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Abstract

From ants to humans, the timing of many animal behaviors comes in bursts of activity separated by long periods of
inactivity. Recently, mathematical modeling has shown that simple algorithms of priority-driven behavioral choice can result
in bursty behavior. To experimentally test this link between decision-making circuitry and bursty dynamics, we have turned
to Drosophila melanogaster. We have found that the statistics of intervals between activity periods in endogenous activity-
rest switches of wild-type Drosophila are very well described by the Weibull distribution, a common distribution of bursty
dynamics in complex systems. The bursty dynamics of wild-type Drosophila walking activity are shown to be determined by
this inter-event distribution alone and not by memory effects, thus resembling human dynamics. Further, using mutant flies
that disrupt dopaminergic signaling or the mushroom body, circuitry implicated in decision-making, we show that the
degree of behavioral burstiness can be modified. These results are thus consistent with the proposed link between decision-
making circuitry and bursty dynamics, and highlight the importance of using simple experimental systems to test general
theoretical models of behavior. The findings further suggest that analysis of bursts could prove useful for the study and
evaluation of decision-making circuitry.
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Introduction

Bursts in behavior are common [1–10], but only recently have

there been modeling efforts to understand its origin from a

behavioral point of view [11–14]. The queued priority list model

was first proposed by Barabási [11,12] to explain why inter-event

times in human activities such as e-mail and letter writing have a

bursty nature. In the proposed model behavioral bursts are the

consequence of an internal decision-making process, with tasks

generally being executed in order of perceived relative priority and

an additional random component. Later work has argued that the

distributions in [11] might not follow a power law but the log-

normal distribution [15], or that e-mail communication data can

instead be explained with a cascading nonhomogeneous Poisson

process [14] or as a sum of Poisson processes [16]. Regardless of the

particular model implementations or resulting distributions, how-

ever, an important ingredient of the Barabási model is the proposed

relationship between decision-making and behavioral bursts.

The link proposed by the Barabási model between behavioral

bursts and an underlying decision-making algorithm is not a

logical necessity. Indeed, alternative mechanisms proposed to

explain behavioral bursts have been based on random processes,

for example by a cascading nonhomogeneous Poisson process [14]

or by a sum of Poisson processes with different mean rates [16].

The link between behavioral burstiness and decision-making thus

needs experimental validation. We therefore set out to experi-

mentally determine whether neuronal circuitry necessary for

decision-making is also necessary for the bursts seen in behavior.

We found Drosophila melanogaster an ideally suited model system

for this test. Drosophila has been shown to have a complex decision-

making behavior and not simply hard-wired stimulus-responses

[17–25]. Flies can initiate behavior [17,21], probabilistically

activate a given action from a range of possible ones and learn

to use the particular actions that give the target result

[17,19,23,24]. Decisive components of the fly decision-making

circuitry have been identified and characterized [18,20,22–25]. In

particular, dopaminergic neurons have been found to be necessary

for decision-making in tethered flight [20] and in olfactory-driven

[24] and visually-driven choices of walking flies [25]. Dopaminer-

gic neurons have also been found to form a reinforcement circuit

establishing which actions are appropriate [24]. The neuroana-

tomical substructure known as the mushroom body (MB), long

known for its implication in olfactory memory formation and

retrieval [e.g. reviewed in 26] has also been found to be necessary

for decision-making in tethered flight [18,20] and implicated in

visual attention-like behavior [27].

The complex decision-making behavior of Drosophila already

shows components consistent with a priority-based model like that
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of Barabási. For example, the activation of actions is probabilistic

[17,19,23,24] and its brain has components that can reinforce

some actions, that is, to give them higher priority [24].

Interestingly, Drosophila has also been shown to have intrinsic

behavioral variability. This has been found to be influenced by the

ellipsoid-body (EB) [28,29], a substructure of the central complex

(CX), which has also been implicated in visuo-motor control [30]

and visual memory tasks [31]. Notably, the MB has also been

implicated in behavioral variability. Concretely, it has been argued

to be a site that establishes a balance between the variability

needed for flexibility and the inflexibility of habit formation [23].

Powerful genetic tools for targeted neuronal silencing have been

developed for Drosophila [32,33]. To test the link between decision-

making and burstiness in Drosophila, we selectively silenced parts of

the MB, or modified dopaminergic signaling, components

previously found to disrupt decision-making [20], and found that

the flies’ inherent burstiness changed, a result thus consistent with

the core idea of the Barabási model [11,12].

To study burstiness in Drosophila, we measured the spontaneous

walking activity of flies with the DAM2 System (Trikinetics, MA),

which is a detector system with infra-red beams that cross through

the center of 32 tubes, each one containing a single fly. When a fly

crosses the beam an activity event is registered for that fly. Data

were sampled in 1 minute bins, and separated into activity bouts

(ABs) and inter-activity intervals (IAIs) for analysis (see Activity

Assay).

Results

Burstiness in Drosophila is described by a Weibull
distribution

A hallmark of bursty dynamics is that the time intervals between

events follow non-Poissonian statistics, with long and short time

intervals being more common than in the random (Poissonian)

case. In cases like these, calculating the mean event duration or

mean inter-event interval duration offers poor descriptions of the

underlying behavior. Instead, an alternative approach is to fit an

analytical function to the empirical statistical distribution. Three

common problems with this approach have however been noted.

