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Abstract

Interaural time differences (ITDs) are the major cue for localizing low-frequency sounds. The activity of neuronal populations
in the brainstem encodes ITDs with an exquisite temporal acuity of about 10 ms. The response of single neurons, however,
also changes with other stimulus properties like the spectral composition of sound. The influence of stimulus frequency is
very different across neurons and thus it is unclear how ITDs are encoded independently of stimulus frequency by
populations of neurons. Here we fitted a statistical model to single-cell rate responses of the dorsal nucleus of the lateral
lemniscus. The model was used to evaluate the impact of single-cell response characteristics on the frequency-invariant
mutual information between rate response and ITD. We found a rough correspondence between the measured cell
characteristics and those predicted by computing mutual information. Furthermore, we studied two readout mechanisms, a
linear classifier and a two-channel rate difference decoder. The latter turned out to be better suited to decode the
population patterns obtained from the fitted model.

Citation: Lüling H, Siveke I, Grothe B, Leibold C (2011) Frequency-Invariant Representation of Interaural Time Differences in Mammals. PLoS Comput Biol 7(3):
e1002013. doi:10.1371/journal.pcbi.1002013

Editor: Karl J. Friston, University College London, United Kingdom

Received October 14, 2010; Accepted January 17, 2011; Published March 17, 2011
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Introduction

The neuronal representation of the azimuthal position of a low-

frequency sound source has been extensively studied across many

mammalian and avian species [1,2,3,4,5,6,7,8,9]. There is general

agreement that the stimulus parameter that carries most of this

positional information is the interaural time difference (ITD),

which is produced by the disparity of travelling times from the

sound source to the two ears [10,11,12]. It is also unquestioned

that ITDs are neuronally represented via a firing rate pattern in

populations of neurons in the brainstem. In mammals the

underlying binaural coincidence detection takes place in the

superior olivary complex both in the medial superior olive (MSO)

[1,3,7] and the low-frequency regions of the lateral superior olive

[13]. In birds the binaural coincidence detection is performed in

the Nucleus laminaris [4,8], which is analogous to the MSO

[14,15]. The way that ITDs are exactly represented by the firing

rates of neuron populations in the brainstem is still a matter of

debate and is presumed to vary across species [16,17,18]. Presently

all quantitative coding theories have only considered ITD

representations for stimuli with fixed spectral content [18,19,20].

Those theories showed that the psychophysical acuity can be

explained by the rate statistics of the best single neurons. The firing

rates of ITD encoding neurons are, however, strongly altered by

changes in stimulus frequency [2] as well as many other factors

such as sound level [1,21], interaural level difference [22] and the

presence and type of concurrent sounds [23,24]. Taking into

account additional stimulus dimensions complicates coding

theories, because different activity patterns encode for the same

ITD and thus the one-to-one relation between the firing rate of a

single neuron and the stimulus ITD is lost.

Here we develop a theory of ITD representation that is

invariant to one additional stimulus dimension: the frequency of a

pure tone. We compare encoding on the single-cell level with two

population encoding schemes. We find that single-cell mutual

information only roughly accounts for the observed variability of

the response properties. The population patterns, however, are

consistent with the idea of a two-channel code, in which the

stimulus ITD is linearly represented by the difference of the

summed activities in each hemisphere.

Results

The following analyses are based on recordings from the dorsal

nucleus of the lateral lemniscus (DNLL) of Mongolian gerbils

(Meriones unguiculatus). The DNLL is one stage downstream to the

superior olivary complex and receives input from both the MSO and

the lateral superior olive. Binaural DNLL responses have been shown

to reflect the ITD sensitivities of superior olivary complex neurons

well [25]. The data was obtained from N~153 single neurons from

41 animals (see Materials and Methods). In brief, we used pure tone

stimuli with frequencies covering +1=5 of an octave around the

neuron’s best frequency (BF). Stimuli were delivered binaurally at an

interaural intensity difference of 0 dB and varying ITDs.

The sensitivity of a single neuron to the ITD t of the pure tone

stimulus with frequency f is shown by the tone delay function,
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which measures the neuron’s discharge rate as a function of the

applied interaural phase difference (IPD) w which is the product of

ITD and stimulus frequency w~t|f . Tone delay functions in the

brainstem strongly depend on the frequency of the stimulus

(Figure. 1A). Classically, this frequency dependence of the tone

delay functions is quantified via the best IPD wbest at which the tone

delay function of a neuron takes its maximum. In the superior olivary

complex and the DNLL, the best IPD of single neurons changes

approximately linearly with frequency f ([3,13,25,26,27,28] and

Figure 1B),

wbest(f )~CPzCDf : ð1Þ

The parameters describing this linear relationship are the

characteristic phase (CP) and characteristic delay (CD). They

are obtained by circular-linear regression between the circular

variable wbest and the linear variable f (see Materials and

Methods). For a pure delay line model as suggested by Jeffress

[29] CD would be the difference of transmission delays from the

two ears to a coincidence detector neuron, whereas CP should be

zero. On the other hand, cells that receive inhibition from the

contralateral ear and excitation from the ipsilateral ear would

exhibit CP = 0.5. The distribution of CPs and CDs from our own

data are quite different from these theoretical predictions. The

CPs are distributed over the whole cycle with a bias towards

positive phases (Figure 1C). The distribution of CDs peaks at zero

and is skewed to negative CDs (Figure 1E). A circular-linear fit

revealed a negative correlation between CDs and CPs (Figure 1D)

with a slope of about 2 ms per cycle (mean resultant length

r~0:51, linear-circular correlation r~0:57, pv8:10{12 [30]).

