
Dynamic Phenotypic Clustering in Noisy Ecosystems
Morten Ernebjerg1, Roy Kishony1,2*

1 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America, 2 School of Engineering and Applied Sciences, Harvard

University, Cambridge, Massachusetts, United States of America

Abstract

In natural ecosystems, hundreds of species typically share the same environment and are connected by a dense network of
interactions such as predation or competition for resources. Much is known about how fixed ecological niches can
determine species abundances in such systems, but far less attention has been paid to patterns of abundances in randomly
varying environments. Here, we study this question in a simple model of competition between many species in a patchy
ecosystem with randomly fluctuating environmental conditions. Paradoxically, we find that introducing noise can actually
induce ordered patterns of abundance-fluctuations, leading to a distinct periodic variation in the correlations between
species as a function of the phenotypic distance between them; here, difference in growth rate. This is further accompanied
by the formation of discrete, dynamic clusters of abundant species along this otherwise continuous phenotypic axis. These
ordered patterns depend on the collective behavior of many species; they disappear when only individual or pairs of species
are considered in isolation. We show that they arise from a balance between the tendency of shared environmental noise to
synchronize species abundances and the tendency for competition among species to make them fluctuate out of step. Our
results demonstrate that in highly interconnected ecosystems, noise can act as an ordering force, dynamically generating
ecological patterns even in environments lacking explicit niches.

Citation: Ernebjerg M, Kishony R (2011) Dynamic Phenotypic Clustering in Noisy Ecosystems. PLoS Comput Biol 7(3): e1002017. doi:10.1371/journal.pcbi.1002017

Editor: Van Savage, University of California, Los Angeles, United States of America

Received September 26, 2010; Accepted January 29, 2011; Published March 17, 2011

Copyright: � 2011 Ernebjerg, Kishony. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This investigation was aided by a postdoctoral fellowship from the Jane Coffin Childs Memorial Fund for Medical Research to ME, and RK acknowledges
the support of a James S. McDonnell Foundation 21st Century Science Initiative in Studying Complex Systems Research Award and from National Institutes of
Health grants 5P50 GM068763-07 (Murray) SUB0015 and R01 GM081617. The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: roy_kishony@hms.harvard.edu

Introduction

Species abundances and their variation over time are quantities

of fundamental importance in any ecosystem: understanding the

forces that shape them is a key part of central problems in ecology,

ranging from conceptual questions about the role of neutral

processes [1,2] to practical issues in biodiversity conservation [3].

One major driver of changes in species abundances is environ-

mental influences which vary across time and space, such as the

weather [4–6]. A classic example of an ecological phenomenon

caused by such environmental noise is the Moran effect, the

tendency for a shared fluctuating environment to synchronize the

variations in abundance among species and across space [7–10].

This effect has now been studied in systems with colored noise

[11–13] and species dispersal [14], and in small food webs [15–

19]. The synchronizing effect of noise, however, is opposed by

negative interactions between species (e.g. through resource

competition or predation) which cause compensatory dynamics: when

the abundance of one species increases, the abundance of others

tend to decrease, creating out-of-step variations [20]. Although

significant progress has been made towards quantifying the total

impact of each of these factors [21–23], it remains unknown how

the tension between them influences the dynamics in natural

ecosystems. In such systems, many phenotypically distinct species

are embedded in a tangled web of direct and indirect interactions

that make it hard to predict the effect of even simple disturbances

[24–26], and non-trivial collective effects could play a significant

role. For instance, even in the absence of noise species interactions

can lead to static, clumped patterns across phenotype space [27],

providing a possible explanation for the widely observed tendency

for species in a given ecosystem to cluster around a few preferred

body sizes [28,29]. Such phenotypic patterns could be ubiquitous

but have received relatively little attention [30].

The idea that the interplay between environmental noise and

inter-species interactions could lead to non-trivial effects is

supported by both theoretical and empirical studies of ecosystem

dynamics. Even single- or few-species ecological models exhibit a

range of complex behaviors, including bifurcations and chaos [31],

strong amplification of environmental noise [32–34], noise-

induced oscillations [35,36], and pattern formation driven by

demographic fluctuations [37]. Empirical observations in nature

and laboratory experiments have similarly revealed complex

dynamics, including chaotic behavior [38,39], environmental

noise and density-dependence intermingling in determining single

species abundances [9], and cases where synchrony in the

abundance of a single species across landscapes propagates down

a food-web [40].

In this article, we show that environmental noise can indeed

lead to robust, dynamic patterns in phenotype space. We

introduce a simple model of the combined effect of noise and

competition in an ecosystem with many species differing in their

reliance on growth rate and efficiency, respectively, for survival.

To focus on dynamically emerging patterns rather than on pre-

imposed niche differences, we use a minimalist patch-model

framework in which all species compete for a single resource and

undergo periodic, global dispersal between the patches. Each
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species is entirely defined simply by its rate of growth and its

efficiency in turning resources into offspring. We start by

considering the model behavior in a fixed environment, showing

that it allows many species to coexist stably. We then introduce

external environmental noise and show that it gives rise to

systematic and robust alternating patterns of species-species

correlations which are accompanied by the formation of dynamic

clusters of abundant species in phenotype space. Finally, we show

that these patterns directly reflect a balance between the tendency

of noise to synchronize different species and the tendency of

competitive interactions to create abundance-differences.

Results

Ecosystems model
Our patch model is similar to both the theoretical model

proposed by Wilson [41] and to (the metapopulation version of)

the experimental yeast system of MacLean and Gudelj [42]. The

specific formulation was inspired by the rich microbial commu-

nities found in soil (which exhibit many of the same broad

ecological patterns as macroscopic species [43]), but its basic

features – patchiness, repeated environmental disturbances, and

the presence of a range of different phenotypic strategies – are

shared by many ecosystems. In this sense, for instance, our model

is similar to a model of competition between grasses analyzed by

Tilman [44,45]. Hence, we believe that our conclusions will also

be relevant to many macroscopic ecosystems.