First, it is common to fit the data to a power law [1,2,4–7,9–

12,21,28,29,34], but this procedure can be problematic [35,36].

Usually, the experimental distribution is given in a log-log plot and

it is then fitted to a straight line for a range of the data. However,

log-log plots often give the impression of linear trends for part of

the data, and thus spurious results can be obtained [35,36].

Second, it has been noted that apparent bursty behavior can

emerge as a consequence of pooling from a population of Poisson

individuals with different Poisson rates [16]. Third, this can also

happen as a consequence of circadian rhythms in the activity

patterns [14]. We analyzed our data with the aim to avoiding these

three problems. First, we found that the Weibull distribution has

an excellent fit to the entire range of inter-activity intervals (IAIs)

and not simply to a particular region. Second, we obtained data

for individual flies and show that each follows a Weibull

distribution. Third, we analyzed separately day (lights on) and

night (lights off) data instead of taking the IAIs for an entire day,

thus avoiding a possible circadian rhythm influence. Since

Drosophila day-time activity is usually non-stationary with a mid-

day ‘siesta’, we have focused this study on the more stationary

night period, Figure S1A.

The mean complementary cumulative (survival) distribution of

IAIs for 3-day-old flies with the standard genetic background

Canton-S (CS) (Figure 1A, black error bars) showed a clear

deviation from Poissonian behavior (Figure 1A, dotted line for

Poisson distribution with the same mean IAI as data). Data

correspond with flies displaying bursty dynamics, with many

periods of high activity separated by long periods of inactivity. We

found that the complementary cumulative Weibull distribution,

P(IAI§t)~exp({(t=l)k), ð1Þ

fitted very well the experimental IAI complementary cumulative

distribution for all the range of inter-activity intervals (Figure 1A,

light grey line, r2 = 0.998, n = 28; see Burstiness Analysis and

Figure S2 for fitting technique). The initial portion of the

empirical IAI distribution can be fitted to a line in a log-log plot

and that has been used to argue in favor of a power law ([2,4,29] &

Figure S1B), but many distributions appear straight in a log-log

plot for part of the data [35,36] and this kind of plots are not

accurate enough to find the underlying exponent [36, and

references therein]. More importantly, the Weibull distribution

fits the data for the entire experimental interval of IAI values. This

means that the tail of the distribution is heavy but less so than with

a power law, and also that there is a natural scale. Indeed, the two

parameters that characterize the Weibull distribution are the scale,

l = 6.0, and the shape, k = 0.45, Figure 1A. The scale parameter

is linearly related to the mean IAI (see Supporting Information,

Text S1). Importantly for our analysis, the shape parameter allows

a parameterization of the degree of burstiness, with k = 1

corresponding to the Poisson case and k,1 to bursty behavior,

burstier the lower its value. The experimental Weibull distribution

was not due to a population effect, as each fly is well fitted by a

Weibull distribution, with r2 = 0.97 (mean)+0.02 (s.d.). All flies

showed bursty dynamics with k = 0.46 (mean)+0.08 (s.d.),

Figure 1A inset. Even more relevant than having a good fit to

the data, is the possibility to correctly estimate the underlying

parameters that emerge by using the Weibull distribution. We

tested with artificial data that our fitting technique correctly

extracted the parameters l and k for data sizes comparable with

the experimental ones (see Burstiness Analysis and Figure S2).

Author Summary

It has long been observed that animal movement tends to
come in bursts of activity. This has been seen in many
animal species, ranging from small insects to even human
activity patterns. The underlying mechanisms remain
unknown, but recently a mathematical model showed
that it could be due to priority-driven choice behavior. If
the animals decide what to do next depending on the
relative priorities of the choices at hand, the behavior
becomes bursty, while if the animals simply act directly on
cues coming from the outside, their behavior becomes less
structured and more random. To test if decision-making
processes affect behavior in bursts, we studied the fruit fly
(Drosophila melanogaster), because of the powerful
genetic tools available. We manipulated a part of the
brain known as the mushroom body, and neurons that
form the dopaminergic system, since both had previously
been found to disrupt normal choice behavior in the fly. In
particular we found that high levels of dopamine made the
flies’ activity pattern less structured, and that parts of the
mushroom body circuitry also affected burstiness. Our
findings are thus consistent with the idea that decision-
making processes could be important for understanding
animal and human activity patterns.

The Origin of Bursts in Decision-Making Circuitry
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In addition to Canton-S, we tested two other common genetic

backgrounds, yellow-white (yw) and w1118, and found that they all

had bursty dynamics, Figure 1B. Further, we observed that both

young (3-day-old) and adult (4-week-old) flies showed bursty

dynamics. However, a general decrease in burstiness is observed

with aging, as illustrated by a 22.2% mean increase of the shape

parameter k, Figure 1B.

Burstiness in walking Drosophila is mainly due to the
inter-event distribution and not to memory effects

Different animals, or even the same animal in different times or

states, can have stochastic bursts following different statistics. To

be able to compare individuals in situations where the distribution

can be different, it is convenient to also have a measure of

burstiness independent of the distribution. For this, we have used

the burstiness parameter B [8],

B~
s{m

szm
, ð2Þ

where s and m are the standard deviation and the mean of the IAIs,

respectively. The burstiness parameter has values in the range

(21,1), where B = 1 corresponds to completely bursty dynamics,

B = 0 to random event times (Poissonian) and B = 21 to periodic

activity. The burstiness parameter, when applied to the Weibull

distribution, depends only on the shape parameter k (i.e., is

independent of l) and decreases with k (see Supporting Information,

Text S1). Walking Drosophila display bursty behavior with mean

values of B in the range of 0.23–0.46, Figure 2A. In general we find

a strong agreement between the two measures of burstiness, but for

finite data the shape parameter k is more sensitive to data located on

the tail range of the time distribution, while B is more dominated

than k by short time events. The same type of analysis can be applied

to the duration of activity bouts (AB), where we also find non-

Poisson dynamics, with strong agreement between the two

burstiness parameters k and B, Figure S3.