A slightly larger correlation (r~0:52) was found between CP

and the product CD|BF (Figure 1F), which suggests a tonotopy

in characteristic delays (as also reported in [31]). A correlation

between BF and CD was further corroborated by splitting up the

data into four frequency bands with a width of 1/4 of an octave

(Figure 1G) and computing the circular linear fits in each of these

bands. The slopes of these fits correlate (r~{0:98,pv0:02) with

the mean BF in the bands suggesting that large CDs predom-

inantly occur in low-frequency bands (Figure 1H). For the further

analysis we therefore considered the frequency-scaled parameter

CD|BF instead of CD.

Single-cell mutual information
To understand how the observed distribution of CPs and CDs

affects the encoding of ITDs, we calculated the mutual

information between stimulus ITD t and the corresponding firing

rate r of a single cell,

I(r,t)~
X
r’,t’

prjt(r’jt’)pt(t’) log2

prjt(r’jt’)
pr(r’)

� �
: ð2Þ

The prior distribution pt of ITDs was obtained by assuming

uniformly distributed dihedral angles (see Materials and Methods).

The prior depends on the inter-ear distance d that determines the

maximal accessible ITD tmax and thus the physiological range of

ITDs ½{tmax,tmax�. We constructed the conditional distribution

prjt(r’jt’) of observing a rate r’ at a given ITD t’ from the recorded

firing rates as follows. We first fitted the mean tone delay functions

m(w,f ) by a cyclic Gaussian (Figure 1A). We then pooled all

recording conditions (ITD and stimulus frequency) that led to the

same mean firing rate m in one neuron and constructed neuron-

specific Gaussian rate distributions prjm(r’jm’) by fitting the

variance of the rate (Figure 2A and Materials and Methods).

From prjm we constructed conditional distributions prjt,f (r’jt’,f ’)~
prjm(r’jm(t’f ’)) of firing rates r’ for given ITD t’ and stimulus

frequency f ’. The distributions prjt(r’jt’) were obtained by

averaging over frequency, which reflects the assumption that

input frequencies are distributed uniformly under natural stimulus

conditions (the differences for 1=f distributed frequencies are only

minor; see Supporting Information Figure S1). All our analyzes

were done for neurons in the (best) frequency band between

800 Hz and 1000 Hz in which we had the most cells (N~66).

This distinction between frequency bands was necessary since the

shape of the tone delay function in the physiological phase range

strongly depended on the BF of the neuron. Nevertheless, the

distributions for the other frequency bands was qualitatively

similar as far as we can tell from the limited sample sizes (see

Supporting Information Figure S1).

Figure 2B illustrates the mutual information for arbitrary pairs

of CP and CD using a phase delay function m(w,f ) with the

average fit parameters of the population of neurons. Since the

formalism is symmetric with respect to both hemispheres, the

mutual information plot is mirror symmetric in the CP-CD|BF
plane. The bright regions with high frequency-invariant informa-

tion show distinctly negative slopes. The steepness of these slopes is

roughly {1, i.e. CD|BF&const:{CP. All neurons along such

a line thus have the same best phase

BP:~CPzCD|BF&const:

In the case of Figure 2B, this constant best phase equals about 0:1
cycles.

To understand what gives rise to high mutual information in

these regions, we plotted examples for cells with high and low

mutual information (Figure 2C). The ‘‘synthetic’’ cells with high

mutual information have the steepest slopes of their rate response

in the physiological range. The response functions of the cell with

highest mutual information (cell 2) are very similar for all

frequencies in the physiological range, which is indicative for the

frequency invariance of the ITD representation for this single

neuron. In general, however, the response of single neurons is not

frequency invariant, even for those with high mutual information.

Author Summary

Neuronal codes are usually studied by estimating how
much information the brain activity carries about the
stimulus. On a single cell level, the relevant features of
neuronal activity such as the firing rate or spike timing are
readily available. On a population level, where many
neurons together encode a stimulus property, finding the
most appropriate activity features is less obvious, partic-
ularly because the neurons respond with a huge cell-to-cell
variability. Here, using the example of the neuronal
representation of interaural time differences, we show
that the quality of the population code strongly depends
on the assumption — or the model — of the population
readout. We argue that invariances are useful constraints
to identify ‘‘good’’ population codes. Based on these ideas,
we suggest that the representation of interaural time
differences serves a two-channel code in which the
difference between the summed activities of the neurons
in the two hemispheres exhibits an invariant and linear
dependence on interaural time difference.

Frequency-Invariant Representation of ITDs
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The example cell in Figure 2C with low mutual information (cell 4)

exhibits the peak in the physiological range.