A key feature of the soil environment, as experienced by

microbes, is its granular nature, with dividing cells typically found

in separated pockets in the soil matrix [46]. These communities

are not static: cells are constantly dispersed by weather and fresh

resources are added and washed away continuously. Our model

describes an ecosystem of N species competing for a single

resource on multiple patches containing a fixed amount of the

resource (Figure 1). The dynamics consists of repeated, two-phase

cycles of local reproduction of individuals on their patches until

the resource is depleted, followed by global dispersal to fresh

patches (representing periodic environmental influence due to

e.g. rainwater). The appearance of full nutrient patches can

represent either the dispersal to existing but hitherto unoccupied

locations or the addition of new resource by the environmental

disturbance (e.g. deposited by water flow). Each species is

described by two basic metabolic parameters, growth rate and

efficiency [47], allowing us to consider the behavior of many

species spread along continuous phenotype axes. Since efficiency

would not confer an advantage unless resource availability is what

limits growth, the model assumes that dispersal happens only

after all resources have been exhausted. This assumption applies

whenever disturbances are rare compared to the typical rates of

growth, either because the dispersal events are intrinsically spaced

out or because the resources are so finely divided that they only

support short bursts of growth. An example of the first case is

ecosystems where dispersal represents a yearly occurrence (e.g.

for seeding plants), while the second case is likely to apply to e.g.

microbes feeding off scattered organic matter in soil or the ocean

(‘marine snow’ [48]).

For simplicity, we assumed that all nutrient patches are

identical and always contain the same amount of resource at the

beginning of a cycle. We also worked in the limit of infinitely

many patches and hence infinitely large populations, allowing us

to consider the impact of environmental noise on species

abundance without complications due to demographic stochas-

ticity.

Growth cycle number t starts with a global seeding pool in

which the abundance per patch of each species is given by the

vector n(t) = (n1(t), n2(t),…, nN(t)). From this pool, a fraction a of

individuals randomly gets seeded onto a new collection of patches,

while the remaining fraction, (12a), of the cells is washed out of

the system. We assumed a is very small so that the probability that

a patch receives a total of m1 individuals of species 1, m2 of species

2 etc. is a product of Poisson probabilities:

P(m; an(t))~ P
N

k~1

ank tð Þð Þmk

mk!
e{ank tð Þ ð1Þ

where m = (m1, m2,…, mN). The two traits characterizing each

species are: (1) growth rate, m – the rate of exponential

reproduction on a nutrient patch while resources are available,

and (2) efficiency in turning nutrients into offspring, Y – the

number of offspring that can be produced by a single individual if

it consumes all the resource on a patch. After seeding, each

individual of species k starts replicating at rate mk while consuming

the shared resource on its patch at a rate of 1/Yk units per

offspring. Growth on a given patch stops when the resource on

that patch is depleted. The time at which this happens (T) is a

function of the initial abundance of each species on the patch, as

well as of their growth rates and efficiencies, i.e. T = T(m;m,Y),

where the vectors m and Y represent the growth and efficiency

parameters for all species, respectively (see Methods). The final

abundance of species k, averaged across all patches with this

seeding, is then simply

fk(m)~mk exp mkT(m; m,Y)ð Þ: ð2Þ

Since the interval between dispersal events is assumed to be longer

than all growth-times, only the final abundances matter. The new

average per-patch abundances, n(t+1), after all growth has stopped

is found by averaging these final abundance over all possible

seeding configurations:

n(tz1)~
X

m

P(m; an(t))f(m), ð3Þ

Author Summary

In natural ecosystems, hundreds of species with different
characteristics typically live side by side, some competing
for the same foods and some preying on others. A central
question in ecology is how the abundance of a given
species in such an ecosystem depends on its particular
characteristics (its phenotype). Clearly, fixed environments
can favor certain phenotypes (thick fur in a cold climate),
but what happens when environmental conditions fluctu-
ate randomly as e.g. the weather does? We investigated
this question using a simple mathematical model of an
ecosystem with many competing species. We found that,
paradoxically, randomness in the environment can lead to
the appearance of ordered clusters of abundant species
with similar phenotypes, with the species adopting
intermediate phenotypes being much less abundant (a
mountains-and-valleys pattern). The clusters move around
so that different phenotypes are favored at different times.
We found that these effects arise from the tension
between the tendency of noise to level out difference in
abundances and the tendency of competition to create
larger abundance differences.

Noise-Induced Phenotypic Clustering
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where f(m) = (f1(m), f2(m),…, fN(m)). Equation 3 is the funda-

mental dynamical equation for the per-patch abundances at the

end of growth phase. It expresses the fact that final species

abundances in one cycle determine the abundances in the next by

setting the probabilities of the various possible initial seedings.

Details of the model and simulations are given in the Methods

section.
We note that dispersal and the availability of new resources are

assumed to be linked. Such linkage is natural if both are driven by

the same external factor (e.g. rainfall dispersing bacterial cells and

depositing new resources) or if one of them is driving the other.

For instance, dispersal can effectively generate new resources if

empty patches with new resources are always available and are

simply being invaded by dispersal.

Coexistence of many species
While models of competition for a single resource typically lead

to competitive exclusion – a single species comes to dominate and

drives all others extinct [49,50] – division into patches can allow

many species to coexist [45,51]. Indeed, numerical simulations of

our model for fixed a showed that many species can be stably

maintained (Figure 2), and it can be argued explicitly that

arbitrarily many species can coexist if the amount of resource on

each patch is very large (see Methods). The stabilizing mechanism

that makes coexistence possible can be understood as a frequency-

dependent selection during the growth-phase. When the total

population density fluctuates up, patches are more likely to be

seeded with more species, which intensifies competition and

promotes selection for fast growth. If fast-growing species are also

less efficient, their increased frequency drives the total population

density back down. Conversely, when the population density is

decreased, species have a higher probability of growing on patches

with few or no competitors. This allows high-efficiency species to

grow to high densities even if they are growing slowly, leading to

an increase in the overall population. These growth-phase

selection pressures – favoring speed (m) and yield (Y), respectively–

are examples of R- and K-selection [52], and can also be

interpreted in terms of different levels of selection introduced by

the division of the population into isolated groups [53].