Another source of bursty dynamics, apart from the IAI

distribution, are memory effects in the time-series of events [8].

Two systems can have the same IAI distribution, but the system

with the stronger memory (i.e. short/long intervals followed by

short/long intervals) displays burstier dynamics. We characterized

the memory effect M with an estimator of the correlation

coefficient of consecutive IAIs [8],

M~
1

n{1

Xn{1

i~1

(ti{m1)(tiz1{m2)

s1s2
, ð3Þ

where n is the number of IAIs, m1 (m2) and s1 (s2) are the mean

and standard deviation of the IAIs ti’s (ti+1’s), respectively, with

i = 1,…,n21. The bursty dynamics found in the three common

background strains exhibit mean memory effects in the range

[20.05 0.07], Figure 2B, small compared to the values of

approximately 0.15–0.2 of other bursty phenomena [8]. Impor-

tantly, for w1118, the genetic background used in the transgenic

experiments in this study, there is no significant memory, p.0.5,

when comparing actual data against shuffled (memory-less)

versions, Figure 2B. We also tested for long-range memory

effects in the activity. For that, we used detrended fluctuation

analysis (DFA) [37,38] (see Detrended Fluctuation Analysis) and

found no significant long-term memory for w1118 either, p.0.6,

Figure S4. In contrast, tethered flight activity has been shown to

have long-range memory [21]. We analyzed the data from [21]

with the tools used here and, consistent with [21], found tethered

flight to have significant short and long-term memory, especially

under close-loop conditions (see ‘‘onestripe’’, Figure S4).

Because the IAI distribution (as measured by burstiness B) and

memory (as measured by memory coefficient M) are two

completely different mechanisms for bursty dynamics, a more

complete characterization of a system can be made in a B-M plot.

In this 2-D representation we can compare Drosophila dynamics

and previous results for human behavioral dynamics [8]. Drosophila

IAI dynamics lie in the same region as human dynamics,

Figure 2C. This region corresponds to bursty dynamics mainly

due to burstiness B and weakly to memory M. This is in contrast to

meteorological or earthquake bursty dynamics that have more

important memory effects, or to the distances between consecutive

occurrences of a given letter in a text, which display a very low

degree of burstiness [8]. This makes the dynamics of Drosophila, like

Figure 1. Drosophila inter-activity intervals (IAIs) follow the
Weibull distribution. (A) Mean IAI survival distribution of 28 Canton-S
flies during the dark period (black, mean 6 standard error) shows a
clear deviation from the exponential distribution corresponding to the
IAIs of a Poisson process (dotted line, same mean as actual IAI
distribution). The Weibull distribution (light grey line) fits data
accurately (r2 = 0.998), with k = 0.45, l = 6.0. Individual flies also have
IAIs following the Weibull distribution. Inset: Distribution of k values
obtained for the same data set but performing individual fits (mean fit
r2 = 0.9260.07 s.e.m.). Each fly shows bursty dynamics with
k = 0.4660.08 s.e.m. (B) Shape parameter k for young (3 days, left)
and adult (4 weeks, right) Canton-S (CS) flies, yellow-white (yw) and w1118

flies. All show bursty dynamics, with k,1, significantly different from
the Poissonian k = 1 case with p,1027. Day and night data are treated
separately as the activity dynamics are different; in Figure S1A we
present the corresponding daily activity patterns for the 3-day-old CS,
yw and w1118. Number of flies n = 28–32.
doi:10.1371/journal.pcbi.1002075.g001

The Origin of Bursts in Decision-Making Circuitry

PLoS Computational Biology | www.ploscompbiol.org 3 June 2011 | Volume 7 | Issue 6 | e1002075



human dynamics, even harder to predict than earthquakes or

meteorological phenomena.

Mushroom body decision-making circuitry is implicated
in burstiness

To explore the possible implication of decision-making circuitry

on behavioral burstiness, we began by selectively disrupting

mushroom body (MB) signaling by using the GAL4/UAS system

[32] that allows the expression of a temperature-sensitive form of

dynamin, shibire (shits1). At permissive temperatures (,29uC) the

synapses work normally, but at restrictive temperatures (.29uC)

synaptic functioning ceases within minutes [33,39]. Burstiness was

assessed in the line 247-GAL4/UAS-shits1 (‘247’), as it was found to

have impaired choice behavior in a visual salience-based assay

where flies were confronted with contradictory cues [20]. We also

tested four more MB lines: c309-GAL4/UAS-shits1 (‘c309’), 201Y-

GAL4/UAS-shits1 (‘201Y’), 17d-GAL4/UAS-shits1 (‘17d’) and

H24-GAL4/UAS-shits1 (‘H24’). Line c309 was found to spend

more time active, 247 and 17d to have no significant change and

201Y and H24 to spend less time active, Figure S5. This also

allowed us to use these lines to control that it is not general

changes in activity that cause changes in burstiness. After an initial

day of adaptation to the experimental set-up, flies were monitored

for three days at 23uC (permissive temperature, PT) to obtain

baseline values, and were then switched to 31uC (restrictive

temperature, RT) for three additional days (although frequently

only the first day of RT was used for analysis as many flies could

not survive for several days at the higher temperature). Differential

parameters were then calculated from the values at RT minus the

values at PT for each fly, to properly compare the genotypes under

heat treatment.