Figure 2B also shows that the values of CP and CD|BF are

not concentrated around the position of largest mutual informa-

tion, nor do they follow exactly the line with slope -1. Some of the

cells are even located at regions of the CP-CD|BF plane with

very low mutual information. We therefore quantified how much,

if at all, the experimentally observed distribution of CPs and CDs

provides an advantage for a frequency-invariant decoding of ITDs

in terms of single-cell mutual information. We generated mutual

information values for a surrogate set of 1000 cells, which was

obtained by shuffling the fit parameters of the mean tuning curves

m, while keeping CP and CD|BF constant. The mutual

information of this control set was compared to that of a second

surrogate set with shuffled CPs and CDs (Figure 2D). The gain in

single-cell information due to the observed CP-CD distribution is

rather small (0:04 bits on average) but significant (pv10{202,

Kolmogorov-Smirnoff test). We then set all CPs to zero without

changing the CDs, which would correspond to an idealized

Jeffress-like situation with only delay lines and no additional

phases. For such a setting, we find that the mean mutual

information would also become slightly worse by 0:015 bits

(pv10{44, Kolmogorov-Smirnoff test) as compared to the

measured distribution.

Next, we wanted to understand how much our single cell results

are determined by the type of animal and our stimulus. We thus

studied how the single-cell mutual information depends on inter-

ear distance d and stimulus length T . At first we evaluated the

influence of d. From equation (2), we know that the inter-ear

distance d influences the mutual information via the prior

distribution pt of ITDs. We used the firing statistics prjm
determined from the gerbil DNLL recordings to make predictions

about the population pattern of mutual information for hypothet-

ical animals with larger inter-ear distances than that of the gerbil.

The largest considered value gave rise to a maximal ITD

tmax~660 ms, which roughly corresponds to the situation in

Figure 1. Frequency-dependence of ITD sensitivity. (A) Tone delay functions for three exemplary DNLL neurons using five stimulus frequencies
(dark to light grey indicates low to high frequency) centered at BF. Circles depict the means of measurements, the solid lines show a cyclic Gaussian
fit (see Materials and Methods). (B) Best IPD vs. stimulus frequency (phase-frequency curves) for the three neurons from A (corresponding to the three
different line styles). Note that the phase axis is cyclic. (C) Distribution of characteristic phases (CPs) for 153 DNLL neurons. (D) CPs and characteristic
delays (CDs) exhibit circular-linear correlation. Best circular-linear fit is depicted by the solid line (a: slope). (E) Distribution of CDs. (F) Correlation
between CP and CD|BF. (G) Histogram of BFs. (H) Average slopes a of the CP, CD|BF distribution in the four frequency bands from G.
doi:10.1371/journal.pcbi.1002013.g001

Frequency-Invariant Representation of ITDs
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humans. We find the general tendency that for larger tmax the

stripe-like organization becomes less pronounced and the two

clusters of high mutual information fuse into one (Figure 3A). This

fusion is associated with the maximum of the mutual information

moving towards smaller characteristic phases. We thus conclude

that CPs different from zero are particularly useful for animals

with small head size. For animals with larger heads, cells with large

non-zero CPs still convey ITD information. However, they are less

essential, since ITD information is also available for small CPs.

In a second analysis, we made predictions for reduced stimulus

length in that we only considered the activity recorded during the

initial interval of length T (Figure 3B). The stripe-like pattern in

the mutual information profiles is present for every considered

interval length T . With decreasing interval length, we find a

reduction in both the separation of the stripes with high mutual

information and their thickness. In other words, a decrease in T

makes the maximum mutual information move towards smaller

CPs and the peaks of the phase delay function move into the

physiological range.

To find out whether the changes induced by the reduction of T

are due to different tone delay functions for onset and sustained

firing, or mainly attributable to the increase of noise, we also

calculated mutual information for scaled noise levels (Figure 3C).

For artificially increased noise levels the results were similar to

those in Figure 3B for decreasing duration T ; both separation and

thickness of the stripes with high mutual information are reduced.

However, for artificially decreased noise levels, the stripes with

high mutual information not only become thicker and fuse

together but also the maximum mutual information moves

towards larger characteristic phases. As a consequence, regions

with high mutual information also occur for both large positive CP

and CD and very negative CP and CD (see Discussion).

To summarize, single cells in the DNLL do generally not exhibit

frequency invariant ITD representations. However, the single cell

mutual information suggests that the observed distribution of CPs

and CDs is particularly suited to conserve frequency-invariant

ITD information. We thus propose that a frequency invariant ITD

representations may be found by testing appropriate readout

models for the population of DNLL responses.

Population codes
The single cell analysis has revealed two obvious problems: 1)

Some of the cells have very low values of mutual information. 2) It

is unclear why not all of the cells cluster at the CP-CD position

with maximal mutual information. To address these concerns we

next studied the coding capabilities of DNLL neurons on the level

of a population using simulated firing rate patterns of N~66
neurons in the frequency band between 800 and 1000 Hz

(Figure 1G) for different ITDs and stimulus frequencies.

