceForge.net [4] or

Bioinformatics.org [5]. Then you don’t

have to take care of version control and

release issues and it’s easier for collabora-

tors to work together over distance. Most

of these open source software project sites

provide developers a means of communi-

cation both with each other and with end

users. You can choose between mailing

lists (with an online archive), a Web site

forum, or an FAQ page.

Many scientists develop programs for

one of the proprietary mathematical

environments that require expensive li-

censes to run. If you are still in the

planning stage, consider switching to an

open source alternative. Your funding

body may not be willing to pay for a score

of licenses just for the users of your Web

resource.

Using open source software, good

source code documentation, and standard

file formats will go a long way in making

your software able to run on other

computers (cf. Rules 5 and 7).

Rule 7: Provide Ample
Documentation and Listen to
Feedback

A good first impression is very impor-

tant for Web resources, too. It is crucial

that first-time users feel welcome on your

site. Provide good documentation and

some short info about parameter settings,

that is, accepted ranges and optional

settings. Ideally, there is a one-click testing

possibility with meaningful but easily

understood example data. If the output

of the example is well-defined, set it up to

run periodically as a functional test, for

instance during the build process.

Nothing teaches you about parameter

settings, file formats, and the general

purpose of a resource like a well-crafted

demonstration of what it can do, for

instance, in a video or screen cast. Many

of these points are part of journals’

PLoS Computational Biology | www.ploscompbiol.org 2 May 2011 | Volume 7 | Issue 5 | e1001126

instructions to authors and therefore

required when submitting a research

article about your Web resource.

A main complaint of the interviewed

scientists about working resources was lack

of documentation (41%). Beyond the

reference to the paper to be cited when

using the resource, you should include a

brief overview of the resource’s purpose,

for what kinds of data it is applicable, and

pointers to common pitfalls or preprocess-

ing steps that are not so obvious. The

latter is hard to imagine beforehand, so

find out from users what they consider

difficult.

It will be worth your while to set up a

channel of communication with your

users. Many source code repositories

provide such functions (cf. Rule 6), which

will save you a lot of time responding to

frequent questions users ask about the

resource. You can post announcements

about maintenance, updates, and bug

fixes, and best of all, experienced users

often will be there to answer recurring

questions raised by newbies, or you can

refer them to the collective wisdom of the

archives. It is also common practice to

provide an e-mail address where the

authors can be reached.

Make your life easier by providing a

comprehensive error report option that

users can click on when something fails,

thereby e-mailing you all the information

you need to find out what went wrong.

There are two more layers of documen-

tation: in addition to the high-level help

for end users, installation instructions will

ensure portability, and good source code

comments enable you to hand over

maintenance responsibility to another

developer, maybe even from the user

community (cf. Rule 9).

Rule 8: Facilitate
Reproducibility

Reproducibility is always a topic of

discussion in computational biology.

When a user analyzes data with your

Web resource, the results may end up in a

research article. Therefore, all the steps

needed to reproduce these results have to

be documented entirely. In your output,

provide users with details about the

parameter settings they used, the version

number, and information about the input

data.

Everything to run the analysis again

should be available to reviewers and

readers. This includes the source code of

the Web resource itself (cf. Rule 6).

It is good practice to make available

older versions of the resource for purposes

of reproducing results; at least boldly

display the Web resource’s current version

number on the site and hints about how

changes may affect the output.

If you change the server’s behavior,

your users have to know. Even if it is

merely a bug fix, be sure to report it

publicly in a place that will be noticed

when using the server. Keep in mind that

some users, for example, may have book-

marked the data submission page.

Rule 9: Plan Ahead: Long-Term
Maintenance

You will probably move to another

place during your career. If you leave

behind a Web resource, try to make the

transition to the new maintainer as

smoothly as possible. Ideally, a protocol

has already been established during the

planning phase (cf. Rule 1). In our survey,

we found that more than 24% of Web

resources will not be maintained after the

original developers leave. Ultimately, it is

the responsibility of the senior author of a

publication to make sure that this does not

happen, but it is a very important

consideration for all authors of a Web

resource publication.

Documentation of the source code and

the installation process will greatly facili-

tate the transition to new maintainers. If

there is no one in your old lab to take over,

but the resource is still heavily used, you

may be able to convince a current user or

a collaborator to take over maintaining the

resource. This will be even easier if the

program is an open source software

project, where a new developer can join

at any time.

You may want to take your software

with you and find a new home for it. In

some circumstances, this requires you to

change the Web resource’s address. If your

resource has been published in a journal,

try contacting them and ask to have the

link to your resource updated. Some

journals may require a formal correction.

Get your previous institution to link or

forward to the new address from the old

page for as long as possible. If you used a

persistent URL, all you need to do is

update the link (cf. Rule 1).

Rule 10: Switch off an Unused
Resource

During our study, we determined that,

while a surprising number of Web re-

sources are still available after a long time,

they may not always work any longer. For

users, this can be even more frustrating

than an unavailable page.

If your resource is no longer under

active development, chances are that it has

outlived its usefulness after some years.

After that, check to see if there is anyone

still using it or if the original publication

has been cited recently. This should be

easy when you followed the advice about

collecting statistics in Rule 3. If no one is

using your resource any longer, release the

source code one last time, and you’re

done.

If the resource is still useful to some

researchers, try posting a notice on the site

asking for someone to take over (cf. Rule

9). If all of that seems like too much work

and the source code alone won’t help

anyone, consider creating a VM that runs

the resource. When you still have access to

the server, this can be done in a matter of

hours.

By following these rules, your resource

will have a long and productive life.

Acknowledgments

The author would like to thank David J. Engel,

Verena A. Kottler, Christoph U. Malisi,

Gunnar Rätsch, and Eva-Maria Willing for

critically reading the manuscript, and Jonas

Behr, Regina Bohnert, Philipp Drewe, Andre

Kahles, Vipin Thankam Sreedharan, and

Christian Widmer for discussions. The com-

ments from Philip E. Bourne and the anony-

mous reviewers were greatly appreciated and

very helpful in improving this manuscript.

References

1. Simonson J, Berleant D, Zhang X, Xie M, Vo H
(1998) Version augmented URIs for reference

permanencevia an Apache module design. Com-
puter Networks and ISDN Systems 30: 337–

345.
2. Hull D, Wolstencroft K, Stevens R, Goble C,

Pocock MR, et al. (2006) Taverna: a tool for

building and running workflows of services.
Nucleic Acids Res 34: 729–732.

3. Goecks J, Nekrutenko A, Taylor J, The Galaxy
Team (2010) Galaxy: a comprehensive approachfor

supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome

Biol 11: R86. doi:10.1186/gb-2010-11-8-r86.

4. Geeknet, Inc (2010) SourceForge.net: open
source software development. Available: http://

sourceforge.net/. Accessed 8 April 2011.
5. Bioinformatics Organization (2010) Collaborative

development environment. Available: http://
www.bioinformatics.org/wiki/Hosting. Accessed

8 April 2011.

PLoS Computational Biology | www.ploscompbiol.org 3 May 2011 | Volume 7 | Issue 5 | e1001126

