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Abstract

An important problem in neuronal computation is to discern how features of stimuli control the timing of action potentials.
One aspect of this problem is to determine how an action potential, or spike, can be elicited with the least energy cost, e.g.,
a minimal amount of applied current. Here we show in the Hodgkin & Huxley model of the action potential and in
experiments on squid giant axons that: 1) spike generation in a neuron can be highly discriminatory for stimulus shape and
2) the optimal stimulus shape is dependent upon inputs to the neuron. We show how polarity and time course of post-
synaptic currents determine which of these optimal stimulus shapes best excites the neuron. These results are obtained
mathematically using the calculus of variations and experimentally using a stochastic search methodology. Our findings
reveal a surprising complexity of computation at the single cell level that may be relevant for understanding optimization of
signaling in neurons and neuronal networks.
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Introduction

A central question in neuronal computation is to determine the

features of neural stimuli that cause action potentials [1,2]. One

aspect of this problem is a study of how an action potential, or

spike, can be elicited by a signal with the least energy cost, e.g., a

minimal amount of applied current [3,4]. This problem is relevant

to a number of questions in neuroscience, e.g., what mechanisms

enable sensory neurons to optimally discriminate between different

percepts [5,6], and what are the optimal shapes of exogenous

current stimulations that cause excitation in a neuronal network

for therapeutic purpose [7–9]. Here we investigate stimulus

optimization in a well-studied neuronal preparation using

computational and experimental methods.

One method for determining optimal signals is the calculus of

variations [10]. The rationale of this approach is that if a

particular signal is optimal, small changes in signal shape cannot

lead to a more effective signal for eliciting a desired response. This

requirement allows a determination of relative optimum shapes.

Another approach for finding optimal stimuli uses a stochastic

search methodology [11]. In this method an array of stochastically

determined stimulus shapes is considered, including those that

displace the membrane from rest to firing. When the overall

intensity of the stimulus array is reduced to a level at which action

potentials rarely occur, then such rarely supra-threshold stimuli

are candidate optimal shapes for eliciting an action potential.

Comparison of these methods has yielded similar optimal stimulus

shapes in models of biological oscillators [11].

An important step in addressing these questions is the

development of a theory of optimality in single neurons. This

theory should account for the complex, multi-scale and nonlinear

behavior of a neuron. For example, several mechanisms are known

to generate an action potential including membrane depolarization

and post-inhibitory rebound excitation [2], as illustrated in Figure 1.

A family of neighboring trajectories exists for each mechanism that

takes the neuron from rest to an action potential. We seek for each

mechanism the optimum trajectory that triggers an action potential

with the least energy cost, for example the total current delivered.

The signals a neuron receives are combinations of post-synaptic

currents (PSCs), which can be either excitatory or inhibitory. The

duration of PSCs can vary considerably depending on cell type

[12]. Moreover, the timing, number, and amplitude of PSCs also

vary significantly. Consequently, PSCs can, in principle, generate

a wide range of signals in the post-synaptic cell, although the

properties of the post-synaptic cell limit the output that the cell can

actually produce. A theory of neuronal optimality should account

for these physiological constraints.

In the present study we investigate stimulus optimization

principles using one of the best characterized experimental

preparations - the squid giant axon - and its mathematical

representation, the Hodgkin & Huxley model and a recent

modification of the model [13,14]. A major finding is that the

excitatory properties of this preparation are, as suggested above,

exquisitely sensitive to stimulus shape. Moreover, the neuron uses

different mechanisms for generating an action potential depending

on the physiological context in which it finds itself thereby

requiring context dependent optimal shapes. These results on

stimulus optimization in single neurons may be important for

considering optimization within and across neural circuits

throughout the nervous system.
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Results

Stimulus optimization in the Hodgkin & Huxley model
The Hodgkin & Huxley model [13] consists of four state