First we used the rate patterns as input vectors to linear

classifiers (Figure 4A) that then produced a labelled line code with

‘‘grandmother neurons’’ that encode one specific azimuthal

position. For this purpose, linear support vector machines

[32,33] were trained in a one-vs.-one paradigm to classify the

population patterns according to their underlying ITD into K
categories (azimuth bins). The ITD resolution dt~2tmax=K of the

labelling scheme therefore is inversely proportional to the number

of categories. As expected, the test error (predicted acuity)

decreased and the training error increased with the number of

training samples both saturating at a number of about 5N
(Figure 4A). The test error converges to an acuity of about 17 ms,

which is in agreement with the psychophysical acuity of gerbils of

about 20 ms [34,35]. This final acuity is reached at roughly K~9
ITD bins.

Figure 2. Rate statistics and mutual information. (A) Variance s2 of the rate distributions as a function of mean firing rate m (squares averaged
over all 153 neurons) and a logarithmic fit (solid line). For low rates the slope of the variance is consistent with a Poisson process (see Materials and
Methods). (B) Mutual information (MI; grey levels) as a function of CP and CD|BF for average fit parameters of the tone delay function in the best
frequency band between 800 and 1000 Hz. Circles illustrate the distribution obtained from the DNLL population in this best frequency band. (C)
Firing rate as a function of ITD for four exemplary combinations of CP and CD (large circles with numbers in B). Grey bars indicate the physiological
range of ITDs. (D) Cumulative distributions of mutual information of the real CP-CD|BF pairs (black) and for 1000 repetitive shuffles of CP and
CD|BF (grey).
doi:10.1371/journal.pcbi.1002013.g002

Frequency-Invariant Representation of ITDs
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To show how much the negatively correlated distribution in the

CP-CD|BF plane contributes to the test error we again shuffled

the CP values, however, we did not find a significant change of the

test error. We therefore carried out further manipulations in the CP-

CD|BF space. First, we set all CPs to zero mimicking the

distribution of the idealized Jeffress model. Surprisingly, this

manipulation accounted for an improvement of about 3 ms of

(root-mean-square) acuity (pv10{116, t-test for 150 repeats). The

Jeffress model would thus be better suited than the actually observed

DNLL population patterns if neurons in higher-order nuclei acted

as linear classifiers, or equivalently, if higher-order centers exhibited

grand mother cells that fire specifically for small ITD intervals.

Second, we monitored the change of test error for rotated CP-

CD|BF distributions that were constructed by rotating the CP-

CD|BF position vectors of all single neurons by the same angle

(Figure 4B). For rotation angles about 1350 and 3150 the

manipulated CP-CD distribution gave rise to about 1 ms improved

acuity as compared to the unrotated case. These optimal angles

also roughly coincide with the rotation angles for which we also

find the mean single-cell mutual information to be maximal. For

none of the rotation angles, however, is the acuity as good as for

the Jeffress-type scheme with CP = 0.

A possible explanation for the above non-optimality of the

population rate code is that a faithful frequency-invariant

decoding of ITD could require less than the N~66 neurons that

we have used as input to our linear classifier, i.e. the observed CP

and CD values could be optimal for smaller subpopulations. We

therefore retrained the classifiers with fewer input neurons.

Figure 4C depicts the mean acuity of the linear classifier as a

function of the number of input units for both the actual and the

optimally rotated CP-CD|BF distributions. For each number of

input neurons, we chose the subset with highest values of single-

cell mutual information. The acuity decreases with subset size but

quickly saturates at about 25 neurons. There it is only slightly

worse (&v1 ms) than the optimally rotated CP-CD|BF distribu-

tion. The optimal rotation angles are independent of the subset

size (Figure 4D). The acuity for the Jeffress case (CP = 0), however,

is always about 3 ms better.

Interestingly, we also do not observe a correlation between

single cell mutual information and the weights of the classifiers (not

shown). This means that only very few features of the population

representation seem to be sufficient for the classifier to detect the

right ITD and the classifiers may learn different features of the

population pattern for each frequency.

From the above findings we conclude that 1) the actually

observed distribution of CPs and CDs is not optimal in terms of

the readout acuity of linear classifiers 2) only a small subset of cells

would be sufficient to achieve best acuity.

Figure 3. Parameter dependence of mutual information (MI). (A) MI as a function of CP and CD|BF for three different inter ear distances
and the respective physiological ranges ½{tmax,tmax�. The left plot is a copy of Figure 2D. Axis are the same for all subplots (see bottom left of C). The
triangles on the top indicate the CP of maximum mutual information, the ticks on the top indicate CP = 0. Triangles and ticks at the vertical axis
indicate the analogous CD values. (B) MI for three different stimulus lengths. Again, the left plot corresponds to the default case from Figure 2D.
Triangles follow the same convention as in A. The best phases (BP) are 0:16 cyc (T~200 ms), 0:15 cyc (T~150 ms), and 0:09 cyc (T~100 ms). (C) MI
for six different noise levels. Noise is defined as multiple of the variance s2

0 of the default case from Figure 2D. Note that the MI is depicted with
different grey scales (in bits).
doi:10.1371/journal.pcbi.1002013.g003

Frequency-Invariant Representation of ITDs
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As a second way to interpret the population rate pattern we

considered a bilateral difference model (or two-channel model)

