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Abstract

Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range
between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many
models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is
generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are
correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent
along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for
networks of neurons that use action potentials for communication. We study correlations in dynamic networks with
arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how
specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we
describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population
dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with
low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance
dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong
average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel
recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the
currently limited understanding of structure-dynamics relations in complex networks.
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Introduction

Analysis of networks of interacting elements has become a tool

for system analysis in many areas of biology, including the study of

interacting species [1], cell dynamics [2] and the brain [3]. A

fundamental question is how the dynamics, and eventually the

function, of the system as a whole depends on the characteristics of

the underlying network. A specific aspect of dynamics that has

been linked to structure are fluctuations in the activity and their

correlations in noisy systems. This work deals with neuronal

networks, but other examples include gene-regulatory networks

[4], where noise propagating through the network leads to

correlations [5], and different network structures have important

influence on dynamics by providing feedback loops [6,7].

The connection between correlations and structure is of special

interest in neuroscience. First, correlations between neural spike

trains are believed to play an important role in information

processing [8,9] and learning [10]. Second, the structure of neural

networks, encoded by synaptic connections between neurons, is

exceedingly complex. Experimental findings show that synaptic

architecture is intricate and structured on a fine scale [11,12].

Nonrandom features are induced by neuron morphology, for

example distance dependent connectivity [13,14], or specific

connectivity rules depending on neuron types [15,16]. A number

of novel techniques promise to supply further details on local

connectivity [17,18]. Measured spike activity of neurons in such

networks shows, despite high irregularity, significant correlations.

Recent technical advances like multiple tetrode recordings [19],

multielectrode arrays [20–22] or calcium imaging techniques

[23,24] allow the measurement of correlations between the activity

of an increasingly large number of neuron pairs in vivo. This

makes it possible to study the dynamics of large networks in detail.

Since recurrent connections represent a substantial part of

connectivity, it has been proposed that correlations originate to a

large degree in the convergence and divergence of direct

connectivity and common input [8] and must therefore strongly

depend on connectivity patterns [25]. Experimental studies found

evidence for this thesis in a predominantly feed-forward circuit

[26]. In another study, only relatively small correlations were

detected [27] and weak common input effects or a mechanism of

active decorrelation were postulated.

In recent theoretical work recurrent effects have been found to

be an important factor in correlation dynamics and can account

for decorrelation [20,22]. Several theoretical studies have analysed

the effects of correlations on neuron response [28,29] and the

transmission of correlations [30–34], also through several layers

[35]. However, the description of the interaction of recurrent

connectivity, correlations and neuron dynamics in a self-consistent
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theory has not been presented yet. Even in the case of networks of

strongly simplified neuron models like integrate and fire or binary

neurons, nonlinear effects prohibit the evaluation of effects of

complex connectivity patterns.

In [36,37] correlations in populations of neurons were studied in

a linear model that accounted for recurrent feedback. With a similar

model, the framework of interacting point processes developed by

Hawkes [38,39], we analyse effects of different connectivity patterns

on pairwise correlations in strongly recurrent networks. Spike trains

are modeled as stochastic processes with presynaptic spikes affecting

postsynaptic firing rates in a linear manner. We describe a local

network in a state of irregular activity, without modulations in

external input. This allows the self-consistent analytical treatment of

recurrent feedback and a transparent description of structural effects

on pairwise correlations. One application is the disentanglement of

the explicit contributions of recurrent input on correlations in spike

trains in order to take into account not only effects of direct

connections, but also indirect connectivity, see Figure 1.

We find that variations in synaptic topology can substantially

influence correlations. We present several scenarios for character-

istic network architectures, which show that different connectivity

patterns affect correlations predominantly through their influence

on statistics of indirect connections. An influential model for local

neural populations is the random network model [40,41], possibly

with distance-dependent connectivity. In this case, the average

correlations, and thereby the level of population fluctuations or

noise, only depend on the average connectivity and not on the

precise connectivity profile. The latter, however, influences higher

order properties of the correlation distribution. This insensitivity to

fine-tuning is due to the homogeneity of the connectivity of

individual neurons in this type of networks. The effect has also

been observed in a very recent study, where large-scale simulations

were performed [42]. In networks with more complex structural

elements, like hubs or patches, however, we find that also average

correlations depend on details of the connectivity pattern.

Part of this work has been published in abstract form [43].

Methods

Recurrent networks of linearly interacting point
processes

In order to study correlations in networks of spiking neurons with

arbitrary connectivity we use the theory derived in [38], which we

refer to as Hawkes model, for the calculation of stationary rates and

correlations in networks of linearly interacting point processes. We

only summarise the definitions and equations needed in the specific

context here. A mathematically more rigorous description can be

found in [38] and detailed applications in [44,45].

We will use capital letters for matrices and lower case letters for

matrix entries, for example G~(gij). Vectors will not be marked

explicitly, but their nature should be clear from the context. Fourier

transformed quantities, discrete or continuous, will be denoted by :̂:,
for example âa(v). Used symbols are summarised in Table 1.

Our networks consists of N neurons with NE excitatory and NI

inhibitory neurons. Spike trains si(t)~
P

j d(t{t
(i)
j ) of neurons

i~1 . . . N are modeled as realisations of Poisson processes with

time-dependent rates yi(t). We have

yi(t)~Ssi(t)T, ð1Þ

where S:T denotes the mathematical expectation, in this case across

spike train realisations. Neurons thus fire randomly with a fluctuating

rate which depends on presynaptic input. For the population of

neurons we use the spike train vector s and the rate vector y. Spikes of

neuron j influence the rate of a connected neuron i by inducing a

transient rate change with a time course described by the interaction

kernel gij(t), which can in principle be different for all connections.

For the sake of simplicity we use the same interaction kernels for all

neurons of a subpopulation. The rate change due to a spike of an

excitatory presynaptic neuron is described by gE(t) and of an

inhibitory neuron by gI (t). The total excitatory synaptic weight can

then be defined as gE:
Ð

gE(t)dtw0 and the inhibitory weight

accordingly as gI:
Ð

gI (t)dtv0. Connections between neurons are

chosen randomly under varying restrictions, as explained in the

following sections. For unconnected neurons gij~0. The evolution of

the rate vector is governed by the matrix equation

y(t)~y0z

ð?
{?