variables, V, m, h, and n, where V is membrane potential, m and h

are associated with the sodium ion current, INa, and n is associated

with the potassium ion current, IK (Methods). The model provides

an excellent description of the action potential response of squid

giant axons to suprathreshold depolarizing current pulses having

brief duration. It is less successful for longer duration pulses. In

particular, it predicts repetitive firing for these conditions over a

large range of pulse amplitudes. The axon itself fires once and only

once regardless of pulse amplitude or duration [14]. This

discrepancy between theory and experiment is accounted for by

changing a single parameter in the equation for n, the IK gating

variable [14]. Both versions of the model provide comparable

descriptions of the response of the axon to brief duration pulses,

which is the focus of this work, i.e., the optimal stimulus for

eliciting a single spike rather than a train of spikes. Consequently

we begin our analysis with the original version of the model and

compare those results with results obtained from the revised

version. All simulations were carried out with the full model (either

version) including results obtained using calculus of variations

(Methods). We elicited an action potential in the usual way, i.e.,

with a rectangular depolarizing current pulse Istim(t) having slightly

suprathreshold amplitude (Figure 2B, blue tracings). The pulse

takes the model from the rest state a0 to threshold b1 along the

trajectory in V, n, and h space illustrated in Figure 2A (blue

tracing). We used the calculus of variations to find a neighboring

Istim(t) trajectory that also takes the model from a0 to b1 with a

minimum amount of applied root mean square (RMS) current (red

tracing in Figure 2A). The V vs t result obtained is overlaid on the

rectangular pulse result in Figure 2B. The RMS current of the

calculus of variations stimulus over its 20 msec duration is

approximately 40% less than that of the 4 msec duration

rectangular pulse. We note that the stimulus obtained from the

calculus of variations contains an oscillatory component, seen as a

loop around a0 in Figure 2A (arrow) coinciding with the

oscillations in stimulus current and membrane potential shown

in Figure 2B. As noted above, action potentials are also elicited

following a hyperpolarizing current pulse - anode break excitation,

a result referred to as post-inhibitory rebound (PIR). These

conditions partially remove the resting level of INa inactivation by

increasing the h state variable from its resting level. The effect of a

hyperpolarizing pulse on the h variable is the mechanism

underlying PIR in the Hodgkin & Huxley model. We adjusted

the current amplitude of a 10 msec hyperpolarizing pulse until

threshold was achieved, state b2 in Figure 2A. Note that the

membrane potential of b2 at the end of the hyperpolarizing pulse is

below the resting level (Figure 2C). Referring to this point as a

threshold for spike initiation may seem counterintuitive but is

consistent with the behavior of both the Hodgkin & Huxley model

and squid giant axons. A hyperpolarizing pulse of insufficient

amplitude or duration will fail to elicit an action potential

following the pulse. Increasing both, or either, pulse parameter will

generate a spike. We fixed the pulse duration at 10 msec and

increased its amplitude until a spike was elicited. The V, n, and h

trajectory of this result connecting a0 and b2 is illustrated in

Figure 2A (blue tracing). The calculus of variations was used to

identify a nearby trajectory (red tracing in Figure 2A connecting

a0 and b2) that minimized the amount of current required for the

anode break result. The V vs t tracings for both results are overlaid

in Figure 2C. In this case the RMS current throughout its 20 msec

duration is ,22% less than that of the 10 msec duration

rectangular pulse. Note that the timing of the action potential

elicited by the pulse in Figure 2C does not exactly match that of

the spike elicited by the calculus of variations signal even though

both waveforms do closely overlap for some time following each

respective stimulus. This result is attributable to the non-linear

character of the Hodgkin & Huxley model. (The blue and red

voltage waveforms more nearly superimpose in Figure 2B.) For

both sets of results in Figure 2 the calculus of variation trajectory

was optimal relative to the trajectory corresponding to a spike

elicited by an excitatory or inhibitory rectangular pulse.

In the above analysis the only restrictions placed on the current

Istim(t) using the calculus of variations is that it takes the Hodgkin &

Huxley model from point a0 to b1 (or b2) in 20 msec with minimal

RMS current. This approach is relevant for exogenous stimulation of

a neuron that occurs, for example, during deep brain stimulation [7–

9] in which Istim(t) is unconstrained by the intrinsic properties of the

membrane. Neuronal PSCs generated endogenously are constrained

by the ionic mechanisms of excitability expressed generically for a

Figure 1. Explanatory diagram of the effect of current
stimulations on trajectories of neuronal variables V, membrane
potential, and the neuron’s ith state variable, Xi, such as one of
the ion channel gating parameters. Stimulation trajectories Istim1

induce a state change from rest a0 to threshold b1 by means of
depolarization, and stimulation curves Istim2 induce a state change to
b2 by means of post-inhibitory rebound. Red trajectories illustrate the
optimal paths for which total current is minimized; blue trajectories are
neighboring paths of suboptimal stimulation.
doi:10.1371/journal.pcbi.1002089.g001

Author Summary

Computational neuroscience seeks to understand the
mechanisms by which signals excite a neuron or a
neuronal network. An important consideration in these
studies is optimality, i.e., what signal most effectively
causes excitation. Optimization of neuronal signaling is
important for networks that need to minimize energy
costs, for sensory neurons to selectively respond to specific
stimulus features, and for therapeutic deep brain stimula-
tors to maximize battery life. Here we show in a classic
mathematical model of the action potential and in
experiments on a single cell preparation that: 1) a single
neuron can be highly discriminatory for the shape of low
amplitude stimuli that elicit an action potential and 2) the
shape of the optimal stimulus depends upon the overall
state of inputs to the neuron. Our findings reveal a
surprising complexity of computation at the single cell
level that may be important for understanding physiolog-
ical function of the nervous system.