[35,36], in which the total activity in one brain hemisphere is

subtracted from that in the other hemisphere. Again, we

concentrated on the frequency band between 800 and 1000 Hz,

since there the distribution of best frequencies was pretty much flat

and does not induce a sampling bias. We again simulated firing

rate patterns for different ITDs and stimulus frequencies based on

the rate distributions of the DNLL neurons. The bilateral (rate)

difference signal D was computed as the mean firing rate in the

population of simulated neurons minus the mean rate for an

identical population in the opposite hemisphere (with mirrored CP

and CD). The relation between the stimulus ITD t and the

difference signal D is very well represented by a linear function

(Figure 5A). The least squares fit D~at thus provides a linear

estimate of the stimulus ITD t̂t~D=a. The test error between t
and its estimate t̂t is largely independent of the stimulus frequency

and ITD (Figure 5B, C).

We next recomputed the test error for a hypothetical population

with all neurons having the same optimal combination of CP and

CD at which the mean mutual information from Figure 2D is

maximal. The relation between difference signal and ITD is no

longer linear and clearly depends on the stimulus frequency

(Figure 5D). As a result also the test error depends non-

monotonically on frequency with a minimum at the center

frequency of the band (Figure 5E). The observed variability in CP

and CD thus is responsible for the frequency-invariant linear

relation between ITD and the difference signal. Moreover, this

linearity is robust with respect to a small jitter in the CD and CP

values (Supporting Information Figures S2 and S3) and, hence,

this property does not depend on the exact distributions measured.

Figure S2 (Supporting Information) also shows that a similar linear

difference signal is obtained from the smaller subset (N~41) of

units measured with best frequencies between 600 and 800 Hz
indicating that the linear readout is not a specialty of the

considered best frequency band.

As before, we also determined the test error for manipulated cell

characteristics, i.e., rotations in CP-CD|BF space and CPs set to

zero (not shown). In all cases we found the original distribution of

CP and CD to clearly provide the best acuity of about 10 ms.

Specifically for the Jeffress-like situation (CP = 0), we find a a-

mean-square test error of 120 ms, i.e., the maximal ITD.

To conclude, for hemispheric rate difference representation the

experimentally observed distribution of CP and CD|BF is more

suitable in terms of test error and frequency invariance than all

artificial ones tested.

Discussion

Responses of ITD-sensitive neurons in the DNLL of gerbils

change with the frequency of a pure tone stimulus, similar to all other

ITD sensitive neurons in the brainstem [25]. Here, we have

evaluated this frequency-dependent modulation in terms of its

influence on the encoding of ITD by firing rate patterns of the

neuronal population. For the 153 recorded cells we have

characterized the frequency dependence by the two parameters

characteristic phase (CP) and characteristic delay (CD) [2]. We

found that the two parameters are significantly negatively correlated,

as has also been reported for the midbrain and DNLL of guinea pigs

[31,37], although there DNLL data did not reveale negative CDs.

Also consistent with these and several other studies in various

binaural brainstem nuclei and animals, we found that CPs are

broadly distributed over almost the whole phase cycle [3,6,28,38].

Analysis of single-cell mutual information revealed that the

observed distribution of CPs and CDs performs slightly better than

a distribution with shuffled CPs and CDs. Furthermore, the single-

Figure 4. Linear separability of population patterns. (A) Test error as a function of the number K of classifications bins for five different
numbers of training samples (N,3N,5N,7N,9N as indicated by grey level). Training errors are plotted as solid lines, test errors (localization acuity) are
plotted as dashed lines. (B) Difference in test errors (black) and single-cell mutual information (grey) as a function of the rotation angle. Positive
differences indicate that the value obtained with the non-rotated CP-CD distribution is larger. For the linear classifiers, the number of training samples
was 5N . (C) Test error as a function of the number of input neurons for the actually measured CP-CD distribution (solid line), for the optimal rotation
angle (dashed line), and for CP set to zero (grey). (D) Optimal rotation angles at which the test error difference from B has local maximum.
doi:10.1371/journal.pcbi.1002013.g004

Frequency-Invariant Representation of ITDs
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cell mutual information strongly depends on the noise level. We

found that for high noise levels peak-based codes are advantageous

in terms of mutual information. For low and moderate noise levels

we find mixed coding schemes to be viable: Both slopes and peaks

can be used to extract information and should be located in the

physiological range. These results are consistent with theoretical

work comparing slope and peak-based coding schemes [39,40].

There it is generally shown that for high noise levels strong signal

changes are preferred and thus binary-like (i.e., peak-based) codes

are beneficial. For low noise, slope-based codes are preferred since

only then can continuous rate changes be sampled well enough.

The statistical model allows derivation of hypothetical distribu-

tions of CP and CD for different head sizes. As expected, mutual

information grows with increasing inter-ear distance. Also the

regions of highest mutual information move towards smaller CPs

as we increased the inter-ear distance. Interestingly, this effect

corresponds well to the finding that for large mammals the medial

superior olive (MSO; with most CPs between 0 and 0:25 cycles) is

generally larger than for smaller mammals [41].