G(t0)s(t{t0)dt0~y0z G � sð Þ(t): ð2Þ

The effect of presynaptic spikes at time t{t0 on postsynaptic rates

is given by the interaction kernels in the matrix G(t0) and depends

on the elapsed time t0. Due to the linearity of the convolution, effects

of individual spikes are superimposed linearly. The constant spike

probability y0 can be interpreted as constant external drive. We

Figure 1. Connectivity induces correlations. A: Activity in a pair of
neurons (red) in a network can become correlated due to direct
connections (blue) and different types of shared input (cyan). B: For a
complete description a large number of indirect interactions (yellow,
orange) and indirect common input contributions (green) have to be
taken into account. However, not all nodes and connections contribute
to correlations (grey).
doi:10.1371/journal.pcbi.1002059.g001

Author Summary

Many biological systems have been described as networks
whose complex properties influence the behaviour of the
system. Correlations of activity in such networks are of
interest in a variety of fields, from gene-regulatory
networks to neuroscience. Due to novel experimental
techniques allowing the recording of the activity of many
pairs of neurons and their importance with respect to the
functional interpretation of spike data, spike train correla-
tions in neural networks have recently attracted a
considerable amount of attention. Although origin and
function of these correlations is not known in detail, they
are believed to have a fundamental influence on
information processing and learning. We present a
detailed explanation of how recurrent connectivity induces
correlations in local neural networks and how structural
features affect their size and distribution. We examine
under which conditions network characteristics like
distance dependent connectivity, hubs or patches mark-
edly influence correlations and population signals.

Structure and Correlations in Neuronal Networks
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require all interactions to respect causality, that is gij(t)~0 for tv0.

The Hawkes model was originally defined for positive interaction

kernels. Inhibitory kernels can lead to negative values of y at certain

times, so strictly one should use the rectified variable ½yi�z as a basis

for spike generation. We assume further on that y becomes negative

only rarely and ignore the non-linearity introduced by this

rectification. The effects of this approximation are illustrated in

Figure 2. In the equilibrium state, where the expectation value for

the rates y does not depend on time, we then have

y~y0z

ð?
{?

G(t0)ydt0~y0z

ð?
{?

G(t0)dt0
� �

y, ð3Þ

where we denoted the expectation SyT of the fluctuating rates by y

for notational simplicity. An explicit expression for the equilibrium

average rates is

y~ 1{

ð?
{?

G(t0)dt0
� �{1

y0, ð4Þ

where 1 refers to the identity matrix.

We describe correlations between spike trains by the covariance

density matrix C(t). For point processes it is formally defined as

the inverse Fourier transform of the spike cross-spectrum, but can

in analogy to the case for discrete time be written as

C(t)~Ss(tzt)s(t)TT{yyT:Yd(t)zC0(t){yyT , ð5Þ

and corresponds to the probability of finding a spike after a time

lag t, given that a spike happened at time t, multiplied by the rate.

The term yyT represents chance correlations such that for

uncorrelated spike trains cij~0 for i=j. Due to the point process

nature of spike trains, autocovariance densities cii(t) have a

discontinuous contribution d(t)yi. This discontinuity is separated

explicitly from the continuous part C0 using the diagonal rate

matrix Y with the constant elements yij~dijyi (here dij denotes

the Kronecker delta). For independent spike trains C0(t)~0 so

that one recovers the autocorrelation density function of Poisson

processes, Cii(t)~d(t)yi. A self-consistent equation that deter-

mines the covariance density matrix is

C0(t)~G(t)Yz(G � C0)(t), ð6Þ

for tw0. A key result in [38] is that, if the Fourier transform of the

kernel matrix

ĜG(v)~

ð?
{?

e{ivtG(t)dt ð7Þ

is known, (6) can be solved and the Fourier transform of the cross

covariance density ĈC(v) is given by

ĈC(v)~½1{ĜG(v)�{1
Y ½1{ĜGT (v)�{1: ð8Þ

The definition of the Fourier transform implies thatÐ
C(t)dt~ĈC(v~0):C and accordingly

Ð
G(t)dt~ĜG(v~0)

:G, where we introduced the shortcuts C and G for the

integrated covariance density matrix and kernel matrix, respec-

tively. They are, from (8), related by

C~½1{G�{1
Y ½1{GT �{1: ð9Þ

The rate Equation (4) becomes with these definitions

y~(1{G){1y0: ð10Þ

Table 1. Used symbols (in order of appearance).

Symbol Description

s spike train vector

y rate vector

G(t),gij (t) interaction kernel matrix, elements

y0 external input

G,gij matrix of integrated kernels, elements

Y ,yij ,�yy diagonal rate matrix, elements,
average rate

C(t),cij (t) covariance density function matrix,
elements

t time lag

C,cij integrated covariance density matrix,
elements

ni spike counts

D bin size

var(pop) population count variance

N number of neurons

Ne=i number of excitatory/inhibitory
neurons

p connection probability

ge=i excitatory/inhibitory integrated
interaction kernel

B, bij (1{G){1 , elements

g(n,m) average correlation contribution of
order (n,m)

kout
ba output connections from neuron type

a to b

kin
a

input connections to neuron type a

m average interaction

g average common input

r radius of bulk spectrum

c average correlation

d distance

se=i half width of boxcar-profile

Ae=i height of boxcar profile

k0 average out degree

f fraction hub to hub connections

pp connection probability in patch

S patch size

doi:10.1371/journal.pcbi.1002059.t001

Structure and Correlations in Neuronal Networks

PLoS Computational Biology | www.ploscompbiol.org 3 May 2011 | Volume 7 | Issue 5 | e1002059



Equation (8) describes the time-dependent correlation functions of

an ensemble of linearly interacting units. In this work we concentrate

on purely structure-related phenomena under stationary conditions.

Therefore we focus on the integrated covariance densities, which are

described by Equation (9). Differences in the shape of the interaction

kernels which do not alter the integral do not affect our results. One

example is the effect of delays, which only shift interaction kernels in

time. Furthermore we restrict ourselves to systems where all

eigenvalues l of G satisfy jljv1. This condition guarantees the

existence of the matrix inverse in (9) and (10). Moreover, if the real part

<(l)w1 for any l, no stable equilibrium exists and network activity

can explode. For further details see Section 1 of Supporting Text S1.

The matrix elements gij and cij have an intuitive interpretation.

The integrated impulse response gij corresponds to the average

number of additional spikes in neuron i caused by an extra spike in

neuron j.

The integrated cross-correlations cij , in the following simply

denoted as correlations, equal, for asymptotically large counting

windows D, the covariances of spike counts ni and nj between spike

trains si and sj ,

cij~ lim
D??

cov½ni(D),nj(D)�
D

, ð11Þ

see for example [20,46]. On the population level one finds for the

population count variance normalised by the bin size, var(pop),

that

var(pop):
1

D
var½

X
i

ni(D)�

~
1

D

X
i

var½ni(D)�z 1

D

X
i=j

cov½ni(D),nj(D)�&
X

i,j

cij :

ð12Þ

Strictly this is only true in the limit of infinitely large bin size.