Stimulus Optimization in Nerve
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synapse by the relationship Istim(t) = gsyn(t) (V(t)-Esyn). We used calculus

of variations to find the optimal pathway to a spike - optimal gsyn(t) -

with either excitatory or inhibitory PSCs. These results (supporting

material: Text S1, Figures S1 and S2) are not substantially different

from the results in Figure 2 at least when Esyn is far from the

membrane potential V(t). We note that more complex stimuli can be

seen when V(t) is close to Esyn. In the remainder of this study we

optimized exogenous Istim(t) since our experimental protocol explicitly

tests for candidate optimal stimuli applied to the membrane. The

calculations below (supporting material) suggest that the approach we

are using is relevant to at least a range of endogenous synaptic

currents.

Optimization using noisy perturbations
As noted above, stochastic perturbations can also be used to

determine stimulus optimization without requiring a mathematical

description of the underlying dynamics [11]. We implemented the

stochastic approach experimentally using squid giant axons. We

used noise that consisted of excitatory and inhibitory model PSCs

having rise and decay time constants based on experimental data

[12]. In any given experimental run PSC shapes were kept the

same. The times at which PSCs were added to the input signal

were determined using a random number generator. Figure 3

illustrates an example of our experimental protocol along with

results obtained from a single axon. A 100 sec stimulus was

applied that consisted of PSCs having a one millisecond decay

constant where excitatory and inhibitory PSCs were generated

with equal probability. The details of the stimulus are illustrated in

the bottom trace of Figure 3A which is a one second portion of the

signal shown on an expanded time scale. The intensity of

stimulation was adjusted to so that spikes were elicited infrequently

(0.05–1 Hz) as required by the stochastic search methodology

[11]. We analyzed the portions of the run during which spikes

were elicited to determine the specific attributes of the stimulus

that preceded the action potentials. All spikes were aligned at the

time of their peak voltage (Figure 3B, top panel). The underlying

stimulus currents were similarly aligned so that a spike-triggered

average of the stimulus could be obtained (Figure 3B, middle

panel). The average values of the current (62 SEM) are shown in

the bottom panel of Figure 3B. Based on previous work [11], we

hypothesized that the average stimulus prior to the spike is an

optimal stimulus shape, i.e., this signal should elicit an action

potential with minimal current. To test this hypothesis, we applied

this stimulus to the same axon from which the results in Figure 3A

were obtained and found that it did, in fact, elicit an action

potential (Figure 3C). Note that the candidate optimal stimulus in

the bottom panel of Figure 3B is shown in Figure 3C on a different

time scale below the action potential elicited by the stimulus. A

rectangular depolarizing current pulse having the same RMS

current amplitude as the optimal stimulus failed to elicit an action

potential (Figure 3C). The comparison of the effects of the

experimentally determined optimal stimulus with rectangular

pulses is further illustrated in the bottom tracings of Figure 3C

shown on a compressed time scale relative to the results in the top

panels of Figure 3C. Rectangular pulses having the same RMS

current amplitude as the optimal stimulus and with durations

ranging between 1 and 10 msec were applied to the axon. None of

the pulses elicited a spike.

Figure 2. Two distinct mechanisms of neuronal excitation in the Hodgkin & Huxley model. A) Three dimensional phase representation of
state variables (h, sodium channel inactivation; n, potassium channel activation; V, membrane potential). Depolarizing stimulation currents induce a
state change from rest a0 to threshold b1 and post-inhibitory rebound stimulation induces excitation via state change from rest a0 to threshold b2.
Blue trajectories are paths corresponding to rectangular current pulses; red trajectories are the optimized paths computed from the model with the
calculus of variations. Note the small loop (a) of the optimized depolarizing trajectory. B) and C) illustrate the two mechanisms of excitation using the
same depolarizing and post-inhibitory rebound stimulations shown in A). Membrane potential changes elicited by rectangular pulses are shown in
blue; changes elicited by the stimuli calculated from the calculus of variations are shown in red. Further details given in the text.
doi:10.1371/journal.pcbi.1002089.g002

Stimulus Optimization in Nerve
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Next we asked how close any 20 msec portion of the input

signal (Figure 3A) was to the shape of the optimal stimulus

(similarity index). To do this we considered the 20 msec of signal

prior to each time point and convolved these signals with our time-

reversed candidate optimal signal. The results are given by the

histogram in Figure 3D which is very close to a Gaussian

distribution. We then considered the 20 msec signals that

preceded each action potential. Every one of these signals that

elicited an action potential (shown by arrows in Figure 3D) were

greater than 2 standard deviations from the mean in this

histogram, indicating a high correlation with the optimal stimulus.

This result also indicates that the optimal stimulus has strong

predictive value in determining when the axon will fire.