Transgenic 247 flies showed a mean increase of burstiness of

16.9% (k) and 17.1% (B) at RT (p,0.004, Figure 3A and p,0.013

Figure 3B) as compared to controls, while no concomitant change

in mean activity was observed (p.0.08, Figures S5A and S5D).

Lines c309, 17d and H24 did not show a significant difference in

burstiness compared to controls, while line 201Y showed a

statistically significant decrease (10.9–14.8%) in the burstiness

parameter B (p,0.005), Figure 3B. None of the MB shibirets1 lines

showed any significant changes in the memory parameter M,

Figure 3C. By subtracting the mean B and M of the control lines

from the transgenic’s B and M at PT and RT, we obtained the

approximate net effect of silencing MB circuitry without the

conditional heat-effect, summarized in the B-M plot, Figure 3D.

Analyzing the effect of total activity level on burstiness, we found

that changes in burstiness were not correlated with time spent in

activity/inter-activity (Figures S5A–S5C and S5D–S5F).

To complete the study of behavioral timing, we also analyzed

the activity bout durations (ABs), Figures S5D–S5F. Line H24

showed a significant increase in the burstiness parameter B applied

to ABs (p,0.01) and a decrease of the shape parameter k applied

to ABs (p,0.05). None of the other MB lines displayed any

significant changes in the k and B parameters applied to ABs

(p.0.05 in Figure S5F).

Summarizing the MB disruption experiments, we found that the

line 247 that was implicated in decision-making [20] also affected

burstiness, as well as 201Y which affected burstiness in the

opposite direction than 247. The other MB function-deficient lines

c309, 17d and H24 did not change the internal fine structure of

the IAIs.

Dopamine levels affect burstiness
We next studied the implication of dopamine (DA) on burstiness

in Drosophila, as it has also been found to disrupt normal decision-

making [20,24,25]. To examine what role dopamine plays, we

exploited the fact that dopamine signaling can be both enhanced

and silenced in Drosophila. The fumin (fmn) mutant has a genetic lesion

in the dopamine transporter gene, which results in increased

dopamine in the synaptic cleft [40]. Increased dopamine levels

resulted in a 38.0% increase of the shape parameter k (p,0.0001,

Figure 4A), and a concomitant decrease of 22.6% in the burstiness

parameter (p,0.0001, Figure 4B). No effect in the memory

coefficient M was observed (p = 0.136, Figure 4C). These results

are summarized in the B-M plot, with the mutant strain being closer

to Poissonian behavior than the control strain, Figure 4D.

Figure 2. Drosophila burstiness is mainly due to the IAI
distribution, and not to memory effects. (A) Burstiness parameter
B for young (3 days, left) and adult (4 weeks, right) Canton-S (CS), yellow-
white (yw) and w1118 flies, show bursty dynamics with B.0
(cf. Figure 1B), significantly different from the Poissonian B = 0 case
with p,1027. Older flies show a decrease of burstiness as compared to
younger flies. (B) Burstiness of Drosophila IAIs has a small memory
component. Significance levels are computed by comparison of actual
and shuffled data (white bars). For the genetic background used in this
study, w1118, there is no significant memory. Similar results are found for
long-term memory, Figure S4. (C) Burstiness B and memory M are two
different and independent burst-generating mechanisms, here repre-
sented in a plane and compared with data for human behavior
dynamics, environmental phenomena and texts, taken from [8].
Drosophila dynamics fall in the same region as human dynamics, a
region clearly separated from both environmental phenomena and
texts. Figure S3 gives an overview of the total inter-activity intervals,
shape and burstiness, as well as the corresponding values for total
activity bout time, shape and burstiness. The same Drosophila data
were used for Figures 1 and 2, number of flies n = 28–32. Error bars
represent mean 6 s.e.m.
doi:10.1371/journal.pcbi.1002075.g002

The Origin of Bursts in Decision-Making Circuitry
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We also examined the effect of reducing dopaminergic

signaling. To silence dopaminergic neurons we expressed shibirets1

with the TH-GAL4 driver, using the same permissive/restrictive

temperature protocol as for the transgenic MB lines. Tyrosine

hydroxylase (TH) is an enzyme necessary for the proper synthesis

of dopamine and present in most dopaminergic neurons [41].

Silencing dopaminergic signaling, as opposed to increasing it with

fumin, did not result in any change of shape, burstiness or memory

parameters (p.0.168, Figures 4E–4G). The net change of the

controls subtracted from the TH-GAL4/UAS-shits1 is summarized

in the B-M plot in Figure 4H. While a reduction of dopamine

levels did not have any effect on the initiation of activity, that is, on

IAI burstiness, it did affect the B parameter of the activity bout

durations, increasing it by 10.6–9.3% (p,0.03, Figures S6E–
S6F). As in the case of MB disruption, no clear correlation

between total activity (Figures S6A and S6C) was found with

either shape parameters (Figures S6B and S6E), burstiness

parameters (Figures S6C and S6F), or memory parameters

(Figures S6A, 4C and 4G). The study of dopamine signaling

shows that the increase of dopamine levels makes animal behavior

more random, while its decrease has an effect on the dynamics of

activity bout maintenance.