However, the approximation is good for counting windows that

are large with respect to the temporal width of the interaction

kernel. In this sense, the sum of the correlations is a measure for

the fluctuations of population activity. Another measure for

correlations that is widely used is the correlation coefficient,

cij=
ffiffiffiffiffiffiffiffiffi
ciicjj
p

. In this context it is not convenient, as the normalisation

over the count variance destroys the simple relation to the

population fluctuations. Even worse, as count variances are, just as

covariances, influenced by network structure, for example global

synchrony is not captured by this measure.

We simulated networks of linearly interacting point processes in

order to illustrate the theory, Figure 2. In this network connections

between all nodes are realised with constant probability p.

Parameters were chosen such that net recurrent input is inhibitory.

The full connectivity matrix was used for the rate and correlation

predictions in Equations (9) and (10) and the population count

variance, Equation (12). Further simulation details are given

Figure 2. Hawkes’ theory reproduces rates and correlations in a simulated random network. Network parameters are
N~1000,NE~800,NI ~200,p~0:1,gE~0:015,gI~{0:075. A: Top: spike raster plot showing asynchronous irregular activity (mean coefficient of
variation 1.03). Inset: Inter-spike intervals of a typical spike train are exponentially distributed (logarithmic scale). Bottom: Population spike counts in bins of
length 50ms. Mean + standard deviation (thick red line, shaded area), standard deviation from predicted correlations (green dashed line).
B: Fluctuating rates of 50 neurons (grey traces), their average (red line) and distribution across time and neurons (blue). A small part reaches below zero
(dashed line). C: Simulated time averaged rates scattered vs. predicted rates (blue). Diagonal (red) plotted for direct comparison. Inset: Distribution of
predicted (red) and measured (blue) rates. Broad rate distribution with significant deviations from predictions only for small rates.
D: Simulated correlations scattered vs. predicted ones. Larger errors due to finite simulation time. Inset: correlation distributions (green: measured, red:
predicted). Although a non-vanishing part of fluctuating rates is below zero, most of the time averaged rates and correlations are predicted accurately.
doi:10.1371/journal.pcbi.1002059.g002

Structure and Correlations in Neuronal Networks
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below. This figure demonstrates that the approximation that

fluctuating rates stay largely above zero gives good results even in

effectively inhibitory networks with strong synapses. There are

nonetheless slight deviations between prediction and simulation.

On the one hand, fluctuations of the variable y around a positive

mean can reach below zero. This factor is especially relevant if rate

fluctuations are high, for example because of strong synapses and

low mean input. On the other hand, strongly inhibitory input can

result into a negative mean value of y for some neurons. This can

happen only for wide rate distributions and strong inhibition, since

the ensemble average of y is always positive. In Figure 2C it is

shown that only few neurons have predicted rates below zero, and

that deviations between predicted and simulated rate distributions

are significant primarily for low rates. The correlations in panel D

are hardly affected. We found that for a wide range of parameters

Hawkes’ theory returns correct results for most of the rates and

correlations even in effectively inhibitory networks.

Simulation details
Simulations of linearly interacting point processes were conduct-

ed using the NEST simulator [47]. Spikes of each neuron were

generated with a rate corresponding to the current value of the

intrinsic variable y(t). Negative values of y were permitted, but

resulted in no spike output. Neurons received external drive

corresponding to a constant rate of y0~10Hz. Incoming spikes

resulted in an increase/decrease of y of amplitude 1:5Hz={7:5Hz
for excitatory/inhibitory spikes, which decayed with a time constant

of 10ms. This corresponds to exponential interaction kernels with

total weights gE~0:015 and gI~{0:075. Synaptic delay was 2ms.

Simulation time step was 1ms for the correlation and rate

measurement and 0:1ms for spikes shown in the raster plot. In

Figure 2 total simulation time was 5:106ms. Data from an initial

period of 10000ms was dropped. Correlograms were recorded for

the remaining time with a maximum time lag of 100ms (data not

shown). The value for the correlations was obtained from the total

number of coincident spikes in this interval. The total number of

spikes was used for the measurement of the rates, while population

fluctuations were determined from 50ms bins in the first 105ms.

Results

Powers of the connectivity matrix describe recurrent
connectivity

In this section we address how recurrent connectivity affects

rates and correlations. Mathematically, the kernel matrix G is the

adjacency matrix of a weighted directed graph. Single neurons

correspond to nodes and connections are weighted by the

integrated interaction kernels.

With the shorthand

B~(1{G){1,

Equation (9) becomes

C~BYBT , ð13Þ

where the rates are given by (10), ykk~
P

i bki. For simplicity we

normalise the external input, y0~1. The matrix B describes the

effect of network topology on rates and correlations. Under the

assumptions stated in the methods section, B can be written as a

geometric series,

B~
X?
n~0

Gn:

The terms of this series describe how the rates result from external

and recurrent input. The matrix G0~1 relates to the part of the rates

resulting directly from external input. For nw0, each of the single

terms Gn corresponds to indirect input of other nodes via paths of

length n. The element (Gn)ij:gn
ij~

P
k1,:::,kn{1

gik1
:::::gkn{1 j consists

of the sum over all possible weighted paths from node j to node i in n
steps via the nodes k1 � � � kn{1 (note that gn

ij=(gij)
n). Since

bij~
P

n gn
ij, the elements of B describe the influence of neuron j

on neuron i via all possible paths. Similarly

C~½
X?
n~0

Gn�Y ½
X?
m~0

(GT )m�~
X?

n,m~0

GnY (GT )m:
X?

n,m~0

G(n,m),ð14Þ

with G(n,m)~GnY (GT )m. The first term G(0,0)~Y accounts for

the integral of the autocorrelation functions of independent

stationary Poisson processes, given by their rates. Higher-order

terms in this series describe recurrent contributions to correlations

and autocorrelation. The matrix elements of G(n,m) are

g
(n,m)
ij ~

X
k,l

gn
ikykl(g

T )m
lj ~

X
k

gn
ikgm

jkykk: ð15Þ

In these expressions, a term like gijyjj describes the direct effect of

neuron j on i, taking into account the interaction strength and the

rate of the presynaptic neuron. For example, in the term with n~2
and m~0 the elements g

(2,0)
ij ~(G2Y )ij~

P
k gikgkjyjj describe

indirect input of j to i via all k. For m~n~1, g
(1,1)
ij ~

P
k gikgjkykk

counts the common input of neurons i and j from all k. Altogether,

the series expansion of the correlation equation describes how the full

correlation between neurons i and j results from the contributions of

all neurons k, weighted by their rate, via all possible paths of length n
to node i and length m to node j, for all n and m.