The experimental protocol and analysis illustrated in Figure 3

was carried out on a total of seven axon preparations. In all seven

we confirmed the results shown in Figure 3B–D. The optimal

noise stimuli obtained from each experiment (including the result

in Figure 3C) are shown superimposed in Figure 4.

Comparison of the noise and calculus of variations
methods

A visual comparison of the noise-derived optimal signal in

Figure 3C with the calculus of variation waveforms in Figure 2B &

C reveals important differences in stimulus shape. The result in

Figure 2B has a marked depolarization phase early in the signal

Figure 3. An example of a search for stimulus shapes that optimally excite the squid giant axon preparation using the stochastic
approach described in the text. These results are all from a single axon. Similar results were observed in all other axons. A) The axon was
stimulated with a stochastically varying time series consisting of modeled excitatory and inhibitory post-synaptic currents (PSCs), as described in the
text. Shown is a stimulation trial of 100 seconds consisting of balanced excitatory and inhibitory PSCs (zero mean current) having a mean Poisson rate
of 1 msec21. Each PSC had a decay constant of 1 msec. The stimulation amplitude (RMS) was set to a level that produced rare action potentials
(,1 Hz). B) All twenty-one action potentials from the trial were superimposed by aligning their peak voltages, i.e., the maximum overshoot potential.
The corresponding input currents were similarly aligned (middle tracing). The bottom panel illustrates the mean (62 SEM) of the stimulus currents.
This spike-triggered average is the candidate optimal stimulus shape. C) The candidate optimal stimulus from B elicited an action potential when it
was administered to the axon (first tracing with the stimulus shown below the action potential response). The stimulus is the same as in the bottom
panel of B. A rectangular depolarizing current pulse having the same RMS current as the optimal stimulus failed to elicit an action potential (top
tracing to the right of the action potential). Rectangular pulses having durations ranging from 1 to 10 msec with the same RMS current as the optimal
stimulus failed to elicit action potentials (bottom two tracings). D) Histogram generated by convolving the optimal stimulus in B with the raw
stimulus in A, as described in the text. This convolution measures how similar the optimal is to any 20 msec portion of the input signal (A, tracings
below the action potentials elicited by the input). We refer to this as similarity index. This parameter is measured in units of standard deviations (SD)
from the mean. Action potentials were seen only when this measure was .2 SD above the mean as indicated by the arrows showing that stimuli that
elicited action potentials were highly similar in shape to the optimal.
doi:10.1371/journal.pcbi.1002089.g003
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that is not clearly apparent in the experimental results obtained

with the stochastic approach (Figures 3C & 4). The experimental

results have two clear phases: a marked hyperpolarization followed

by depolarizing phase just prior to spike initiation. Not

surprisingly, therefore, neither of the waveforms in Figure 2

elicited a spike from the axon preparation described in Figure 3

when the RMS amplitude was adjusted to match the RMS level of

the noise stimulus (results not shown). In other words, the noise-

derived optimal shape was superior to the shape derived from the

calculus of variations. We hypothesized that these differences

between the experimental and theoretical results might be

attributable to our observation that rectangular pulses do not

optimally elicit spikes (Figure 3C). The initial conditions used for

the waveforms in Figure 2B & C were the set of values for V, m, h,

and n corresponding to rest - the starting point for the calculus of

variations - and the set of values for V, m, h, and n corresponding to

the end of rectangular pulses - the end point for the calculations.

Since rectangular pulses do not themselves optimally elicit spikes,

the observation that the values of the Hodgkin & Huxley model

obtained from similar pulses do not yield optimal stimuli using

calculus of variations is not surprising. There are many other final

conditions (combinations of V, m, h, and n) that also lead to a spike.

Thus we used the results for V, m, h, and n at the end of the

depolarizing and hyperpolarizing pulses in Figure 2 as a starting

point for additional simulations to determine waveforms that were

optimal based on the RMS current metric. Specifically, we made

small changes in one or more of the four parameters from their

initial conditions for both the depolarizing and hyperpolarizing

pulses and determined if these new values resulted in an Istim(t)

waveform having a lower RMS current. This procedure was

iterated repeatedly (a coordinate search) until we found local

minima that we hypothesized do correspond to separate, optimal

pathways for firing.

The results of the analysis described above are illustrated in

Figure 5A. The shapes of the new optimals depicted in blue and

green are similar to their counterpoints in Figure 2B & C,

respectively. The relative RMS currents of the curves in Figure 5A

are different. Specifically, the RMS current of the blue curve is 38%

less than that of the green curve, which suggests that it is the more

optimal result. This waveform compares favorably with the optimal

stimulus determined from the noise analysis in Figure 3, as shown in

Figure 5B. Both of these results have a slight depolarizing phase in

the early portion of each respective signal, a feature not apparent in

all experimental results (Figure 4). Analysis comparable to that of

Figure 5A on our modified version of the Hodgkin & Huxley model

noted above [14] produced a waveform without the initial

depolarizing phase (Figure 5C). The revised model provides an

excellent description of some of our results (Figure 5C & Discussion).