The frequency-dependent fitness can lead to stable, steady-state

solutions (fixpoints), n*, of Equation 3 such that n(t+1) = n(t) = n*:

species abundances relax back to their steady state values following

small perturbations (Figure 2). For such stabilization to work,

however, constraints must prevent species from optimizing both

growth and efficiency simultaneously and hence form a ‘super-

species’ that will drive all other species extinct [50]. Cost-benefit

reasoning suggests that such trade-offs will indeed generically be

present, e.g. high efficiency will typically require more extensive

metabolic machinery and hence divert energy away from cellular

reproduction [54], and plants must divide their resources between

e.g. root and seeds [55]. Such trade-offs have indeed been found

empirically in a number of contexts [55–58], and trade-offs

Figure 1. A grow-and-disperse patch model of competition for a single resource. Individuals (red, blue dots) are randomly distributed on
identical nutrient patches (yellow discs) and grow exponentially until the single resource on their patch is exhausted. Once growth has ceased on all
patches, a dispersal event collects all individuals into a seeding pool. The cycle then starts anew by seeding new patches with a fraction a of the
individuals from the seeding pool. Each species is defined by two properties: its growth rate on a patch (m) and its efficiency in turning resources into
offspring (Y, number of offspring per patch in the absence of competitors) – for clarity, only two species are shown. An efficient but slow species (blue
dots) grows to high densities when not subject to strong intra-patch competition, while the faster, inefficient species (red dots) has an advantage
when competing with the slower species on the same patch. Since the seeding pool depends on the outcome of the previous round, a feedback loop
regulates the selective pressure (see main text).
doi:10.1371/journal.pcbi.1002017.g001

Noise-Induced Phenotypic Clustering
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between the rate and efficiency of resource utilization has been

shown to allow two distinct strains of yeast to coexist [42]. As our

focus is on the dynamics of the ecosystem rather than its assembly

through evolution, we will assume the existence of appropriate m-Y

trade-offs which allow community coexistence. Because of the

stabilizing mechanism, trade-offs do not uniquely fix m and Y for

each species; instead, a range of different values are possible (each

leading to different steady state abundances), albeit the range of

parameters choices narrows as two species become very similar

(Supplementary Figures S1 and S2). To have an unbiased baseline,

we chose sets of parameters that lead to equal species abundance

at steady state, i.e. nk
* = n0 for all species k. Given n0, m, and a, we

can numerically solve the fixpoint equation n(t+1) = n(t) for the

species efficiencies Y using Equations 1 and 3 – see Figure 2A.

Environmental noise leads to clustering of species in
phenotype space

We introduced shared environmental noise through fluctuations

in the dispersal dilution factor a which represents the strength of the

environmental disturbance and affects all species in each step.

Specifically, we drew an independent, random a-value in each cycle

(white noise) from a fixed log-normal distribution. This choice is

convenient for keeping the expectation value of the long-term

dilution factor fixed as we changed the noise intensity, but our

conclusions do not depends on the exact distribution (see Methods).

The environmental noise was strongly amplified: a 15%

variation in a around the mean causes both the total abundance

and that of individual species to fluctuate over several orders of

magnitude (Figure 3A). Individual species exhibited short ‘bursts’

of high abundance and occasionally maintained a relatively high

abundance over long periods. No single species permanently

gained the upper hand – instead, there was a constant, slow

turnover of species, reminiscent of that observed in plankton

communities [59].

But while the fluctuations in the abundance of any single species

are erratic, the competitive interactions acted to create a striking

coherent pattern in the relative fluctuations of different species. At

any typical time, the most abundant species formed clusters in

phenotype space, separated by ‘valleys’ of low-abundance species

(Figure 3B and Supplementary Figures S3, S4, and S5). Due to the

turnover of dominant species, the number, and height of clusters

changed over time, but the peak-and-valley pattern itself was

robust. Furthermore, peaks tended to have approximately the

same width in phenotype space. This clustered pattern remained

when averaging over many cycles, albeit with a smaller amplitude

(Figure 3B, bottom panel), and also appeared across replica

systems started at different random configurations. Increasing the

noise intensity has little impact on the typical size of the clusters,

but naturally leads to larger abundance differences. At very high

noise levels, non-linear effects – presumably related to the

stabilizing mechanism discussed above – stabilizes rare species at

low densities, leading to clusters separated by very distinct valleys

(Supplementary Figure S6). Extinction of species can occur at very

high noise levels, but was never observed at the noise strengths

discussed in this paper.

Environmental noise and multi-species interactions
combine to create alternating correlations

To understand how the phenotypic clusters are formed, we

looked at the pair-wise correlation between species abundances in

simulations of the complete model and constrained versions of it

(data series of 105 cycles). When plotted as a function of the

phenotypic difference between them, the correlation between two

species in the complete model alternates between positive and

negative values (Figure 4A, purple), reflecting the clustering we

observed in Figure 3B (since ‘peak-species’ move in synchrony with

one another, but out of step with ‘valley-species’). To separate the

contribution of noise and species interaction to this oscillatory

Figure 2. Multiple species can form stable communities given appropriate trade-off between growth rate and efficiency. (A) Growth
rates and efficiencies for 15 species coexisting at fixed, equal densities (nk = 100/15 per patch; dispersal dilution a = 0.001). (B) Time-trace of the
system in panel A started at the fixpoint, but subjected to a perturbation in a in cycle t = 1000 (spike in upper panel). The response of the 15 species is
shown in the lower panel: the three representative species marked in color in panel A are shown with heavy lines, the remaining with thin grey lines.
The perturbation drives the species abundances apart, but they relax back towards the steady state, indicating stable community coexistence (see
also Methods).
doi:10.1371/journal.pcbi.1002017.g002

Noise-Induced Phenotypic Clustering
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pattern, we repeated the simulation with the exact same noise (same

series of a-values) while artificially fixing the abundance of either all

but one, or all but two species, to their steady state values. These two

types of simulations maintain the properties of the steady state while

singling out the contribution of the noise itself and the pair-wise

interactions combined with noise, respectively. For the single-

species version, we simulated each species separately (N simulation

runs) and computed pair-wise correlations between the different

simulations; for the pairs, we simulated all pairs (N2 simulations) and

computed the correlation of every pair of species within the

corresponding simulation. We found that when each single species

fluctuates independently, the full dynamics is determined by the

noise and all species remain strongly positively correlated with each

other regardless of how different they are (Figure 4A, black; no

interactions – see also Supplementary Figure S5). Allowing pairs of

species to fluctuate keeps similar species positively correlated, but

causes species which are sufficiently phenotypically different

become anti-correlated (Figure 4A, green; pair-wise interactions).