An increase in the inter-ear distance can alternatively be

interpreted as an increase of best frequency. In both cases tone

delay functions with peaks in the physiological range exhibit

increased mutual information. With this interpretation we can also

assess the situation when phase-locking is present up to several

kHz, as found in the barn owl [4,42]. There, as well as for a large

head diameter, the two regions of high mutual information merge

into one cluster centered about CP = CD = 0. As a consequence, a

Jeffress-like coding strategy with CP = 0 would be sufficient for

achieving high single-cell mutual information.

The variability of phase delay functions in the DNLL provides the

basis for a frequency-invariant population representation of ITDs.

We find that both of two readout strategies, a linear classifier and a

bilateral rate difference signal (two channel code) can explain a

coding acuity of down to 10 ms. For the linear classifier, however,

the observed distribution in CP-CD|BF space with BP clustered

about 0:1 cycles is suboptimal in that a Jeffress-type representation

with CP = 0 would account for a better acuity. For the bilateral

difference code the observed distribution of CPs and CDs seems

appropriate, particularly because of the linearity and the frequency

invariance of the difference signal. There, a Jeffress-like represen-

tation would yield a much lower acuity.

The behavioral acuity of gerbils at midline (Q~0) has been

estimated as 20 ms [34,35] and thus is worse than the acuity of

about 10 ms derived from the bilateral difference model. Such

hyperacuity of the estimator is not surprising as the relative noise

decreases with the size of the population. In general, hyperacuity

has two possible explanations. First, it may hint at several noisy

downstream readout stations before the localization signal is

translated to a behavioral response. As a second possibility,

however, it could also hint at hidden stimulus dimensions that are

not taken into account by the decoding model. As for the

frequency dependence discussed in our paper, one could also ask

for a code to be invariant with respect to intensity, background

noise etc.. Each of these additional dimensions, hence, reduces the

predictive value of single neurons. The real psychophysical acuity

should then be achieved by a decoding model that takes into

account all possible invariances assuming no further noise in the

readout.

Figure 5. Bilateral difference coding. (A) Difference between the mean rate of the contralateral and the ipsilateral DNLL population. Colors
indicate stimulus frequency from 800 Hz (blue) to 1000 Hz (red). (B) Test error as a function of frequency (black: root-mean-square error, grey:
maximal error). (C) Test error as a function of of ITD (black: root-mean-square error, grey: maximal error). (D–F) Same as A-C where all neurons are
simulated using the combination of CP and CD with highest mutual information.
doi:10.1371/journal.pcbi.1002013.g005
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Another possible discrepancy to psychophysical data is that the

acuity of the bilateral rate difference model is independent of

stimulus ITD. In humans the minimal audible angle at lateral

(azimuth Q~900) positions is up to 10 times worse than at frontal

positions (Q~00) [43]. However, the transformation from angle to

ITD only accounts for a factor of about 2 (see Materials and

Methods). Indeed, the psychophysical ITD resolution for low-

frequency pure tones is about 2 to 5 times worse for lateral

positions as for frontal ones [43]. In gerbils, localization acuity has

not yet been determined at locations different from midline.

However, the bilateral difference model predicts that in gerbils the

just noticeable ITD difference is independent of azimuth and

conversely the acuity in terms of azimuthal angle should be about

2 times worse for lateral positions than at midline. This feature

could be a specialty of animals with small head size, because if the

inter-ear distance gets larger more peaks of the phase delay

functions move into the physiological range and impair decoding

via a difference rate particularly for more lateral positions.

Non-zero CPs are most often thought to originate in the lateral

superior olive where neurons receive inhibition from contralateral

and excitation from ipsilateral. The combination of these

antiphasic signals is able to explain CPs around 0.5 and low

CDs. Such cells are generally called troughers. For neurons that

receive bilateral excitation (as in the MSO) CPs different from zero

still pose a major problem for mechanistic models of ITD

sensitivity as the physiological mechanisms that give rise to them

are not fully identified, yet. The classical Jeffress model [29] in

which the best ITD is solely determined by temporal latency

differences predicts constant CP = 0. Cells with small CPs are

generally called peakers. There are several candidate models for

non-zero CPs in binaurally excited neurons. 1) Ipsi- and

contralateral input fibers might have mismatched center frequen-

cies and thus a mismatch of phases might be induced by the

preprocessing of different cochlear filters [44]. 2) Morphological

asymmetries [45] of the coincidence detecting neuron can induce

distinct temporal filtering of the ipsi- and contralateral inputs. 3)

Phase-locked inhibition [7,26,46,47] that differs between ipsi- and

contralateral input can induce asymmetric phase shifts. 4) Phase

disparities may be a direct consequence of asymmetries in the ipsi-

and contralateral excitatory synaptic kinetics [48]. The present

study shows that generating specific CPs may not just be an

epiphenomenon of the physiological mechanisms that underlie

ITD-sensitive responses in the brainstem but may be required for

an optimal neuronal representation of ITD. Thus the physiological

mechanisms underlying ITD sensitivity should allow the deliberate

tuning of CPs, which argues against hard-wired solutions as (1) and

(2) and favors synaptic mechanisms like (3) and (4).