We note that the theoretically derived waveforms in Figure 5B

& C have not been tested experimentally to see if they optimally

elicit spikes from the axon. We have determined waveforms

experimentally that do elicit spikes, optimally, using the stochastic

approach described in Figure 3. Those waveforms are very similar

to our theoretical results as shown in Figure 5B & C, which

suggests that the latter would also elicit spikes, optimally, from the

experimental preparation. The similarity of results obtained from

two very different approaches - one theoretical, the other

experiments – provides a testable prediction of our theoretical

work, a prediction that is well met based on the results in Figure 5B

& C.

Post-synaptic current polarity and optimality
The analysis of Figure 5A demonstrates two local minima of

stimulus optimality. The more optimal of the two (blue curve) is

consistent with the optimal stimulus obtained from the noise

analysis in which both excitatory and inhibitory PSCs were used

(Figure 5B & C). We hypothesized that the less optimal result

(Figure 5A, green curve) might correspond to conditions in which

only inhibitory PSCs were used. The results in Figure 6 describe

an experimental test of this idea. The spike-triggered average

current waveform for these conditions is illustrated in Figure 6A.

We note that the depth of the hyperpolarizing phase is

approximately twice as large as the depolarizing phase just prior

to spike initiation. By contrast the amplitudes of these phases are

approximately the same when mixed inhibitory and excitatory

PSCs are used (Figure 4). These results provide evidence that the

optimal stimulus for spike initiation depends upon overall state of

inputs to the axon. We also note that the result is Figure 6A is

qualitatively similar to the green curve in Figure 5A (also shown in

Figure 6B) in that both have a slight depolarizing phase followed

by a strong hyperpolarizing phase. Consequently experiments in

Figure 4. Optimal stimulus for eliciting a spike using the
procedure described in Figure 3 for all seven preparations for
which this experiment was carried out. Each signal was normalized
to its maximum value that occurred within a few msec before a spike.
doi:10.1371/journal.pcbi.1002089.g004

Figure 5. Comparison of optimal signals obtained from
calculus of variation and noise analysis. A) Calculus of variation
waveforms determined from an optimization of the V, m, n, and h
values at the end of the depolarizing (blue curve) and hyperpolarizing
(green curve) pulses used to elicit a spike in the Hodgkin & Huxley
model (Figure 2B & C, respectively) as described in the text (Results and
Methods). These results were normalized relative to the maximum value
of the blue curve. The RMS current of the blue curve is 38% less than
that of the green curve. B) Overlap of the blue curve in A with the
optimal noise trace obtained from the analysis of Figure 3. C)
Comparison of another one of the results from Figure 4 with the
optimal calculus of variations stimulus determined from a revised
version of the Hodgkin & Huxley equations [14].
doi:10.1371/journal.pcbi.1002089.g005

Stimulus Optimization in Nerve
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which only inhibitory PSCs are used do appear to favor the less

optimal of the two waveforms in Figure 5A.

Post-synaptic current duration and optimality
As noted above (Introduction) PSC duration can vary according

to neuronal cell types ([12], and references therein). Since we have

shown that the optimal input signal depends upon the type of

inputs to the neuron (inhibitory vs excitatory) and that these

optimal signals have different time scales (Figure 2), we

hypothesized that short and long PSCs would optimally excite

the neuron with different stimulus shapes. We repeated the

experiments described in Figure 3 using a balanced combination

of excitatory and inhibitory PSCs as in those experiments but with

either a short (1 msec) or a long (20 msec) decay time constant.

Figure 7A shows spike-triggered stimulus averages for the short

(blue) and long (green) PSCs. Note that 5–10 milliseconds before a

spike, the short PSC signal is excitatory (Figure 7A, blue), whereas

the long PSC signal is inhibitory (Figure 7A, green). We tested the

significance of the difference between the two results in Figure 7A

using correlation analysis (Methods). The 20 msec portion of the

noise signal preceding each spike in the short PSC experiment was

correlated with the spike-triggered averaged signal from these

experiments (blue trace in Figure 7A). These results shown in

Figure 7B (panel a) are, not surprisingly, clustered close to a

correlation value of one. A correlation of the 20 millisecond

portion of the noise signal preceding each spike in the short PSC

case with the spike-triggered average from the long PSC

experiment (Figure 7B, panel c) gave correlation values between

0 and 1, indicating a poor correlation. A similar analysis of the

20 millisecond portion of the noise signal preceding each spike in

the long PSC experiment correlated with the spike-triggered

average determined from the long and short PSC cases are

illustrated in Figure 7B, panels b and d, respectively.