Hence, one- or two-species dynamics lead to the standard

behaviors – Moran effect and compensatory dynamics, respec-

tively. The latter effect is also visible in the response to an

instantaneous increase in the abundance of a single species: the

abundances of the other species drop (Supplementary Figure S7).

The combination of noise and pair-wise interactions account

correctly for the positive correlation between close species and for

the negative correlation with some distant species, as seen in the

complete model. However, pair-wise interactions alone are not

sufficient for explaining the alternating patterns of multiple peaks

of positive and negative correlations: this is a collective

phenomenon requiring the interaction of many species. It only

appears as we increase the number species allowed to fluctuate

(Supplementary Figure S8).

Figure 3. Environmental noise leads to clusters of abundant species in phenotype space. (A) Time-trace of the system from Figure 2 in the
presence of noise in the dispersal dilution factor a. From top to bottom, the panels show: time-traces of a, the total per-patch abundance, and the
per-patch abundances of the three representative species from Figure 2A. The dilution rate is drawn independently every cycle from a log-normal
distribution with a coefficient of variation of sa/,a. = 0.15. The total and individual abundances vary over several orders of magnitudes, with
different species taking turns being the most abundant. (B) Examples of the species abundances profile in phenotype space at specific times (tA, tB, tC;
indicated by vertical black lines in panel B), and the time-averaged profile. The species are arranged by increasing growth rate (the x-coordinates are
zk = log(mk)). The top three panels show cases of one, two, and three dominant peaks, examples of the typical peak-and-valley pattern induced by the
environmental noise (see also Supplementary Figures S3 and S4). The number, position, and height of the peaks vary across time, but the uneven
distribution remains when averaging over 50,000 time steps (bottom panel). Colored dots indicate the three representative species from panel A.
doi:10.1371/journal.pcbi.1002017.g003

Noise-Induced Phenotypic Clustering
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Figure 4. Alternating patterns of species correlation and clustering results from a balance between noise and many-species
interactions. (A) Pair-wise correlations of species as a function of their phenotypic difference. Shown are the correlations in the full model (purple),
and when only one species (No interactions, black) or two species (Pair-wise interactions, green) are allowed to fluctuate, all for the exact same noise-
series in the dispersal dilution factor a (coefficient of variation 0.15). Dashed lines are splines through the mean values to guide the eye; the y-axis has
been stretched near 0 to make details clearer. Without interaction, the individually fluctuating species show almost 100% correlations (Moran effect).
Pair-wise interactions give rise to negative correlations between sufficiently different species (compensatory dynamics). However, only when all
species are interacting do we see alternating correlations, indicating species clustering in phenotype space. Correlations are calculated from a data-
series of 105 steps. Since some timescales in the model are longer than simulations can feasibly be run, the correlations calculated depend on the
length of the simulated run; however, here we are interested only in the contrast between the three patterns for a fixed simulation time. (B) Stability
(Relaxation time, t; triangles) and tendency to be generated by noise (Noise-coupling, c; squares) for the 15 basic abundance perturbations around
the steady state (eigenvectors of the linearized interactions, see Methods). The 15 perturbations are arranged by roughness, as illustrated by the three

Noise-Induced Phenotypic Clustering
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Clustering of species in phenotype space reflects a
balance between the Moran effect and compensatory
dynamics

The mechanism behind the species clustering in phenotype

space can be understood as a dynamic balance between the

smoothing (synchronizing) effect of noise and the roughening

effects of interactions. When the system is perturbed by a change

in the dilution parameter a, all the species change their

abundances by similar amounts and in the same direction,

generating a relatively smooth (uniform) change in the abundance

profile across phenotype space. As shown above, if the species do

not interact with each other they will move up and down in almost

perfect lockstep and hence maintain a flat uniform profile (equal

abundances). But if the species do in fact all compete, moving in

lockstep means that every species experiences either increased or

decreased competition from all the others after a perturbation and

hence quickly gets pushed back to the fixpoint. If, for instance, all

species simultaneously become more abundant, the resulting

shortage of food will quickly decimate each one of them. Now

suppose instead that the system is in a state where some species are

above their fixpoint abundances and others below it – i.e. have an

abundance profile that oscillates up and down. In that case, each

species experiences a combination of less competition from species

that are below their normal abundance and more competition from

over-abundant species. These competitive differences partially

cancel each other out, leading to a decreased pull on the

abundance of each species and hence a slower relaxation back to

the steady state. The more rugged the profile, the slower the

relaxation: if similar species can have very different abundances,

they can better cancel out each other’s effects. We conclude that

noise tends to generate smooth abundance profiles across

phenotype space but, conversely, that the most stable profiles

are the very jagged ones. We therefore expect that the typical

abundance profile we observe is one that is neither completely flat

nor maximally jagged, but instead changes smoothly between high

and low abundances i.e. exhibits clusters of abundant species.

This heuristic argument can be tested rigorously by considering

a simplified version of our model (Figure 4B). By expanding

Equation 3 around the fixpoint n* and keeping only the leading

(linear) terms, we obtain a good approximation for weak noise (see

Methods). The interactions between species are now described by

a single N6N matrix J, and the eigenvectors of this matrix describe

N independent deformations of the abundance profile around the

steady state. These basic deformations can be sorted by their

smoothness in phenotype space and are ordered accordingly on

the x-axis in Figure 4B – three example profiles are illustrated in

the bottom panels. The presence of both positive and negative

elements in all but the first deformation is a direct reflection of

compensatory dynamics: they involve some species growing more

abundant while others become rarer. For each deformation, we

calculated its propensity to be generated by noise (Figure 4B,

squares), and the time it takes for it to decay back to the flat steady

state (Figure 4B, triangles) – see Methods for details. The results

confirm the argument above: the two properties change in

opposite directions as the profiles become more jagged. The

environmental noise tends to generate smooth deformations, but

the jagged deformations are much more long-lived. Statistically,

the typical profile will therefore be one showing smooth peaks a

few species wide (Figure 4B, red line peaking at middle

smoothness). Changing the noise intensity multiplies the amplitude

of each deformation with the same constant and so does not affect

the typical cluster size (see Methods). This analysis agrees

excellently with what we observe in our simulations: persistent

clustering, with clusters having the same typical size even though

the exact abundance profile is constantly changing due to the

stochastic noise (compare Figure 3C and the middle of the bottom

panels in Figure 4B). The amplitude distribution (red line in

Figure 4B) also agrees well with simulations (Supplementary

Figure S9).