A problem in the interpretation of our data is that the DNLL is

not a primary nucleus in which the ITD-sensitive responses are

computed. The ITD representation in the DNLL might already be

imposed by secondary processing steps. Instead one would rather

want to compare population responses in the MSO (for low CPs)

and the low-frequency region of the lateral superior olive (for high

CPs). Single units in the MSO are, however, difficult to record

from. Data from a few tens of gerbil MSO units also shows

negatively correlated CP and CD with a broad distribution of CPs

(unpublished observation about data from [27]). The DNLL,

however, is a particularly good place to study ITD population

codes, since it is much easier to record from than the MSO and,

moreover, it is the first station in which genuine ITD-sensitive

responses from MSO (peakers) and lateral superior olive

(troughers) are combined [25]. The only major computation

occurring at the synapses from the superior olivary complex to the

DNLL seems to be noise reduction [21].

Most theoretical analyzes of neuronal representations deal with

only one or two stimulus dimensions as e.g. the frequency of a tone

or the loudness of a sound. In the example discussed in the present

paper the two stimulus dimensions ITD and frequency are both

physically and statistically independent since sound position and

sound spectrum are generally unrelated. Here, we have shown that

considering population responses across an invariant dimension

(frequency) of the stimulus not only allows the assessment of the

neuronal population representation in terms of coding acuity, but

also allows to evaluate, how different hypothetical invariant read-

out strategies fit to the population representation.

Materials and Methods

Ethics statement
All experiments were approved according to the German

Tierschutzgesetz (AZ 55.2-1-54-2531-57-05).

Animals and recordings
Single neurons (N~153) in the DNLL were recorded from 41

Mongolian gerbils (Meriones unguiculatus) of both sexes 2–3

months of age. The data have already been used for previous

publications [24,25]. There, detailed methods in terms of surgical

preparation, acoustic stimulus delivery, stimulus calibration, and

recording techniques have been described.

Stimuli
Stimuli were generated at 50 kHz sampling rate by TDT

System II or III (Tucker Davis Technologies). Digitally generated

stimuli were converted to analog signals (DA3-2/RP2-1, TDT),

attenuated (PA5, TDT), and delivered to the ear phones (Sony,

Stereo Dynamic Earphones, MDR-EX70LP).

The standard setting was stimulus duration of 200 ms plus

cosine rise/fall times of 5 ms, presented at a repetition rate of

2 Hz. To search for acoustically evoked responses, binaurally

uncorrelated noise stimuli were delivered. When a neuron was

encountered, first its best frequency (BF) and absolute threshold

was determined using binaurally identical pure tone stimulation.

The frequency that elicited responses at the lowest sound intensity

was defined as BF, the lowest sound intensity evoking a noticeable

response at BF as threshold. Sensitivity to interaural time

differences (ITDs) was primarily assessed by presenting a matrix

of pure-tone stimuli with varying ITDs and stimulus frequencies

20 dB above threshold. Different ITDs were presented over a

range equivalent to at least one cycle of the stimulus frequency f .

ITD sensitivity was tested for 5 frequencies around BF (covering

+1=5 of an octave) and an interaural intensity difference of 0 dB.

Each stimulus was repeated at least three times.

Tone delay functions
Tone delay functions describe the firing rate of a neuron as a

function of the stimulus ITD for a fixed stimulus frequency f . In

this paper, for the purpose of a simpler notation, we consider tone

delay functions to depend on the interaural phase difference (IPD)

w:~f |ITD. The rates were averaged over all repetitions of the

respective pure tone stimulus and fitted by the cyclic Gaussian

mf wð Þ~af exp bf cos½p(wf {w)�2{1
� �h i

zbf , ð3Þ

providing four fit parameters af ,bf ,bf , and wf . The parameter wf

accounts for the IPD at which the fit has its maximum value and is

called the best IPD wbest. Note that also negative values for the best

phase can occur and are kept as such in our analysis.
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Circular-linear regression
The best IPD wbest as a function of the frequency f of the pure

tone stimulus is called phase-frequency curve. It relates a circular

(phase) variable, wbest to a linear variable f . This relation is used to

derive single cell characteristic phase (CP) and characteristic delay

(CD) using Equation (1). Quantification of correlations between

CP and CD in the population of cells (Figure 1E) also requires to

assess the relation between a circular variable (CP) and a linear

variable (CD).

To fit linear relations between pairs of measurements

f(w1,x1), . . . ,(wN ,xN )g, in which the dependent variable w is a

circular quantity (e.g., CP, or IPD), and the independent variable

x is linear (e.g., CD, or frequency), we follow the approach by

Schmidt et al. (2009) [49]: Assuming the linear model

w(x)~AxzW0, one computes the mean resultant length r of the

circular errors between the measurements wn and the model w(xn):

r(A)~
XN

n~1

ei(wn{Axn{W0)

�����
�����: ð4Þ

If the model exactly fitted the data r would take the maximal value

N . Since in Equation (4) the dependence on the phase offset

parameter W0 cancels out, the slope parameter A can be obtained

from one-dimensional numerical maximization of r(A). For the

resulting optimal slope A, the offset W0 then follows from

maximizing

q(W0)~
X

n

cos(wn{Axn{W0),

which accounts for maximizing the overlap between the data

cloud and the linear fit on the surface of a cylinder. Maximization

of q was already suggested by Agapiou and Mc Alpine (2008) [31]

for fitting CP. Significance and correlation coefficients of circular

linear fits was evaluated using the Matlab package circstat [30].