These paths with two branches are the subgroup of network motifs

that contribute to correlations. Further examples are given in Figure 3.

The distribution of correlation coefficients depends on the distributions

of these motifs. Note that larger motifs are built from smaller ones,

hence distributions of different motifs are not independent.

As mentioned before, the sum (14) converges only if the

magnitude of all eigenvalues of G is smaller than one. This ensures

that the feedback by recurrent connections does not cause

runaway network activation. Both too strong recurrent excitation

and too strong recurrent inhibition can lead to a divergence of the

series. In such cases, our approach does not allow correlations to

be traced back to specific network motifs.

Under this condition, the size of higher-order terms, that is the

collective influence of paths of length n and m, decreases with their

total length or order nzm. This can be stated more precisely if

one uses as a measure for the contribution the operator norm

EGE~ max
j

P
i jgij j. After diagonalising G~U{1LU we have

EGn(GT )mE~

EU{1LnzmUEƒEU{1EEUEELnzmEƒEU{1EEUEjlmaxjnzm
,
ð16Þ

Structure and Correlations in Neuronal Networks
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where lmax denotes the eigenvalue with the largest absolute value.

If it is close to one, contributions decay slowly with order and

many higher-order terms contribute to correlations. In this

dynamic context the network can then be called strongly

recurrent.

Average correlations in regular networks do not depend
on fine-scale structure

The average correlation across all pairs can be computed by

counting the weighted paths between two given nodes. The

average contribution of paths of length (n,m) is

g(n,m):
1

N2

X
i,j

g
(n,m)
ij ~

1

N2

X
ijk

gn
ikgm

jkykk: ð17Þ

Let us separate the contributions from rates to the autocorre-

lations and define the average correlation c by

c:
1

N2
(
X

ij

cij{yij)~
X

(n,m)=(0,0)

g(n,m): ð18Þ

The population fluctuations are determined by c,

var(pop)~
X

i,j

cij~N2czN
X

i

yi: ð19Þ

As a first approximation let us assume that every neuron in a given

subpopulation a[fE,Ig projects to a fixed number of neurons in each

subpopulation b, denoted by kout
ba . Furthermore, each neuron receives

the same number of input connections from neurons of the two

subpopulations, denoted by kin
e and kin

i . Synaptic partners are chosen

randomly. These networks are called regular in graph theory, since

the number of outgoing and incoming connections of each neuron,

called the out- and in-degree, is identical for all neurons. This

restriction can be relaxed to approximate certain types of networks, as

we discuss in the respective sections. We set the external input y0~1.

Then the total input to each neuron is
P

j gij~(kin
e gez

kin
i gi):Nmin. The shortcut min corresponds to the average input

each neuron receives from a potential presynaptic neuron.

Since input is the same for all neurons, all rates are equal. Their

value can be obtained as follows by the expansion of (10),

yii~
X

j

(dijzgijzg2
ijz:::)

~1z
X

j

gijz
X

k

gik

X
j

gkjz . . .

~1zNminz
X

k

gikNminz . . .

~
X
n~0

(Nmin)n~
1

1{Nmin

:�yy:

In a similar manner, analytical expressions for the average

correlations can be obtained. Explicit calculations can be found in

Section 2 of Supporting Text S1. In particular, the average

correlation and hence the population fluctuations only depend on

the parameters kout
ba and kin

a .

Closed expressions can be derived in the special case where

there is a uniform connection probability between all nodes, i.e.

kout
ee

NE

~
kout

ei

NE

~
kout

ie

NI

~
kout

ii

NI

~p: ð20Þ

With m:gE
NE

N
pzgI

NI

N
p and g~(NEg2

EzNI g2
I )p2 one finds

for the individual contributions

g(n,m)~gmnzm{2Nnzm{2�yy, ð21Þ

and the average correlation

c~
X

(n,m)=(0,0)

g(n,m)~�yy(
2m

1{Nm
z

g

(1{Nm)2
): ð22Þ

Here, m can be interpreted as the average direct interaction

between two nodes and g as the average common input shared by

two nodes. Average correlations are determined by mean input

and mean common input.

Equation (22) can be used as an approximation if the degree

distribution is narrow. In particular this is the case in large random

networks with independent connections, independent input and

output and uniform connection probabilities. These conditions

ensure that deviations from the fixed out- and in-degrees balance

out on average in a large matrix. Numerical examples can be

found in the following section.

Random networks revisited
Indirect contributions of higher-order motifs decorrelate

inhibitory networks. In this section we analyse networks,

where connections between all nodes are realised with uniform

probability p. Using Equation (18) for the average correlation

c~
X
n,m

g(n,m),

Figure 3. Correspondence of motifs and matrix powers.
A: Examples for matrix expressions and symbols. B: Graphical
interpretation of paths contributing to elements of the matrix GYGT .
C: Same for the matrix G2YGT .
doi:10.1371/journal.pcbi.1002059.g003
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one can expand the average correlation into contributions

corresponding to paths of different shapes and increasing length.

In large random networks each node can connect to many other

nodes. The node degree is then the sum of a large number of

random variables, and the standard deviation of the degrees

relative to their mean will be small. In this case, the constant

degree assumption is justified, and Equation (21) gives a good

approximation of the different motif contributions, see Figure 4.

Decomposition of m~mEzmI in an excitatory, mE~gEpNE=N,

and inhibitory part, mI~gI pNI=N, shows that terms of different

length mzn contribute with different signs in inhibition

dominated networks (jmI jwmE ):

c~2(mEzmI )z3N(mEzmI )2z4N2(mEzmI )3z � � � , ð23Þ

such that each term partly cancels the previous one. The

importance of higher-order contributions can be estimated from

the eigenvalue spectrum of the connectivity matrix. For large

random networks of excitatory and inhibitory nodes, the spectrum

consists of one single eigenvalue of the size Nm~NEgEpzNI gI p
and a bulk spectrum of the remaining eigenvalues which is circular

in the complex plane [48]. Its radius r can be determined from

r2~NEp(1{p)g2
EzNI p(1{p)g2

I : ð24Þ

The value Nm corresponds to the average input of a neuron,

while r coincides with the input variance of a neuron. The effect of

the connectivity on motif contributions and eigenvalue spectra is

illustrated in Figure 4. A network is stable if neither the average

recurrent input nor the input variance is too large, that is if Nmv1

and rv1. Random connectivity in neural networks can therefore,

due the variability in input of different neurons, render a network

unstable, despite of globally balanced excitation and inhibition

(m~0) or even inhibition dominance.