The linear analysis also reveals the origin of the strong noise

amplification: Although the parameters were not chosen to bring

this about, the system is very close to instability, with the most

jagged abundance deformation taking t,107 cycles to decay back

to the fixpoint (for the parameters used in Figures 3 and 4). By the

same token, a permanent shift in a (a press perturbation) will lead

to significant shift in the stead-state abundances; the stabilizing

mechanism discussed above acts only on changes in the

abundances themselves (see also Supplementary Figure S10).

Discussion

Our results show that the interplay between environmental

noise and species interactions can induce robust patterns of

alternating correlations between species abundances, leading to

dynamic clustering of abundance in phenotype space. We

demonstrated that the fundamental basis for this pattern is the

dynamic balance between synchrony caused by noise (Moran

effect) and the compensatory dynamics caused by the species

interactions. Environmental noise is thus not merely a random-

izing or synchronizing force, but can actively create ecological

patterns that do not directly reflect fixed external factors like

niches. These are collective phenomena requiring the presence of

many species, suggesting that few-species ecological models may

miss entire classes of dynamic behavior that could be important in

natural ecosystems.

By pointing to environmental noise as an important structuring

factor in ecosystems, these results could cast new light on a number

of empirical observations. For instance, metabolic theory suggests

that body mass M is linked to maximal growth rate through the

scaling relation mmax!M{1=4 [60], so the clusters we observe

across different growth rates could be directly reflected in cluster in

the space of body mass. And indeed, body size cluster have been

found to be dynamic in several cases, with the location of the

clusters and their number changing over time [61–63]. Our model

provides a simple mechanism for such itinerant clusters and at the

same time offers a way to reconcile metabolic theory, which

suggest the existence of single optimal body size, with the empirical

observation that species rarely cluster at a single optimum [29].

Dynamic phenotypic clustering also implies that even species

which are all direct competitors can arrange themselves into

distinct sub-groups whose abundances fluctuate in synchrony for

long periods of time (Figure 4A). This lends support to the

suggestion that the apparent lack of strong negative correlations

between species found in large-scale empirical studies [64–66]

could be due to obscuring effects rather than the actual absence of

negative interactions [67].

The formation of phenotypic clusters bears some resemblance to

the classical concept of limiting similarity: the idea that competition

examples (bottom panels). In the presence of environmental noise, the contribution of each perturbation type is given by the amplitude curve
(Amplitude, ct; red circles). It peaks at medium smoothness where the typical abundance profile displays clustering (cf. the middle of the bottom
panels). All quantities in panel B calculated from the linearized model; model parameters are as in Figures 2 and 3.
doi:10.1371/journal.pcbi.1002017.g004
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puts a limit on how similar the phenotypes of coexisting species can

be, and hence implying that two neighboring species must have a

finite stretch of unoccupied phenotype space between them [68].

The sensitivity to environmental fluctuation in our model means

that at a permanent shift in a could drive some species extinct and

thus effectively lead to a new, larger phenotypic separation of

neighboring species. Conversely, for Lotka-Volterra models it has

been shown that a very small perturbation in the parameters can

shift the system from allowing the coexistence of arbitrarily similar

species to requiring a finite phenotypic difference [69]. If

environmental fluctuations drive such an ecosystem back and forth

between these two regimes fast enough to keep many species from

going extinct, the result could be bands coexisting species similar to

the clusters we observe.

As with all ecological modeling, we have made a number of

simplifying assumptions. Firstly, we have ignored spatial structure

beyond that provided by the division into patches. Secondly, we

have worked in the limit of an infinite population size and hence

neglected demographic noise (neutral ecological drift). Finally, we

have assumed a pre-existing trade-off between efficiency and growth

rate. The question of how such tradeoffs can evolve and how they

affect ecosystem stability is complicated [70–73], and it would be

interesting to understand it in the framework of our model. Indeed,

the noise-induced clusters describe here could themselves play a role

in speciation and the maintenance of genetic diversity [74–76].

Our model assumes that all patches contain the same amount

of resource and deviations from this assumption are beyond the

scope of this mode. However, we expect that if the resource

amount on each patch was drawn independently from a fixed

distribution in each round, the noise would simply average out

and the model would converge to a steady state of coexistence

similarly to that observed in our model. A slightly different

natural variation would be to consider noise that affects the

average amount of resources available on each patch rather than

the dilution factor. A change in the amount of resource per patch

is equivalent to a uniform rescaling of all efficiencies (see

Methods) and therefore, like a change in dilution, will generically

shift the balance between fast and slow species. We would

therefore expect such fluctuations to cause qualitatively the same

effects as we observe. Another possible variation of our model is

to allow dispersal to occur before growth has finished on all

patches. This would lower the advantage conferred by higher

efficiency, so coexistence would require a steeper trade-off

between growth-rate and efficiency. Indeed, in the limit of

dispersal time much shorter than growth time, the model simply

converges to exponential growth in a well- mixed environment;

the efficiency becomes irrelevant and the fastest species takes over

the population.

The appearance of dynamic phenotypic clusters in such a

minimal simplified model suggest that species clustering in

phenotype space could be a generic property of ecologies with

many interacting species subject to noise. Indeed, the underlying

mechanism is quite general and other noisy systems involving

many interacting parts, e.g. neuronal or molecular networks,

might exhibit similar effects. This mechanism could also work

independently along several axes to create clusters in multi-

dimensional phenotype spaces which could be seen as temporary

ecological guilds [77]. Indeed, general metabolic theory suggests

that body mass linked to many other ecological quantities by

similar simple scaling relations [78] so if the clustering in the space

of growth-rates transfer to body masses, as we argued above, it

should also be reflected in patterns along still other phenotypic

axes. It will be interesting to see whether such noise-induced

abundance patterns can be directly observed in natural or

laboratory-based experimental ecosystems, particularly microbial

ones [79].