Impairment of central complex function does not affect
burstiness

To complement the study of decision-making and burstiness, the

ellipsoid-body (EB) of the central complex was further tested as it

has been previously implicated in the formation of power-law

distributions [28,29], and because some of the MB driver lines show

expression in the EB. In [20] line C507-GAL4/UAS-shits1 (‘C507’),

with expression in the EB [42], was found not to affect decision-

making. Using the same experimental design as previously

described, we found that it presents no change in burstiness or

memory, Figure S7. Lines C819-GAL4/UAS-shits1 (‘C819’) and

C232-GAL4/UAS-shits1 (‘C232’) with expression in EB ring

neurons [29,43], and 78Y-GAL4/UAS-shits1 (‘78Y’) with wider

CX expression [28] were also analyzed, and we found no significant

changes in burstiness or memory for any of these lines, Figure S7.

Discussion

We used Drosophila melanogaster as an ideal system to experimen-

tally test the link between decision-making and behavioral bursts

used in recent mathematical models [11,12]. Drosophila burstiness

was found to be well described by the Weibull distribution.

Further, Drosophila dynamics were found to be similar to human

dynamics in the values of the burstiness and memory parameters

[8]. To assess the link between decision-making and burstiness, we

applied two different measures of burstiness to fly lines known to

have disrupted choice behavior [20]. Importantly, we found that

disrupting decision-making circuits impacted the degree of

burstiness, in accordance with the proposed link.

The strongest influence on burstiness was found to be increased

dopaminergic signaling. Dopaminergic neurons innervate the MB

Figure 3. Impairment of mushroom body (MB) function affects burstiness. Panels (A–C) represent the change in parameter (k, B or M) of
each genotype, between the restrictive temperature (RT) and the permissive temperature (PT, baseline values), i.e., ‘‘D= RT - PT’’. Blocking neurons
with line 247/shi increased burstiness (A, B) and blocking neurons with line 201Y/shi decreased burstiness (B), while targeting c309/shi, 17d/shi or
H24/shi neurons did not produce any significant changes (A, B). (C) None of the MB lines caused significant changes of the memory parameter.
(D) Representation of the net effect of blocking driver-specific transmission in the MB, approximately discounting the heat effect. Here, the values
(dots) are calculated as the Gal4/UAS-shi construct’s value minus the mean value of the two controls (i.e., ‘‘D= Gal4/shi – mean(Controls)’’). Base of
arrow indicates PT and head of arrow indicates RT. Note how the differences in burstiness (DB) for all MB lines are close to zero at PT, which indicates
that when the Gal4/UAS-shi constructs had normal MB function the values of B were similar to that of the controls. Number of flies n = 18–32, error
bars represent mean 6 s.e.m. Corresponding activity level, k and B for IAIs and activity bouts for the MB strains are shown in Figure S5.
doi:10.1371/journal.pcbi.1002075.g003

The Origin of Bursts in Decision-Making Circuitry
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heavily, especially the lobes, as well as the CX and several other

neuropils [20,41,44,45]. The MB was also found to affect

burstiness. In particular, line 247 has been directly implicated in

decision-making [20] and we have found it to be implicated in

burstiness, Figure 3A,B. This line has strong expression in the

MB, with some additional weak expression in the ellipsoid body of

the CX [46]. The other MB line we have found to be implicated in

burstiness is 201Y, Figure 3A,B. This line has strong expression

in the MB and no expression in the CX [46], further supporting

that correct functioning of MB is necessary for normal burstiness.

We did not find a modification of burstiness in MB lines c309, 17d

and H24, Figure 3A,B. Also, we did not find any significant effect

on burstiness in line C507, expressing in the EB, Figure S7A,B,

previously shown not to affect decision-making [20]. We further

tested other EB/CX lines (C819, C232, and 78Y) and again found

no significant changes in burstiness, Figure S7A,B. Previous work

had observed a disruption of power law behavior in CX lines

[28,29]. Some differences in our approach include using shibire

instead of tetanus toxin to have more temporal control, the use of

the genetic background w1118 instead of Canton-S and, importantly,

that we applied our analysis tools to the stationary portion of the

data and to the complete set of inter-activity intervals, which

closely follow a Weibull distribution.

Interestingly, the MB lines 247 and 201Y have similar

expression patterns [46]. They both have very strong expression

in the MB a/b lobes and in the c lobe, no expression in the a’/b’

lobes and either no expression or weak expression in other parts of

the brain. The other MB lines show different expression patterns

[46]. Line c309 also has some expression in the a’/b’ lobes and

relevant expression in most of the brain. Line 17d has only strong

expression in the a/b lobes and none in the c lobe. Line H24 has

strong expression in the c lobe and very weak in the a/b lobes and

also shows strong expression in other parts of the brain, including

the CX. Our results are thus most consistent with an implication of

the a/b lobes and c lobe. Notably, lines 247 and 201Y have an

interesting difference in the expression pattern in the a/b lobes

while their expression in the c lobe is very similar [46]. While 247

shows a stronger expression in the surface and posterior

subdivision of the a/b lobes, 201Y has its stronger expression in

the core of these lobes. We note that while these two lines show

modifications in burstiness, 247 shows an increase and 201Y a

decrease, suggesting different roles for core and surface regions of

the a/b lobes.