Correlation distributions in random networks depend on

connectivity. By correlation distribution we denote the distribution

of the entries cij of the correlation matrix C. Its shape depends on the

strength of recurrence in the network. Weak recurrence is

characterised by jmj,g%1, which is the case for low connectivity

and/or small weights. In this case, mainly the first and second order

terms in the expansion (14) corresponding to direct input, indirect input

and common input contribute to correlations. For strongly recurrent

networks longer paths contribute significantly and may change the

distribution arising from lower order terms, compare Figure 5.

Ring networks can have broad correlation distributions
Instead of purely random networks we now consider networks

of N nodes arranged in a ring with distance dependent

connectivity. The type of each neuron is determined randomly

with probabilities PE and PI~1{PE , such that on average

NE~NPE excitatory and NI~PI N inhibitory neurons are

distributed over the ring. Outbound connections of each neuron

to a potential postsynaptic neuron are then determined from a

probability profile pE(d) or pI (d), depending on the mutual

geodesic distance d on the ring. The average interaction m(d)
between two randomly picked neurons at a distance d is

m(d)~PEgEpE(d)zPI gI pI (d):mE(d)zmI (d):

A sketch for this construction scheme is depicted in Figure 6A.

For the connection probabilities we use a boxcar profile,

Figure 4. Motif contributions to average correlations in random networks. Top: low connectivity, p~0:1. Bottom: higher connectivity,
p~0:25. Other parameters as in Figure 2. A: Spectra of connectivity matrices (fixed out-degree), eigenvalues in the complex plane. Red circle:
theoretical radius for bulk spectrum. Red cross: mean input to a neuron. The networks are inhibition dominated (mv0) and real parts of all
eigenvalues are below one (dashed line). B: Contributions of different motifs to average correlation. Comparison between theoretical prediction,
random networks with uniform connection probabilities (average across 10 realisations, error bars indicate standard deviation), and networks with
fixed out-degree. While in the sparse network only the first few orders contribute, higher orders contribute significantly in the dense network. The
analytical expression for the average correlation reproduces the values for networks with fixed out-degrees and approximates the values for random
networks. Within one order, chain motifs hardly add to correlations, while common input motifs have a larger contribution. Since inhibition
dominates in the network, contributions are positive for even orders nzm and negative for uneven orders. Refer to Figure 3 for the correspondence
of symbols and paths.
doi:10.1371/journal.pcbi.1002059.g004
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pE(d)~AEH(sE{jdj) and pI (d)~AI H(sI{jdj), where H de-

notes the Heaviside step function. Neurons with a distance smaller

than s are connected with a probability A, where A and s depend

on the type of the presynaptic neuron.

The stability of such a network depends on the radius of the

bulk spectrum. Additionally and in contrast to the random

network, besides the eigenvalue corresponding to the mean input

of a neuron, a number of additional real eigenvalues exist outside

the bulk spectrum. A typical spectrum is plotted in Figure 6B.

These eigenvalues are particularly pronounced for locally strongly

connected rings with large AE ,AI and belong to large scale

oscillatory eigenmodes. The sign of these eigenvalues depends on

the shape of the interaction profile. For short-range excitation and

long-range inhibition (6C), that is a hat-like profile, these

eigenvalues are positive and tend to destabilise the system. For

the opposite, or inverted-hat case (6D), these eigenmodes do not

affect stability, therefore stability is determined by the radius of the

bulk spectrum. This can be seen as an analogue to the case of net

inhibitory input in random networks.

As in a random network, the degree distribution of nodes in a

ring network is narrow, hence Equation (22) is a good

approximation for the average correlation if the total connection

probability ptot is independent on the neuron type,

ptot~
XN=2

d~{N=2

pE(d)~
XN=2

d~{N=2

pI (d):

In this case the average correlation does not depend on the specific

connectivity profile. However, the full distribution of correlations

depends on the connection profile, Figure 6E and F. For localised

excitation the eigenvalues of oscillatory modes get close to 1,

rendering the network almost unstable, and many longer paths

contribute to correlations. Since for ring networks neighbouring

nodes can share a lot of indirect input, while more distant ones do not,

this leads to more extreme values for pairwise correlations.

Correlations depend on distance. For distance dependent

connectivity correlations are also expected to depend on the

distance. We define the distance dependent correlation c(d) by

c(d):
1

N

X
i

ci,izd~Sci,izdT, ð25Þ

where izd should be understood as (izd) mod N to reflect the

ring structure, and the expectation S:T is taken over all nodes.

Since this is also an averaged quantity, a similar calculation as in

the case of the average correlation can be done. Since matrix

products count the number of paths, one can show that

expectation values of matrix products correspond to convolutions

of the average interaction kernels m(d). Details of the calculation

can be found in Section 3 of Supporting Text S1. As before c(d) is

expanded into terms corresponding to different path lengths,

c(d)~
X
m,n

g(m,n)(d), ð26Þ

with g(m,n)(d):
P

k �yySgn
ikgm

izd,kT, where �yy~SykkT is the average

rate. We note that

Sgi,izdT~m(d)

and define a distance dependent version of the average common

input, g(d), by

g(d)~S
X

k

gikgizd,kT~me � me(d)zmi � mi(d)

where � denotes discrete convolution. Using the discrete (spatial)

Fourier transform,

Figure 5. Strongly recurrent networks have broad correlation distributions. A: Low connectivity, p~0:1, B: high connectivity, p~0:25.
Other parameters as in Figure 2. The discrete distribution of direct interactions (blue) is washed out by second order terms (green) to a bimodal
distribution for low and a unimodal distribution for high connectivity. higher-order terms (red) contribute significantly only for high connectivity.
C: Correlation distributions change from a bimodal to a unimodal distribution for increasing connectivity (grey-scale indicates probability density).
Average correlation (blue) increases smoothly and faster than the average interaction (black), which is the sum of excitatory (green) and inhibitory
(yellow) interaction, but slower than the average common input (cyan) due to higher-order terms. The analytical prediction from Equation (22) for the
average correlation (dashed red) fits the numerical calculation, especially for low connectivities. Vertical dotted lines indicate positions of the
distributions in A and B.
doi:10.1371/journal.pcbi.1002059.g005
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ĉc(k)~
XN{1

d~0

c(d) exp ({i2pkd=N),

one finds for the single contributions

dg(m,n)g(m,n)~ĝgm̂mnzm�yy ð27Þ

and for the complete correlations

ĉc(k)~�yy(1z
2m̂m(k)

1{Nm̂m(k)
z

ĝg(k)

(1{Nm̂m(k))2
): ð28Þ

The discrete Fourier transform can be calculated numerically

for any given connectivity profile. Results of Equations (27) and

(28) are compared to the direct evaluation of (25) in Figure 7. The

origin of the broad correlation distribution in Figure 6B can now

be explained. For the hat-like profile, in a fixed distance,

contributions of different order share the same sign and therefore

add up to more extreme values. In an inverted hat profile, different

orders of contributions change sign and cancel, leading to less

extreme correlations and consequently a narrow distribution. The

average correlation, however, is not affected.