Methods

Model details and simulations
The full model is defined by Equations 1–3. To compute the

final abundances for a given initial seeding, we first find the

growth-time (T) given the available amount of resource, (R). Since

all species grow freely, the number of offspring (not counting the

original ancestor) of a single individual of species k at a time t is

exp(mkt)21, and each new offspring removes 1/Yk units of

resources. Starting from mk individuals, the total amount of

resources consumed by the population of species k on a given

patch is thus mk(exp(mkt)21)/Yk. Hence, T is the solution to the

equation.

X
k

mk

Yk

emkT{1
� �

~R: ð4Þ

This equation defines a growth time T for every initial

configuration m, given a set of growth rates m and efficiencies

Y. Changing the value of R is equivalent to scaling all the Y-values

by a common factor, so we set R = 1 for convenience (this is the

choice used in this paper). In that case, Y is simply the per-patch

number of offspring produced by a single seeded individual in the

absence of competitors.

We assumed that the environmental disturbances arrive at

intervals longer than the time needed for even the slowest species

to grow to saturation, i.e. the time between disturbances is longer

than the largest T-value. Hence, the resources will always be

completely exhausted on every patch and the time it took for this

to happen (which varies depending on the seeding of the given

patch) plays no further role. The final abundances for a given

seeding averaged over all patches with this seeding, f(m), are now given

by Equation 2. Using the average is consistent since we work with

an infinite population; however, for a finite population, the

stochastic growth differences between individual patches starting

with the same seeding could change the results.

With the exception of the rather trivial case N = 1, we cannot

analytically solve Equation 4, so we used numerical solutions for

the simulations. Similarly, for N.1 we cannot analytically do the

sum in Equation 3 since it depends on quantities than can only be

found numerically. We therefore approximated it by summing

over a finite number of seedings, imposing the condition that the

combined probability of all neglected configurations was less than

1027 (evaluated at the fixpoint). The resulting finite sum was over

all seedings that involved at most M seeded individuals in total,

where M was picked to satisfy the probability-condition. All

simulations program were written in MATLAB and run on the

Harvard Medical School supercomputing cluster (Orchestra).

Coexistence of an arbitrary number of species
Because our model involves the solution of the transcendental

Equation 4, a rigorous general proof of coexistence is difficult to

provide. However, we can get close by drawing on similarities with

the patch model of Tilman [45], in which simplified competitive

dynamics makes it possible to prove that an arbitrarily large

number of species can coexist.

Consider making the amount of resources on each patch very

large or, equivalently, rescaling all efficiencies by a common large

factor, s&1:

Noise-Induced Phenotypic Clustering

PLoS Computational Biology | www.ploscompbiol.org 8 March 2011 | Volume 7 | Issue 3 | e1002017



Yk? ~YYk~sYk, s??

In this limit, the growth-time T clearly also goes to infinity.

Expanding Equation 4, we see that on a given patch, T becomes

dominated by the contribution from the highest-m species present,

with corrections due to other species falling off exponentially in T.

Neglecting all but the fastest species and choosing an a such that

Ykzmk&Yk for all seedings that contribute significantly, we thus

arrive at a ‘complete dominance approximation’ (for R = 1):

fk~
~YY k if k is fastest species on patch

0 otherwise

(
:

Plugging this into the dynamical equation, we can now do the sum

and get a set of explicit fixpoint equations (we order the species so

that m1,m2,…,mN):

n�N~ 1{e
{an�

N

� �
: ~YY N

n�N{1~ 1{e
{an�

N{1

� �
: ~YY N{1e

{an�
N

. . .

n�1~ 1{e
{an�

1

� �
: ~YY 1exp {a

PN
k~2

n�k

� �

As in Tilman’s model [45], the fixpoint abundance of a species

now depends only on its own parameters and those of the species

that are stronger competitors (have a higher m). We can thus solve

this hierarchy of equations for the efficiencies by working from the

top and plugging the solution of each equation into those below.

This allows us to find arbitrarily large sets of coexisting species.

Structure of the environmental noise
We introduce environmental noise by drawing the dilution

factor a from a log-normal distribution with probability density

P(a)~
1

av
ffiffiffiffiffiffi
2p
p exp {

(log(a){h)2

2v2

 !
, ð5Þ

where h and v are the mean and standard deviation of the

logarithm of a, respectively. This gives a smooth, peaked distribution

of tunable width that automatically implements the constraint that

a.0. We made this choice since the long-term dilution rate – the

expectation value of the product of many consecutive as – is set by

the expectation value of log(a) (cf. [80]) which we can control

directly through h. Had we instead kept the expectation value of a
itself constant, we would have introduced changes in the

expectation value of log(a) when changing the noise strength and

hence biased the competition towards species that are either very

efficient or very fast. To avoid this trivial bias, we kept h constant

as we increased the noise intensity (v) in all simulations.

Comparison with the linearized model (see below) shows that

the exact choice of distribution for a is unimportant for the crucial

features of the model.

Fixpoint stability and the linear model
To test the stability of a fixpoint n*, we write n(t) = n*+Dn(t)

and a(t) = a0+Da(t), and expand the dynamic equation (Equation 3)

in powers of Dn and Da (a0 is the dilution factor at the fixpoint). In

the limit of low noise (Da/a0R0), the fluctuations will be small and

we need only keep the leading terms. We thus arrive at the linear

approximation:

Dn(tz1)~JDn(t)zDa(t)r, ð6Þ

where the matrix J and the vector r have elements

Jkl~
Lfk

Lnl

				
n~n�
a~a0

rk~
Lfk

La

				
n~n�
a~a0

ð7Þ

(all derivatives evaluated at the fixpoint). The formulas for the

derivatives can be derived from Equation 3, but must again be

evaluated numerically for N.1. The fixpoint is stable if all

eigenvalues lk of the matrix J satisfy |lk|,1 (complex modulus

less than unity); we explicitly checked that this conditions was

fulfilled this for the parameter sets used in the article. The

dependence of the elements of J on the phenotypic distance

between species is illustrated in panel (A) of Supplementary

Figure S7.