To further explore the difference between short and long PSCs

we increased the excitability of the axon, as demonstrated

previously [15], by raising the internal pH and repeating the

experiments described in Figure 3. We found that the optimal

shape with short PSCs consisted of a growing sinusoidal stimulus

with alternating periods of excitation and inhibition (Figure 7C).

The long PSC signal consisted mainly of inhibition, with a less

prominent superimposed sinusoidal fluctuation. Thus, the differ-

ence between short versus long PSCs appears to be more

pronounced when the neuron has increased intrinsic excitability.

Discussion

We have shown that a single neuron can be highly discriminatory

for the shape of low amplitude stimuli that elicit an action potential

and that the shape of the optimal stimulus is dependent upon input

context, i.e., the optimal stimulus for eliciting a spike is determined

by the nature and the type of all inputs to the neuron. Our results

validate two methodologies to study optimality in neuronal systems.

Using the calculus of variations, we determined optimal signals for

the Hodgkin & Huxley model. This theory predicts that our

stochastic search methodology derived from experiments should

converge to the optimal stimulus derived from the theoretical

approach, a prediction that is supported by the results in Figure 5B &

C. Although optimality has been explored previously in simplified

models [4,11,16], these are the first results using a complete ionic

model of a neuron, which enabled us to demonstrate multiple

mechanisms to elicit an action potential. Using a stochastic search

methodology, we determined optimal signals in the squid giant axon.

Unlike other studies that use spike-triggered averaging, we used

minimally supra-threshold stimulation that is required to accurately

determine optimal stimulus shapes [11,17]. Careful titration of

stimulus intensity to minimally suprathreshold levels enabled us to

show that optimal shapes depend on the physiological context in

which stimuli are presented. A novel feature of our analysis concerns

two versions of the Hodgkin and Huxley model [13,14]. The original

version [13] predicts sustained firing of action potentials in response

to a sustained, suprathreshold depolarizing current pulse. The axon

preparation fires only once for these conditions, a result that is

mimicked by our revised version of the model [14]. We applied the

calculus of variations approach to both and found similar results

(Figure 5B & C), which is not surprising since both models provide a

good description of responses to brief duration pulses. The revised

model provides a slightly improved description of our results

compared to the original model (Figures 4 & 5) and the reduction in

the oscillatory component of the theoretical results (Figure 5B & C) is

consistent with the change from repetitive firing in the original

version of the model in the response to long duration pulses

(oscillatory behavior) compared to a single spike in the revised

version for these conditions (absence of oscillations).

Our results indicate that questions of optimality are more

complex than the one model-one optimal view that is widely found

in the discussions of neuronal excitation. While simpler qualitative

models which are more amenable to mathematical analysis than

ionic models can also be used to qualitatively predict optimal

signal, they may miss the multiple locally optimal signals that are

needed to understand the full landscape of neuronal signaling. For

example, an integrate-and-fire model does not predict post-

inhibitory rebound excitation nor does it predict neuronal firing

with inputs consisting solely of inhibitory PSCs. Multiple optimal

signals could allow a neuron to be responsive to a wider range of

stimuli, where stimulus context is key to understanding neuronal

optimality. As further details of this context are considered [18],

e.g. synaptic placement along a dendritic tree, both active and

passive dendritic processing, synaptic facilitation/depression, all of

which affect the temporal dynamics and polarity of the input

stimulus to the soma, the role of separate firing mechanisms and

multiple optimal signals will likely become even more important.

We have shown that PSC duration is an important factor in

stimulus optimization (Figure 7). Further experiments could be

carried out in which the duration of inhibitory PSCs are different

Figure 6. A) Optimal stimulus in the presence of purely
inhibitory PSCs. This experiment was carried out as in Figure 3
except that the mixture of excitatory and inhibitory PSCs was replaced
by an input consisting of only inhibitory PSCs. B) The optimized
hyperpolarizing result from Figure 5A (green curve) is illustrated here
showing similarity in stimulus shape compared to the noise based
optimal derived from purely inhibitory PSCs.
doi:10.1371/journal.pcbi.1002089.g006
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than those of excitatory PSCs or the duration of either PSC type is

itself a variable factor in the experiments. Additionally, we have

relied on RMS current minimization as our criterion for stimulus

optimization. Other minimization strategies could be used in

future experiments such as one in which the rate of change of

input current is used in conjunction with RMS current.