Fluctuation level scales differently in ring and random

networks. While the average correlation and therefore the

variance of population activity in a network does not depend on

structure in the networks considered so far, this is not true for

smaller subnetworks. In ring-like structures, small populations of

neighbouring neurons are more strongly correlated, and we expect

larger fluctuations in their pooled activity. Generalising equation

(12) slightly for a population pop~f1:::ng we define

var(pop)~
X

i,j[pop

cij~
Xn

i,d~0

ci,(izd)modn&
Xn

i,d~0

c(½izd�modn): ð29Þ

This expression can be evaluated numerically using Equation

(28). For random networks, correlations do not depend on the

distance. Hence the population variance increases quadratically

with the number of elements. When increasing the population size

in ring networks, more neurons which are further apart and only

weakly correlated to most of the others are added, therefore a large

part of their contribution consists of their rate variance and the

population variance increases linearly. An example is shown in

Figure 7. All curves approach the same value for a population size

of 1000 (the complete population), but for smaller population sizes

Figure 6. Correlation distributions depend on range of inhibition in ring networks. A: Distance dependent connectivity in a ring. Nodes
are connected with a fixed weight to neurons with a probability depending on their mutual distance. Average interaction is the product of
connection probability and weight averaged over populations. The connectivity profile may be different for excitatory neurons (red, positive weight)
and inhibitory ones (green, negative weight). Average interaction on a randomly picked neuron at a distance corresponds to the sum (blue).
B: Typical spectrum for a connectivity matrix with local inhibition. Parameters: ptot~0:07,sE~250,sI ~125, others as in Figure 2. C,D: Examples for
average interaction profiles used in E and F. C: Global inhibition (sI ~N=2) and local excitation, sEvN=2 for small (dashed) and large (dotted) sE ,
hat profile. D: Local inhibition and global excitation, inverted hat profile. Other parameters as in B. E,F: Top: Correlation distributions for fixed
sI ~N=2 and increasing sE (E) and fixed sE~N=2 and increasing sI (F), logarithmic colour scale. Values between N=2 (random network) and ptotN
(connectivity in boxcar 0.5). Overall connectivity ptot remains constant. Average correlation (dashed blue: numerical, red: analytical) does not change.
Bottom: real parts of eigenvalues for corresponding connectivity matrices. Rings with local excitation tend to be less stable.
doi:10.1371/journal.pcbi.1002059.g006
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one finds the expected quadratic versus the linear dependency. If

the members of the populations in a ring network are not

neighbours, but randomly picked instead, the linear increase

becomes quadratic, as in a random network (data not shown).

Connected excitatory hubs of high degree or patches
increase correlations

We found that in networks with narrow degree distributions

average correlations are determined by global parameters like the

population sizes NE ,NI and overall connectivity p, see Equation

(22). In networks with broad degree distribution however, the

regular-graph approximation is no longer valid. Thus, in such

networks the fine structure of the connectivity will, in general, play

a role in determining the average correlation. To elucidate this

phenomenon, we use a network model characterised by a

geometric degree distribution. The fine structure can then be

manipulated without altering the overall connectivity. Specifically,

the connection statistics of a given node will depend on the out-

degree. The network model is defined as follows (compare

Figure 8A). Out-degrees k of excitatory and inhibitory neurons

are chosen from a geometric distribution with a probability P

P(k)~(1{
1

k0
)k{1 1

k0
,

where the parameter k0 corresponds to the mean out-degree. The

resulting distribution has a mean connection probability of

p~1=k0 and a long tail. Excitatory neurons are then divided into

classes according to their out-degree. We will call neurons with

out-degree kwk0 hubs and the rest non-hubs to distinguish the

classes in this specific example. Postsynaptic neurons for non-hubs

and inhibitory neurons are chosen randomly from all other

neurons. For each hub we fix the fraction f of connections that go

to other hubs. The number of connections to excitatory neurons

kE is chosen from a binomial distribution with parameter
NE

N
. A

number fkE of the k postsynaptic neurons are randomly chosen

from other hubs, (1{f )kE outputs go to non-hub excitatory

neurons and k{kE connections to randomly chosen inhibitory

neurons. By varying f between 0 and 1, excitatory hubs can be

chosen to form a more or less densely connected subnetwork.

From the cumulative geometric distribution function,

cdf(k)~1{(1{k0=N)k, the expected fraction of hubs is

f0~1{cdf(k0), which is about 0.35 for p~0:1. If f vf0 hubs

are preferentially connected to non-hubs, otherwise hubs are more

likely connected to each other.

By construction the parameters kout
ab do not depend on f . Hence

terms with g(n,m),nzmv3, including common input, are also

independent of f . The statistics for longer paths are however

different. If excitatory hubs preferentially connect to hubs, the

number of long paths within the excitatory population increases.

The effects on correlations are illustrated in Figure 8. Densely

connected hubs increase average correlations. While the contribu-

tions of smaller motifs do not change significantly, from the larger

motifs all but the pure chain motif contributions are affected.