Taking advantage of the vast community knowledge on

Drosophila, we can further suggest a closer relationship between

neuroanatomical structures and the proposed mathematical

models. Functions known to depend on the MB a/b lobes are

the retrieval, but not acquisition, of olfactory memories [47] and

the regulation of habituation responses [48]. Dopaminergic

neurons in turn, have been found to disrupt aversive olfactory

memory retention in [49] and convey motivational state by

modifying MB memory processing in an internal-state dependent

Figure 4. Behavior becomes more random with increased dopaminergic signaling, with lower burstiness and no memory effects.
(A–D) Effect of increased dopamine (DA) levels in fumin, compared with control line w1118. A reduction in burstiness is seen as an increase of the
shape parameter k (A) or as a decrease of the burstiness parameter B (B). This indicates that the activity pattern of fumin (high DA) displays less
structure (is more Poissonian/random) than that of control flies (normal DA). (C) Both control w1118 and fumin hardly display any memory effects M in
the time series of IAIs, which means that the change in burstiness observed in fumin originates in a shift of the IAI distribution. (D) Burstiness and
memory for w1118 and fumin, shown in B-M plot. Base of arrow indicates control strain w1118, while head of arrow indicates fumin. (E–H) Disruption of
dopaminergic signaling in TH/shi flies during restrictive temperature does not produce any significant change in burstiness (E, F) or memory (G),
compared with controls. Differential values represent the change in parameter (k, B or M) of each genotype, during the restrictive temperature (RT) as
compared with permissive temperature (PT, baseline values), i.e., ‘‘D= RT - PT’’. (H) Net effect of silencing dopaminergic neurons, approximately
discounting the heat effect. Here, the differential values represent the difference between the TH/shi line and the mean of the two control lines (i.e.,
‘‘D= Gal4/shi – mean(Controls)’’) at PT (right dot) and RT (left dot). Number of flies n = 29–64, error bars represent mean 6 s.e.m. In Figure S6
burstiness nominal values for both fumin, TH/shi and controls are shown, for both IAIs and ABs.
doi:10.1371/journal.pcbi.1002075.g004
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manner [50]. In this study we found that when dopamine signaling

was enhanced, the bursty locomotor behavior was decreased, that

is, timings of activity became more random. This is consistent with

a model where decision-making is the result of weighing different

sensory impulses with motivational states and memories of past

outcomes through the interplay of the MB and DA systems. In a

priority list task-execution model [11,12], this decision-making

process assigns priorities to the different impulses or options of

attention or action. Future developments in the quantitative study

of decision-making and its relation to burstiness will allow for a

more detailed mechanistic description, but the fundamental link as

proposed by the Barabási model is here shown to apply. In

particular, when the dopaminergic system is hyper-excited or the

function of the a/b and c lobes is impaired, the balance or relative

importance of different behavioral options breaks down, disrupting

the decision-making processes and the proper establishment of

priorities. Work in priority list models has shown that burstiness

follows from priority lists with as few as two items, and that the

outcome is independent of the specific function of priority

assignment [11]. Hence, when an animal is repeatedly faced with

two options or more, and chooses to first execute the most highly

prioritized (e.g. by salience or other processes), the behavior

becomes bursty, while if the animal acts on impulses as they come

the behavior becomes more random, resembling what we have

seen with the over-stimulated dopaminergic signaling.

The co-localization of decision-making and control of burstiness

is thus consistent with the proposed mathematical model [11,12],

where a priority-driven base of action gives rise to the observed

burstiness. We hope that with the rapid advancements in precise

neural targeting, where small clusters or even single neurons can

be identified and modified, the decision-making circuitry can be

addressed with increasingly greater detail. This could provide the

basis for more detailed and specific models of priority-driven

decision-making processes, based on anatomical and functional

knowledge of the circuitry. We also foresee that such models could

further the understanding of the algorithms used by animals to

produce optimal search behavior, without prior knowledge of the

location of the resources [1,7,9,34,35]. Moreover, we foresee that

the burstiness analysis described here could prove to become a

useful tool for probing such neural circuitry, and aid in the finding

of decision-making components.

Materials and Methods

Fly strains and rearing
Common genetic background strains Canton-S, w1118 and yellow-

white were kindly provided by I. Canal and J.F. Celis (U.

Autónoma de Madrid and Centro de Biologı́a Molecular, Spain),

while fumin was kindly provided by K. Kume (U. Kumamoto,

Japan). MB driver c309-GAL4 was obtained from the Blooming-

ton Drosophila Stock Center, while lines 247-GAL4, 201Y-GAL4,

17d-GAL4, H24-GAL4, C507-GAL4, C819-GAL4, C232-GAL4,

TH-GAL4 and UAS-shits1 were kindly provided by A. Ferrús

(Instituto Cajal, Spain) and line 78Y-GAL4 by J.R. Martin

(CNRS, U. Paris-Sud). Heterozygote lines of Gal4 and UAS on a

w1118 background were used throughout. Stocks were maintained

at 18uC on a standard cornmeal food, on a 12 h light/12 h dark

cycle starting at 8:00 AM.