Minimization of RMS current is directly relevant to deep brain

stimulation protocols [7–9]. Its significance in other contexts such

as sensory processing is less clear. For example, in the visual system

quantum efficiency is perhaps the most relevant measure of

optimality, i.e., the ability of an observer to detect a visual input

with the fewest number of photons possible [5]. The relationship

of RMS current input to this type of optimization is itself of topic

of further research, as it the relationship of RMS current to

stimulus optimization in other sensory modalities. Those studies,

which have yet to be carried out, may demonstrate the relevance

of the optimization of current shapes and current amplitude in the

behavior of neural networks during information processing.

Methods

Theoretical
Hodgkin & Huxley model. The Hodgkin & Huxley model is

given by

CdV=dt~{120m3h V{ENað Þ{36n4

V{EKð Þ{0:3 V{ELð Þ{Istim tð Þ,
ð1Þ

where C is membrane capacitance (C = 1 mF/cm2), V is membrane

potential in mV, t is time in msec, ENa, EK, and EL are the Nernst

potentials for Na+, K+, and leak current, respectively, with

ENa = 115 mV, EK = 212 mV, and EL = 10.613 mV, and Istim is

the stimulus current in mA/cm2. The voltage- and time-dependent

variables m, n and h in Equation (1) are dimensionless having

values between 0 and 1. They are given by

dm=dt~{ am Vð Þzbm Vð Þð Þmzam Vð Þ; dh=dt~

{ ah Vð Þzbh Vð Þð Þhzah Vð Þ, and dn=dt~

{ an Vð Þzbn Vð Þð Þnzan Vð Þ,

ð2Þ

with am(V) = 0.1Q(25-V)/(exp(0.1(25-V))21), bm(V) = 4 Qexp(-V/

18), ah(V) = 0.07 Qexp(-V/20), bh(V) =Q/(exp(0.1(30-V))+1),

an(V) = 0.01Q(10-V)/(exp(0.1(10-V))21), and bn(V) = 0.125 Qexp

(-V/80), where Q is a temperature parameter. All a’s and b’s are in

msec21. These equations were taken directly from Hodgkin &

Huxley [13] with V replaced by -V, which is the modern sign

convention for their model. This system of equations was used in

the calculus of variations (following section), except for the results

in Figure 5C in which bn = 0.125 Qexp(-V/80) was replaced with

bn = 0.125 Qexp(-V/20), as described in previous work from this

laboratory [14]. The membrane potential V in Figure 2 and

elsewhere in this report was replaced by V+60, which is also

consistent with modern usage of the Hodgkin & Huxley model.

They assumed rest potential was 0 mV, whereas 260 mV is found

in most neurons. The temperature parameter Q was set to 1.5 to

match the temperature of our experiments.

Calculus of variations. We minimize the L2 norm of the

applied current Istim(t) to the Hodgkin & Huxley model. Following

earlier work [11], this procedure yields the following function to

Figure 7. Effects of PSC duration on optimality. A) We repeated the experiments carried out in Figure 3 to determine the optimal shape for
eliciting an action potential with PSCs having either a long (20 msec) decay constant (green curve) or short (1 msec) decay constant (blue curve).
These signals are particularly different 5 to 10 msec prior to the action potential. During this region, short PSCs excite the neuron, whereas long PSCs
inhibit the neuron. B) Correlation analysis of the short versus long PSC results as described in the text. C) The intracellular pH of the axon was
elevated to increase axon excitability (15) and the experiments in A were repeated. For the axon with enhanced excitability, the difference between
the optimal signals comprised of short PSCs and those comprised of long PSCs was more pronounced.
doi:10.1371/journal.pcbi.1002089.g007
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minimize:

I2
stimzlV (CdV=dtz120m3h V{ENað Þz36n4 V{EKð Þ

z0:3 V{ELð ÞzIstim)zlm(dm=dtz am Vð Þzbm Vð Þ
� �

m

{am Vð Þ)zln(dn=dtz an Vð Þzbn Vð Þð Þn{an Vð Þ)

zlh(dh=dtz ah Vð Þzbh Vð Þð Þh{ah Vð Þ),

ð3Þ

where lV, lm, ln, and lh are Lagrange multipliers. The Euler

equations [10,11] were applied yielding the following

CdV=dt~{120 m3h V{ENað Þ{36 n4 V{EKð Þ

{0:3 V{ELð Þ{Iv tð Þ=2:0{Ioff ,

dm=dt~{ am Vð Þzbm Vð Þð Þmzam Vð Þ,

dh=dt~{ ah Vð Þzbh Vð Þð Þhzahh Vð Þ,

dn=dt~{ an Vð Þzbn Vð Þð Þnzan Vð Þ,

dlV=dt~lV (120m3hz36n4z0:3){lm(dam Vð Þ 1{mð Þ

{dbm Vð Þm){ln(dan Vð Þ 1{nð Þ{dbn Vð Þn)