Different effects can be observed in networks of neurons with

patchy connections and non-homogeneous spatial distribution of

neuron types. A simple network with patchy connections can be

constructed from neurons arranged in a ring. We consider two

variants: one where all inhibitory neurons are situated in the same area

of the ring, compare Figure 9A, and one where they are randomly

distributed over the ring. For each neuron, postsynaptic partners are

chosen from a ‘‘patch’’, a population of S neighbouring neurons

which is located at a random position, with a probability pp. If neuron

populations are not uniformly distributed, this leads to large variations

in single neuron kout
ab , even if average values are kept fixed. We

compare networks where excitatory and inhibitory neurons are

spatially separate, Figure 9A, versus randomly mixed populations. In

Figure 9B average correlations are compared to correlations in

networks with random connectivity. If excitatory and inhibitory

neurons are distributed randomly, no significant increase is seen, but if

populations are separate, correlations are increased strongly when

patches are smaller. In Figure 9C is depicted which network motifs are

responsible for the increase of correlations. It can be observed that the

Figure 7. Distance dependence of correlations and population fluctuations. A,B: Evaluation of c(d) for parameters
gE~0:015,gI ~{0:075,ptot~0:1 and sE~200,sI ~100, localised inhibition (A) and sE~100,sI~200, localised excitation (B). Other parameters as
in Figure 2. Contributions of different paths, numerically (full lines) and analytically (dashed lines). Higher orders add up to extreme values for
localised excitation but cancel out for localised inhibition. Correlations of individual neurons with distant neighbours vary considerably (grey, 50
traces shown). C: Variance of population spike counts over population size. Comparison between populations of neighbouring neurons in a ring and
in a random network with fixed output. Plotted are results from analytical approximation, numerical calculation using the connectivity matrix and
direct simulation, averaged over 5 populations in each case. Network Parameters: random network as in Figure 2, ring: sE~100,sI~67,ptot~0:1.
Simulation parameters: total simulation time: 5:105ms, bin size for spike counts: 500ms, others as in Figure 2.
doi:10.1371/journal.pcbi.1002059.g007
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difference in correlation is mainly due to differences in contributions of

symmetric common input motifs g(m,n) with (m,n)~(2,2),(4,4), . . .,
and to some extent of nearly symmetric ones ((m,n)~(2,3),(3,2)).
The reason is that if neurons of the same type receive common input,

firing rates of their respective postsynaptic targets will be correlated. If

their types differ, their targets receive correlated input of different

signs, inducing negatively correlated rate fluctuations. Patchy output

connections lead to an increased fraction of postsynaptic neurons of

equal type if populations are spatially separated. In this case average

correlations are increased. This effect is a direct consequence of the

spatial organisation of neurons and connections. The same effect

could however be achieved by assuming that single neurons

preferentially connect to a specific neuron type.

A comparison of motif contributions to correlations, Figures 8C

and 9C, shows that different architectures increase correlations via

different motifs. Asymmetric motifs play a role in the correlation

increase for hubs, but almost none for patchy networks.

Discussion

We studied the relation between connectivity and spike train

correlations in neural networks. Different rules for synaptic

connectivity were compared with respect to their effects on the

average and the distribution of correlations. Although we address

specific neurobiological questions, one can speculate that our

results may also be relevant in other areas where correlated

activity fluctuations are of interest, such as in the study of gene-

regulatory or metabolic networks.

Hawkes processes as a model for neural activity
The framework of linearly interacting point processes in [38]

provides a transparent description of equilibrium rates and

correlations. It has been used previously to infer information

about direct connectivity from correlations in small networks [44],

as one amongst many other methods, see for example [49,50] and

references therein. Another application was the study of spike-time

dependent plasticity [45,51] and, in an extended framework, the

description of spike train autocorrelations in mouse retinal

ganglion cells [52]. An approach using linearised rate dynamics

was applied to describe states of spontaneous activity and

correlations in [53]. Correlations in populations of neurons have

been studied in a rate model in [36] and in a point process

framework in [37]. Hawkes’ point process theory allows the

treatment of correlations on the level of spike trains as well as the

understanding of the relation of complex connectivity patterns to

the statistics of pairwise correlations.

Although Hawkes’ equations are an exact description of

interacting point processes only for strictly excitatory interactions,

numerical simulations show that predictions are accurate also for

networks of excitatory and inhibitory neurons. Hence correlations

can be calculated analytically even in effectively inhibitory

networks in a wide range of parameters, as has already been

proposed in [39]. One should note, however, that for networks

with strong inhibition in combination with strong synaptic weights

and low external input, low rates are not reproduced well.

The activity of cortical neurons is often characterised by low

correlations [27], and can exhibit near-Poissonian spike train

statistics [54] with a coefficient of variation near one. In theoretical

work, similar activity has been found in balanced networks [41] in

a certain input regime [40]. The level and time dependence of

external input influences the general state of activity as well as

pairwise correlations. In this study we are only concerned with an

equilibrium resting state of a local network with asynchronous

activity where external input is constant or unknown. We use

Figure 8. Higher-order contributions to correlations are increased by connected excitatory hubs. A: Construction. Excitatory neurons are
divided into hubs (large out-degree) and non-hubs (small out-degree). The fraction of excitatory outputs from hubs to hubs f is varied. B: Average
correlations increase with hub-interconnectivity f (average across 10 networks, error bars from standard deviation). Densely connected hubs (f wf0 ,
dashed vertical line) lead to large average correlations. C: Contribution to average correlations of different motifs for random network and networks
with broad out-degree distribution and f ~0:2 (disassortative network) and f ~0:55 (assortative network). Average across 20 networks, error bars
from standard deviation. Although contributions are different from random networks, in networks with broad degree distribution low order
contributions (indirect and common input) are independent of hub interconnectivity, in contrast to certain higher-order contributions.
doi:10.1371/journal.pcbi.1002059.g008
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Poisson processes as a phenomenological description for such a

state and do not consider the biophysical mechanisms behind

spiking activity, nor the reasons for asynchronous spiking on a

network level. However, we found in simulations of networks of

integrate and fire neurons of comparable connectivity parameters

in an asynchronous-irregular state that correlations can be

attributed to a large degree to linear effects of recurrent

connectivity, although single neuron dynamics are nonlinear and

spike train statistics are not ideally Poissonian (data not shown).

Thus, although a linear treatment may seem like a strong

simplification, this suggests that Hawkes’ theory can be used as a

generic linear approximation for the spike dynamics of complex

networks of neurons. A similar point has been made in [53].

Contribution of indirect synaptic interactions to
correlations

We quantified correlations by integrated cross-correlation

functions in a stationary state. The shape of the resulting

correlation functions, which has been treated for example in

[30,37,55], was not analysed. The advantage is that our results are

independent of single neuron properties like the shape of the linear

response kernel. Specific connectivity properties that can be

described by a graph, as for example reviewed in [3], can be

directly evaluated with respect to their effects on correlations.