Activity assay
Locomotion data were obtained with the DAM2 System

(Trikinetics, Waltham, MA), which is a detector system with

infra-red beams that cross through the center of 32 tubes of

65 mm length and 5.5 mm inner diameter. The flies are placed in

the tubes individually, and the tubes are sealed with enough food

for the duration of the experiment in one end and with a cotton

plug in the other. When a fly crosses the beam an activity event is

registered for that fly. Data were collected in 1 minute bins. It is

known from observations and video-recordings that when flies are

active they walk from one end of the tube to the other, usually

without turning back before reaching the end of the tube, such that

a minute with a registered activity event can truly be considered

‘active’, and that during inactive time periods the flies are in a rest

behavior adopting a supported position, and are either completely

immobile or performing some twitches of extremities, proboscis

and abdomen [3,51]. The experiments were performed inside

incubators at 23uC (unless otherwise indicated), with no external

stimuli, apart from the light cycle. Both male and virgin female

flies were used for the experiments, and were 3–7 days old at the

start of the experiment, unless otherwise noted.

Burstiness analysis
Activity data were analyzed in Matlab R2007b (The MathWorks,

Inc., MA) with a home-written analysis program, that can be

downloaded from http://www.neural-circuits.org/flysiesta. Re-

cordings were divided into activity bouts (ABs) and inter-activity

intervals (IAIs). The survival distributions were constructed and

fitted to the corresponding survival Weibull distribution exp

(2(x/l)k). A robust fit was found plotting log(2log y) against the

variable x9 = log(x), for which the cumulative Weibull reduces to a

line of the form k?x9+C, with C = 2k?log(l). To assess the quality of

the fitting method for our type of data, we created artificial data sets

from Weibull distributions with known k and l, and also a variable

number of data points to test the sample size dependence, Figure
S2. By comparing the underlying parameter values with the ones

obtained by different fitting techniques, we found that the linear

fitting method is the most accurate in finding the underlying values,

with a mean correlation coefficient of 0.9994 (p = 1.5e-08) in the

range of l = 5–25; k = 0.2–1.4 (with n = 30 to simulate the number

of flies and 50–250 data points, which is typically the number of IAIs

a fly has in the dark period).

Detrended Fluctuation Analysis (DFA)
We tested for long-term memory using detrended fluctuation

analysis [37,38]. We compared the actual data against shuffled

versions to calculate the significance level of long-term memory. A

Matlab-based routine was written for this purpose, downloadable

from http://www.neural-circuits.org/other-software.

Statistical analysis
Statistical analysis was performed in Matlab with two-tailed

Student’s t-test, using the Bonferroni correction when conducting

multiple comparisons. In cases where data met requirements of

normality, tested with a Lillie-test, the parametric t-test was used.

If requirements were not met, hypothesis testing was performed by

bootstrapping the t-statistic (sampling with replacement and

computing the t-statistic), using 10.000–100.000 sampling itera-

tions. All error bars represent the standard error of the mean

(s.e.m.), unless otherwise noted. In all figures the p-value of the

statistical test is represented as either one star (p,0.05), two stars

(p,0.01) or three stars (p,0.001).

Supporting Information

Figure S1 Activity patterns for three standard genetic
background lines, and log-log representation of survival
distribution data. (A) For each animal, we measured the

locomotor activity for 3 days and calculated the average daily
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pattern. Here we plot the mean daily pattern of the population.

ZT = 0 denotes the start of the subjective day (lights on, white

background) and ZT = 12 the start of the subjective night (lights

off, grey background). Data are from 3-day-old flies from Figures 1

and 2. Blue line: Canton-S, green line: yellow-white, red line: w1118.

(B) Log-log plot of the same IAI survival data as in Figure 1A

(black error bars) and the Weibull fit (grey line). Red line is a

power law fit (exponent = 20.525, r2 = 0.996) to IAI durations of

1–17 minutes – time interval approximately corresponding to the

1–1000 seconds used in ([4], Figure 9). Although a straight region

can be found, for longer IAIs the distribution diverges consider-

ably from a power law. The Weibull distribution (grey line) fits the

data well for all IAI durations. In both panels, error bars represent

the standard error of the mean (s.e.m.).

(TIF)

Figure S2 The fit method correctly estimates the
underlying parameters k and l of the Weibull distribu-
tion. To test that the fitting technique used to obtain the

parameters k and l for real fly data is accurate, we performed two

different kinds of fits (‘Linear’ and ‘Non-linear’) to artificial data

with known parameters. 50 (red), 100 (orange) 150 (green) 200 (light

blue) or 250 (dark blue) points were randomly drawn from a Weibull

distribution, with parameters in the ranges k = 0.2–1.4 and l = 5–

25. The randomly drawn values were then discretized in bins of 1, to

mimic the real DAM System fly data, and the survival distribution

was constructed. The Weibull survival distribution is given by

y = exp(2(x/l)k), and the Non-linear fit was obtained by fitting

log(y) = 2(x/l)k with Matlab R2007b Curve Fitting Toolbox

(‘‘NonlinearLeastSquares’’ method), while the Linear fit was

obtained by calculating the least squares regression of log(2

log(y)) = k?x9+C, with x9 = log(x) and C = 2k?log(l). For each set of

parameter values (k, l) the procedure was repeated 30 times, to

simulate the typical number of flies of each genotype. All error bars

denote the standard deviation (s.d.) over the 30 independent runs.

Accuracy of the fitting method to estimate k = [0.2:0.1:1.4], with

l = 15 in (A, B, E–G), and l = [5:5:25], with k = 0.8 in (C, D, H–J).