Prior distribution
To obtain the mutual information between stimulus position

and single cell firing rate according to equation (2), we require a

model for the probability distribution pQ(Q’) of the interaural

angles of the sound sources.

A uniform distribution of the dihedral angles of the sound

sources corresponds to a distribution pQ(Q’)!cos(Q’) of interaural

angles Q on the great circle defined by the sound source elevation.

For zero elevation, Q is equivalent to the azimuth. Following

Blauert [12], the interaural angle is mapped to the ITD t via

t~
d

2c
(QzsinQ): ð5Þ

Unless otherwise mentioned, we use an inter-ear distance of

d~32 mm for the gerbil. Together with the speed of airborne

sound c~340 m=s this leads to a physiological range of ITDs of

120 ms. The prior distribution of ITDs is then obtained as

pt(t)~pQ(Q)
dQ

dt
!

cosQ(t)

1zcosQ(t)

in which Q(t) is the numerical inverse of equation (5).

Rate distributions
To obtain the mutual information between firing rate and

stimulus position following the procedure described after equation

(2), we require an estimate for the conditional probability

distribution prjm of observing a firing rate r given a stimulus that

evoked mean response rate m. The corresponding rate histograms

were constructed cell-wise for each mean firing rate m and fitted by

a Gaussian (Figure 2B),

prjm rjmð Þ!h rð Þexp {
(r{m)2

2var(r)

 !
: ð6Þ

Here the step function h(r) is included to clip negative firing rates,

it equals 1 for r§0 and zero for rv0. The variance var(r) (pooled

over over all cells) could be fitted by a logarithmic relation

var(r)~v0ln(1zr=r):

For a stimulus length of T~200 ms the fit parameters were

v0~46:2 Hz2 and r~11 Hz. For small rates the logarithm can be

expanded and leads to the approximate relation var(r)&v0=rr.

The variance of the spike count #~rT thus becomes

var(#)~1:05#, which is Poissonian to an excellent approxima-

tion. For large rates the variance of the spike count increases

strongly sublinear meaning that DNLL cells encode much more

faithfully than Poisson at high rates [21].

Linear classifiers
To evaluate the possibility of a population representation of

ITDs via grandmother neurons, we defined K categories (labels)

which correspond to ITDs being in intervals of size dt~2tmax=K .

Grandmother neurons are assumed to respond to ITDs from only

one of these bins. Using the machine learning package Shogun

[33], we learned the weights w1 . . . ,w66 of linear decision variables

h fr1, . . . ,r66gð Þ~
X66

n~1

rnwn{w0

with input data fr1, . . . ,r66g generated by the stochastic model

that was fitted to the DNLL rate responses. Training was done in a

one-vs.-one mode, i.e., for each pair of bins we trained a support

vector machine (SVM) to distinguish between those two categories.

Thus, for K ITD bins a total of K(K{1)=2 SVMs had to be

trained. The estimated ITD bin k̂k[f0,:::,K{1g of the pattern is

the one which has the most votes from the (K{1) SVMs that

were trained to classify it. The grandmother neurons are thus

assumed to implement a winner-take-all based on the number of

votes. The (root mean square) test error on a set of M test inputs is

computed as

e~ M{1
XM
m~1

({tmaxzk̂kmdt{tm)2

 !1
2

:

Supporting Information

Figure S1 Robustness of single cell mutual information. (A–D)

Single cell mutual information for different best frequencies. White
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circles represent measured CP, CD|BF values for the cells in the

respective best frequency band. (E,F) Single cell mutual informa-

tion for uniform (E) and power-law (F) frequency distribution (E is

the same grey level plot as C).

(PDF)

Figure S2 Robustness of linear rate difference signal. Left

column: Linear rate difference code for a model population at

which the CP, CD|BF values are jittered around the measured

values according to a Gaussian distributions with standard

deviation 0:023 cyc. for CP and 0:22 cyc. for CD|BF (see

Supporting Information Figure S3). Right column: Linear rate

difference code for the 41 cells in the (best) frequency band

between 600 and 800 Hz. The arrangement of the sub panels is

identical to those in Figure 5 of the main paper.

(PDF)

Figure S3 Robustness of CP, CD estimate. (A) Measured

distribution (white) and one example of a surrogate distribution

(black) obtained by randomly generating spike counts from a

Gaussian distribution with cell-specific mean and variance. (B,C)

Four surrogate spike counts (like in A) were generated for each cell

and used to derive cell-wise standard errors of the mean (SEM) for

CP and CD|BF. (B) Cumulative distribution of SEM for CP

(N~66 cells). Vertical lines indicate the SEM values of about

0:023 cyc. and 0:049 cyc. at the 67% and 90% quantile,

respectively. (C) Same as B for CD|BF, with SEM values

0:022 cyc. and 0:047 cyc. at the 67% and 90% quantiles.

(PDF)
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