We now introduce white, Gaussian noise defined by

SDa tð ÞT~0, SDa t1ð ÞDa t2ð ÞT~
s2
a t1~t2

0 t1=t2

(
: ð8Þ

where ,…. indicate averages over the noise distribution. These

are the only properties of the noise we will make use of, so the

exact noise distribution will not play a role. We split the system

into N independent eigenmodes by diagonalizing J:

qk tz1ð Þ~lkqk tð ÞzDa(t)pk, ð9Þ

where lk is the kth eigenvalue of J (all real and positive for the

parameters used), p = S21r, and q = S21Dn (the matrix S is the

diagonalizing matrix whose columns are the N distinct

eigenvectors of J). Using the noise properties (8) and the fact

that |lk|,1 (stable system), the average squared amplitude as

tR‘ is given by

Sq2
kT~

Xt{1

s~0

l2
k

� �s
p2

ks
2
a~

p2
ks

2
a

1{l2
k

: ð10Þ

If we set pk = 0 (no noise), we find

qk tð Þ~lk
tqk 0ð Þ~qk 0ð Þe{t=tk ð11Þ

where the relaxation time tk is given by

tk~
{1

log lkð Þ
: ð12Þ

In our system, all the eigenvalues are real and close to 1, and can

hence be written as lk = 12ek with 0,ek%1. Hence, we find

tk&
1

ek

and
1

1{l2
k

&
1

2ek

:
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Therefore, we can write the equilibrium squared amplitude as a

product of the coupling to the noise (ck) and the relaxation time

(tk):

Sq2
kT&cktk where ck~

1

2
p2

ks
2
a: ð13Þ

The values of ck, (12lk)
21<tk, and Sq2

kT are plotted in Figure 4B

(squares, triangles and red dots, respectively) – to facilitate

visualization, the first two quantities have been rescaled so that

their maximum value is 1. Notice that the noise strength sa
2

appears as an overall factor and hence does not affect the shape of

the amplitude spectrum.

The squared mode amplitudes for a simulated time-series of

abundances, n(t), can be found simply by normalizing to the

fixpoint and transforming into the eigenbasis:

Sq2
k,simulatedT~Sa2

kT where a(t)~S{1 n(t){n�ð Þ: ð14Þ

The average is performed over the simulated cycles. Comparisons

of simulated data and the exact linear results from

different number of species are shown in Supplementary

Figure S9.

To each eigenvalue lk, there corresponds an eigenvectors v(k) of

J, the elements of which specifies a deformations of the

abundances away from the fixpoint. For these deformations, the

influence of each species is balanced so that they all return to the

fixpoint at the same rate. Since the fast species are superior

competitors, the components in each v(k) corresponding to fast

species must therefore be correspondingly smaller. To make the

oscillations in the profiles more visible, we have therefore plotted a

weighted version of the profiles in Figure 4B. In the weighted

eigenvectors v̂v(k), each component is multiplied by the average

interaction the corresponding species has with other species,

compensating for the trivial decrease in component values with

competitive ability. The interaction between species in the

linearized model is given by the matrix DJ = J2I, where I is the

unit matrix. The weighted eigenvectors thus have elements

v̂v
(k)
j ~v

(k)
j

1

N

XN

i~1

(Jij{Iij)

					
					, ð16Þ

where I is the unit matrix. The three plots below the main panel in

ure 4B are plots of the components of the weighted vectors v̂v(k) for

k = 1, 8, and 15. For comparison, both the weighted and

unweighted forms of these three vectors are plotted in Supple-

mentary Figure S11.

Supporting Information

Figure S1 Co-existence and relative abundances of two species

across parameter space. The shaded area shows the range of

parameters (mB,YB) that allows a second species B to coexist stably

with a focal species A with (mA,YA) = (0.5,125) for a = 0.01 – the

parameters of the focal species are marked with a ‘+’. The inset

bar graphs show the fixpoint abundances of each species at three

points in the coexistence region (marked with black dots). The

fixpoint abundances vary from point to point: as we go from the

lower edge of the shaded region to the top/right edge, we go from

A being dominant to equal abundances and, finally, to B

dominating. We can thus vary the relative abundances without

destroying coexistence.

(TIF)

Figure S2 Constraints on the choice of parameters for similar

species varies with a. The plot shows the range of efficiencies

allowed for a given species when requiring it to coexists with a

single other, similar species with parameters (mA YA) = (0.5, 1200).

Plotted is the width of the Y-interval over which coexistence is

possible (YB
max2YB

min) for a given mB, as a function of a. Each

curve corresponds to a different mB, all slightly larger than mA. The

allowed ranges narrow with increasing a.

(TIF)

Figure S3 Clustering is generic I. Parameters identical to the full

model plots in Figure 3, except that the system was started with a

different set of random abundances.

(TIF)

Figure S4 Clustering is generic II. Identical to the full model

plots in Figure S3, except that the system was started with yet a

different set of random abundances.

(TIF)

Figure S5 Clustering depends on interactions. Examples of

instantaneous abundance distributions at 12 randomly selected

time-points out of a 100,000-cycle time-series, with competition

(filled circles) and without competition (unfilled circles) between

species (the cycle no. is given above each plot). Without

interactions, the distribution remains flat, but with competition it

generically shows one or more clusters. The full-model data series

is the same as the one used in Figure 3. The data without

interactions is the single-species data series used in Figure 4A.

(TIF)

Figure S6 Cluster amplitude, but not their typical size, changes

with noise intensity. The rows shows examples of abundance-

snapshots of typical clusters for separate simulation with noise

intensities (A) sa/,a. = 0.045, (B) sa/,a. = 0.15, and (C) sa/

,a. = 0.36 – notice the different scales on the vertical axes.

Increasing the noise intensity leads to larger abundance differences

and, for very high levels, clusters separated by distinct valleys of

rare species. Model parameters as in Figures 3 and 4.