(A–D) Difference between the estimated parameter and the

parameter of the underlying Weibull distribution the data was

drawn from. The Linear fit is better at extracting both parameters,

as it has less error and smaller standard deviations for all sample

sizes. (F, I) Calculation of the sum of squared errors of the (random

sample) survival distribution, to the real (parent) Weibull distribu-

tion the data was drawn from. For small k’s (k,0.5) and small

sample sizes, R2 is relatively low (R2,0.9), but note that the

underlying parameters are still correctly obtained (A, C). (E, G, H, J)

Difference between the R2 obtained by least square fitting and the

real R2. Even though the Non-linear fitting seems to do a ‘better’ fit

because R2 is higher, the Linear fit is actually better at extracting the

true parameters.

(TIF)

Figure S3 Overview of three standard genetic back-
ground lines’ activity and burstiness, at two different
ages. Flies of three commonly used genotypes (Canton-S (CS), yellow-

white (yw) and w1118) were tested for activity and burstiness, both as

young (3 days) and as adults (4 weeks), and found to display bursty

dynamics, both for inter-activity intervals (IAI) and activity bout

(AB) dynamics. (A) Total time spent in IAI in dark period (12 h), per

day. (B, C) IAI burstiness measured with the shape parameter k or

burstiness parameter B. (D) Total time spent active in the dark

period, per day (complementary to total time in IAI). (E, F)

Parameters k and B applied to AB dynamics. Data are the same as

used for Figures 1 and 2, and represented as mean 6 s.e.m.

(TIF)

Figure S4 Short and long-term memory. Flies of three

commonly used genotypes (Canton-S (CS), yellow-white (yw) and

w1118) and of two ages (3 days and 4 weeks) and tethered flight data

from reference [21] were tested for (A) short-term and (B) long-

term memory. Significance levels are computed by comparison of

actual and shuffled data (white bars). Note that the genetic

background used in this study, w1118, displays no significant

memory. Contrast this, for example, with data from reference [21]

of WT Berlin flies in tethered flight in closed-loop response to a

stimulus stripe (‘onestripe’).

(TIF)

Figure S5 Differential effect of mushroom body (MB)
mutants on activity levels and burstiness. Data of inter-

activity intervals (IAI) and activity bouts (AB) for the MB-shibirets1

lines in Figure 3. Bars represent the change in the parameter value

between permissive and restrictive temperatures (RT-PT); error

bars indicate s.e.m. (A, D) Change of the total time spent in IAI (A)

and AB (D) in dark period, per day. Blocking c309 neuronal

function with shibire causes the flies to become significantly

hyperactive, while blocking 201Y or H24 function renders flies

less active than the controls. Silencing neurons targeted by lines

247 or 17d produces no significant change compared with

controls. (B, C) Change in burstiness parameters k and B. Line

247 becomes significantly more bursty than controls, measured by

both k and B, while line 201Y is less bursty than controls,

statistically significant only with burstiness parameter B. No

statistically significant change in burstiness occurs for c309, 17d or

H24. (E, F) Change in parameters k and B, as applied to ABs.

Silencing line H24 neurons causes a significant change in the AB

maintenance dynamics, measured both with k and B, while the

other MB lines produce no change in AB dynamics. Comparing

the changes in activity level with the changes in burstiness, it can

be concluded that burstiness does not correlate with general

activity level.

(TIF)

Figure S6 Effect of dopamine (DA) levels on activity and
burstiness. Nominal values for fumin (high DA levels) and TH/

shi (normal DA levels at PT, low/null DA levels at RT), and their

corresponding controls. (A, D) Total time spent in IAI (A) and AB

(D) in dark period, averaged per day. High DA produces

hyperactivity, while low DA causes inactivity. (B, C) High DA

levels decrease the degree of behavioral burstiness, while lowering

DA levels has no effect, seen as a significant change of k and B for

fumin, but not for TH at RT with respect to PT. (E, F) Opposite

action of DA level on AB maintenance dynamics: fumin lowers the

internal structure of AB durations, while TH at RT significantly

increases it. Data correspond to Figure 4 of the main text, bars

indicate mean 6 s.e.m.

(TIF)

Figure S7 Impairment of central complex (CX) function
does not affect burstiness. Panels (A–C) represent the change

in parameter (k, B or M) of each genotype, between the restrictive

temperature (RT) and the permissive temperature (PT, baseline

values), i.e., ‘‘D= RT - PT’’. None of the CX lines, C507, C819,

C232 and 78Y, caused significant changes of burstiness (A,B) or

the memory parameter (C). (D) Representation of the net effect of

blocking driver-specific transmission in the CX, approximately

discounting the heat effect. Here, the values (dots) are calculated as

the Gal4/UAS-shi construct’s value minus the mean value of the

two controls (i.e., ‘‘D= Gal4/shi – mean(Controls)’’). Base of arrow

indicates PT and head of arrow indicates RT. Note how the

differences in burstiness (DB) are close to zero at PT, which

indicates that when the Gal4/UAS-shi constructs have normal CX
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function the values of B are similar to that of the controls. Also

note, if comparing with MB values (Figure 3), that the scale of the

axes are different. Number of flies n = 25–30, error bars represent

mean 6 s.e.m.

(TIF)

Text S1 Supporting Material and Methods, regarding the

Weibull parameters’ relation to the mean IAI and to the burstiness

parameter B.

(PDF)
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