{lh(dah Vð Þ 1{hð Þ{dbh Vð Þh),

dlm=dt~{lV 360m2h(ENa{V )zlm am Vð Þzbm Vð Þð Þ,

dln=dt~{lV 144n3(EK{V )zln an Vð Þzbn Vð Þð Þ,

dlh=dt~{lV 120m3(ENa{V )zlh ah Vð Þzbh Vð Þð Þ:

ð4Þ

The offset current Ioff was chosen as 0 except where otherwise

indicated. The Hodgkin & Huxley model was started at rest. The

model was stimulated with 4 msec duration depolarizing current

pulses having increasing amplitude until an action potential was

initiated (Figure 2). The initial (resting) values of the Hodgkin &

Huxley parameters were V = .0036 mV, m = 0.0530, n = 0.3177,

h = 0.5960, lV = 0.0001676, lm = 0.001386, ln = 0.2044, and

lh = 0.09389 (state a0 in Figure 2). When calculating optimal

stimuli corresponding to post-inhibitory rebound, the last four

parameters were changed to IV = 20.0188, lm = 0.3138,

In = 15.4266, and Ih = 11.3144. Slightly different parameters were

used for Figure 5Csince this simulation used our revised Hodgkin&

Huxley model. For final values of the parameters (state b1 in

Figure 2) we used results corresponding to the end of a slightly

suprathreshold 4 msec depolarizing pulse, i.e., V = 7.91 mV,

m = 0.1173, n = 0.3548, h = 0.5954. We used Matlab’s bvp4c

function (MathWorks; Natick, MA) to find the optimal stimulus

over 20 msec in duration (running the optimization for 40 msec

prior to AP did not change the results) that brought the neuron from

rest, a0, to b1. Similar results were found with Mathematica

(Wolfram Research; Champaign, Il) using a shooting method. For

post-inhibitory rebound (PIR) stimuli, we repeated the above

methods with a hyperpolarizing pulse 10 msec in duration. As noted

above (Results), this procedure gave signals (Figure 2B & C) that did

not closely match the optimal stimulus obtained from noise analysis

(Figure 3C). We subsequently used the V, m, n, and h sets

corresponding to the end of the pulses in Figure 2 as starting

points for refinement of the results. A small change was made in any

one of the parameters and calculus of variations simulations were

performed. The RMS current of the result was used as the

determining factor in a coordinate search in 4 parameter space (V,

m, n, h) for a local optimal of action potential initiation. These local

minima were verified by slightly perturbing the final state and

checking that the search method returned to each respective local

minima. The final results of this analysis are illustrated in Figure 5A.

Convolutions and correlations. Let d be the input data and

s be the proposed optimal stimulus scaled so that dk k2 = 1. We

consider two important quantities. Our measure of how similar d is

to s is dNs/ sk k2 was used in Figure 7. This quantity has the geometric

interpretation of the cosine of the angle between d and s. Here 0

means that the signals are orthogonal to each other and 21 or 1

indicates that the signals are the same except for a possible scaling

constant. We also used s to predict whether an action potential

would occur after a neuron had been presented with signal d. This is

done with the classical LNP nonlinear Poisson model that proposes

that the rate of firing an action potential is a function of dNs. We used

dNs to predict the firing rate of an action potential in Figure 3.

Experimental
Experiments were carried out on squid giant axons using

methods previously described [15]. Stochastically varying current

was administered to the axon for 10 sec periods using stimulus

profiles generated by computer (MatLab) of a simple model of

stochastically summated polysynaptic currents (PSCs). Excitatory

and inhibitory PSCs were generated independently, each with a

Poisson rate having a mean of 10 events per msec. Each PSC had

an exponential rise time constant of 0.25 msec and decay time

constant of 1 msec [15]. These parameters were used in all runs

unless otherwise noted. The stimulus profile was the sum at any

moment of all PSCs. The overall intensity of the stimulus was

varied by changing the amplitude of all PSCs. The computed

stimulus profiles were converted to an analog stimulus using a D-A

converter (National Instruments, Austin, TX) controlled by

software (LabView 6, National Instruments). The mean current

for any run was zero because the excitatory and inhibitory PSCs

had identical profiles and Poisson distributions. The exception was

the experiment described in Figure 6 for which only inhibitory

PSCs were used.

Supporting Information

Figure S1 A) Optimal Istim(t)for eliciting a spike from the

Hodgkin & Huxley model corresponding to a depolarizing current

pulse as in Figure 2 in the text – exogenous stimulation. B)

Optimal waveform for eliciting a spike as In A, but with Istim(t)

determined by Equations S1–S3 with Esyn = 25 mV. C) Curves in

A and B shown superimposed.

(TIF)

Figure S2 A–B) Similar analysis as in Figure S1 with

Esyn = 225 mV. The curves in A and B are shown superimposed

in C.

(TIF)

Text S1 Application of the calculus of variations to endogenous

stimulation.

(DOC)
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