(TIF)

Figure S7 Response of ecosystem to abundance perturbations

shows compensatory dynamics. (A) The linearized response to a

perturbation in the abundance of a single species, as given by the

elements of the matrix J (see Eqn. 7). The elements Jkl are shown

for three representative perturbed species (k = 2, 8, 14). All values

are negative, indicating compensatory dynamics. The response of

the species being perturbed is not shown. (B) Response of the full

system (in steady-state) to a sudden increase in the abundance of a

single species, as shown by the deviation of the abundances from

their fixpoint values 10 steps after the perturbation. Examples

species as in panel A, perturbed species not shown. Again, we find

compensatory dynamics. System parameters as in Figure 4A.

(TIF)

Figure S8 Change in correlation structure with increasing

number of interactions. (A) Pairwise correlations between species

as a function of their phenotypic difference for a system in which

10 species are kept at their fixpoint abundances while the rest are

allowed to fluctuate. Data based on 25 replica simulation in which

Noise-Induced Phenotypic Clustering
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the species allowed to fluctuate were randomly selected and the

correlations between every pair of species within each simulation

calculated. Grey points are individual results, black line is a spline

fit to the mean value for each phenotype difference. (B) As panel

A, but with only 5 species fixed. We see that as we increase the

number of species that fluctuate, the correlation shifts from a

mostly flat, purely compensatory pattern to the oscillatory pattern

characteristic of the full model (compare with the full model and

pairwise interaction curves in Figure 4A). System and runtime

parameters as in Figure 4A; fluctuating species started at random

abundances.

(TIF)

Figure S9 Comparison of linear analytical results and simula-

tions. The amplitude of the various deformations for systems with

6, 10, and 15 species – curves show the exact result for the

linearized model (red), and for the full model simulated at low (sa/

,a. = 0.045, blue) and higher noise (sa/,a. = 0.15, black). As

in Figure 4B in the main text, the perturbations are ordered by

their by their roughness. The finite simulation time (105 cycles in

all cases) implies that the slowest deformation cannot be fully

captured in simulations (all perturbations to the right of the

vertical, dotted line have relaxation times longer than the

simulated time-span). With only 6 species, the longest relaxation

time is only ,3,000 cycles. Hence, the 105-step simulation

captures the full behavior of all deformations and shows excellent

agreement with the linear approximation. With 10 species, the

longest time-scale is above 105 cycles and greater deviations are

seen at the slowly-relaxing deformations. This effect is even more

marked for 15 species, but the agreement is still good for the

smoother deformations. Specifically, the crucial feature – ampli-

tude peaking at medium-smooth deformations – remains. The 15-

species system is identical to that used in all figures in the main

text. For all three cases, the species are logarithmically spaced

between m = 0.1 and m = 0.3, and the fixpoint dilution factor is

a = 0.001. The curves for 6 species are based on a single

simulation; the ones for 10 and 15 species are averages of 5

simulations with different noise-series and starting abundances.

(TIF)

Figure S10 The response of a fixpoint community to a

perturbation in a. The plot shows the derivative dnk/da (evaluated

at the fixpoint) for all species k. The system responds very

sensitively to changes in a (dnk/da,6000), but the response shows

little variation between species. Parameters as in Figures 3 and 4.

(TIF)

Figure S11 Weighted and raw forms of the basic abundance

perturbations. The upper row shows the weighted vectors v̂v(k) for

k = 1,8,15. The bottom row shows the corresponding unweighted

eigenvectors v(k).

(TIF)
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39. Beninca E, Huisman J, Heerkloss R, Jöhnk KD, Branco P, et al. (2008) Chaos in

a long-term experiment with a plankton community. Nature 451: 822–825.
40. Haynes KJ, Liebhold AM, Fearer TM, Wang G, Norman GW, et al. (2009)

Spatial synchrony propagates through a forest food web via consumer-resource
interactions. Ecology 90: 2974–2983.

41. Wilson DS (1992) Complex interactions in metacommunities with implications

for biodiversity and higher levels of selection. Ecology 73: 1984–2000.
42. MacLean RC, Gudelj I (2006) Resource competition and social conflict in

experimental populations of yeast. Nature 441: 498–501.
43. Green J, Bohannan BJM (2006) Spatial scaling of microbial biodiversity. Trends

Ecol Evol 21: 501–507.

44. Levins R (1969) Some demographic and genetic consequences of environmental
heterogeneity for biological control. Bull Entomol Soc Am 15: 237–240.

45. Tilman D (1994) Competition and biodiversity in spatially structured habitats.
Ecology 75: 2–16.

46. Tate RL, III (2000) Soil Microbiology. New York: John Wiley & Sons.
47. Pirt SJ (1975) Principles of Microbe and Cell Cultivation. New York: John Wiley

& Sons.

48. Azam F (1998) Microbial control of oceanic carbon flux: The plot thickens.
Science 280: 694–696.

49. Armstrong RA, McGehee R (1980) Competitive Exclusion. Am Nat 115:
151–170.

50. Tilman D (1982) Resource competition and community structure. Princeton,

N.J: Princeton University Press.
51. Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:

196–218.
52. Pianka ER (1970) R-selection and K-selection. Am Nat 104: 592–597.

53. Wilson DS (1975) A theory of group selection. Proc Natl Acad Sci USA 72:
143–146.

54. Frank SA (2010) The trade-off between rate and yield in the design of microbial

metabolism. J Evol Biol 23: 609–613.
55. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological

strategies: Some leading dimensions of variation between species. Ann Rev Ecol
Syst 33: 125–159.

56. Tilman D (1990) Constraints and Tradeoffs: Toward a Predictive Theory of

Competition and Succession. Oikos 58: 3–15.
57. Pernthaler A, Pernthaler J, Eilers H, Amann R (2001) Growth patterns of two

marine isolates: Adaptations to substrate patchiness? App Environ Microbiol 67:
4077–4083.

58. Cadotte MW, Mai DV, Jantz S, Collins MD, Keele M, et al. (2006) On Testing
the Competition-Colonization Trade-Off in a Multispecies Assemblage. Am Nat

168: 704–709.
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