In Hawkes’ framework, taking into account contributions to

pairwise correlations from direct interactions, indirect interactions,

common input and interactions via longer paths is equivalent to a

self-consistent description of correlations. This interpretation helps

to derive analytical results for simple networks. Furthermore it

allows an understanding of the way in which recurrent

connectivity influences correlations via multiple feed-back and

feed-forward channels. In particular, we showed why common

input and direct input contributions are generally not sufficient to

describe correlations quantitatively, even in a linear model. We

showed that average correlations in networks with narrow degree

distributions are largely independent of specific connectivity

patterns. This agrees with results from a recent study [42], where

conductance based neurons in two-dimensional networks with

Gaussian connectivity were simulated. There, the degree of single

neurons was kept fixed and population averaged correlations were

shown to be invariant to different connectivity patterns. For net-

inhibitory networks, indirect contributions to correlations effec-

tively reduce average correlations. A similar effect has been

described in [20] and in [36] for a rate model. In networks with

strong recurrence, characterised by eigenvalues of the connectivity

matrix close to one, correlation distributions are strongly

influenced by higher-order contributions. In these networks broad

distributions of correlations arise. In contrast, in very sparsely

connected networks correlations depend mainly on direct

connectivity.

Can we estimate the importance of recurrence from experi-

mentally accessible parameters? In [56] the probability of a single

extra input spike to generate an additional output spike,

corresponding to gE , has been measured in rat barrel cortex in

vivo as 0.019. Additionally, the number of connections made by

each neuron was estimated to be about 1500. We now consider a

local network with a fraction of inhibitory neurons of 20%. We

assume an inhibitory synaptic weight gI~4gE to balance the

excitation, such that m~0. The estimated mean degree is

consistent with many different topologies. Let us consider the

case of a uniform random network of 15000 neurons with

connection probability 0.1. For comparison we also look at a

densely connected subnetwork of just 2500 neurons with a

connection probability of 0.6. The first model results in a spectral

radius r&1:4 for the connectivity matrix G, hence falling in the

linearly unstable regime. In contrast, the second network displays a

Figure 9. Patches in separate populations selectively affect high-order common input motifs. A: Connection rules for networks with
patches. Output connections of a neuron are restricted to a randomly chosen region. B: Average correlations depending on patch size. Comparison
between random networks, patchy networks with randomly distributed neuron type and separate populations, average across 5 networks, error bars
from standard deviation. Only separate populations lead to increased correlations. Larger increase occurs for smaller patch-size. Total connection
probability p~0:1, other parameters as in Figure 2. C: Contributions of different motifs. Differences to random networks occur only in common input
terms of higher order. Patch size S~600.
doi:10.1371/journal.pcbi.1002059.g009
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spectral radius slightly below one, which indicates linear stability.

What can we conclude from this discussion? In the first place, this

crude estimate of the spectral radius suggests that a value in the

order of one is not an unrealistic assumption for real neural

networks. This would call for a consistent treatment of long-range,

higher-order interactions. This view is also supported by

simulations of integrate and fire networks [31], which can yield

similarly values for the spectral radius close to one. Our second

example, although biologically less realistic, shows the range in

which the spectral radius can vary, even if certain network

parameters are kept fixed. This highlights the importance of the

connectivity structure of local neural networks, as different

network architectures can strongly affect the stability of a certain

activity state.

Effects of network architecture on correlations
We addressed ring networks with distance-dependent connec-

tion probability. Here, average correlations do not depend on the

connectivity profile. However, for densely coupled neighbour-

hoods very broad correlation distributions can arise. A Mexican

hat-like interaction has especially strong effects, since in that case

higher-order contributions amplify correlations. This is not

surprising since it is known that Mexican hat-like profiles can

support large-scale activity patterns [57]. This implies that local

inhibition increases network stability and leads to less extreme

values for correlations. Distributions of correlations and distance

dependence of correlations have been measured experimentally

[20,21], but they have not yet been related directly to anatomical

connectivity parameters. In [19], the distance dependence of

pairwise correlations as well as higher-order correlations has been

measured experimentally. A generalisation of Hawkes’ correlation

equations in conjunction with the framework of cumulant-

correlations discussed in [58] presents a promising route to study

structure dependence also of higher-order correlations.

A generalisation to two-dimensional networks with distance

dependent connectivity could be used to further investigate the

relation between neural field models which describe large-scale

dynamics [59–61] and random networks. However, the analysis

using the full connectivity matrix allows to incorporate effects of

random connectivity beyond the mean field limit. One example is

that stability of networks is not only determined by mean recurrent

input, but also by input variance.

Pairwise correlations affect activity in pooled spike trains [62].

We found that distance dependence of connectivity creates

strongly coupled neighbourhoods and that population signals

therefore depend on the connectivity statistics of the network.

Such population signals could for example be related to local field

potentials.

If the degree distribution is wide, networks can be constructed

where connection probability depends on the out-degree of

postsynaptic neurons. We considered networks where excitatory

hubs, defined by a large out-degree, form a more or less densely

connected subnetwork. Similar networks have been studied in

[63]. In graph-theoretic terms, the connectivity between these

hubs influences the assortativity of the network. A commonly used

measure is the assortativity coefficient, which is the correlation

coefficient between degrees of connected nodes. We calculated a

generalised version for weighted networks, the weighted assorta-

tivity coefficient [64]. It can assume values between -1 and 1. Our

networks have values between 20.22 and 20.05. Negative

assortativity values are a consequence of the geometric degree

distribution, but networks with more densely connected hubs have

a higher coefficient. In our model, more assortative networks

exhibit larger correlations than more disassortative ones. This

illustrates how differences in higher-order statistics of connectivity

can influence correlations, even if low order statistics do not differ.

In networks with patchy connections, an increase of correlations

can be observed when populations of neurons are spatially non-

homogeneous. Some information about how network architecture

influences correlations can be obtained from examining contribu-

tions of individual motifs. In patchy networks mainly the

contributions of symmetric motifs are higher, when excitatory

and inhibitory neurons are separated, and therefore responsible

for the correlation increase. In networks with hubs also

asymmetric motifs play a role.

We found that fine-scale structure has important implications

for the dynamics of neural networks. Under certain conditions, like

narrow degree distributions, local connectivity has surprisingly

little influence on global population averages. This suggests the use

of mean-field models. On the other hand, broad degree

distributions or the existence of connected hubs influence activity

also on the population level. Such factors represent, in fact, major

determinants of the activity state of a network and, therefore,

should be explicitly considered in models of large scale network

dynamics.

As considerable efforts are dedicated to the construction of

detailed connection maps of brains on multiple scales, we believe

that the analysis of the influence of detailed connectivity data,

possibly with more refined models, has much to contribute to a

better understanding of neural dynamics.
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