
Trade-off between Responsiveness and Noise
Suppression in Biomolecular System Responses to
Environmental Cues
Alexander V. Ratushny, Ilya Shmulevich, John D. Aitchison*

Institute for Systems Biology, Seattle, Washington, United States of America

Abstract

When living systems detect changes in their external environment their response must be measured to balance the need to
react appropriately with the need to remain stable, ignoring insignificant signals. Because this is a fundamental challenge of
all biological systems that execute programs in response to stimuli, we developed a generalized time-frequency analysis
(TFA) framework to systematically explore the dynamical properties of biomolecular networks. Using TFA, we focused on
two well-characterized yeast gene regulatory networks responsive to carbon-source shifts and a mammalian innate immune
regulatory network responsive to lipopolysaccharides (LPS). The networks are comprised of two different basic
architectures. Dual positive and negative feedback loops make up the yeast galactose network; whereas overlapping
positive and negative feed-forward loops are common to the yeast fatty-acid response network and the LPS-induced
network of macrophages. TFA revealed remarkably distinct network behaviors in terms of trade-offs in responsiveness and
noise suppression that are appropriately tuned to each biological response. The wild type galactose network was found to
be highly responsive while the oleate network has greater noise suppression ability. The LPS network appeared more
balanced, exhibiting less bias toward noise suppression or responsiveness. Exploration of the network parameter space
exposed dramatic differences in system behaviors for each network. These studies highlight fundamental structural and
dynamical principles that underlie each network, reveal constrained parameters of positive and negative feedback and feed-
forward strengths that tune the networks appropriately for their respective biological roles, and demonstrate the general
utility of the TFA approach for systems and synthetic biology.
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Introduction

The living cell may be viewed as an information processing

system that uses the information in its environment to make

decisions and mount appropriate responses [1]–[3]. In this

context, cellular systems must strike a balance between being

highly responsive to the environment, preserving the necessary

details of the signals that they process, while simultaneously

exhibiting stability so as to suppress environmental noise that

would otherwise confound the cell [4]. Indeed, the trade-off

between noise suppression and detail preservation is a

fundamental one even in engineered signal processing systems.

An optimal system must extract the information from a signal

in the presence of noise in order to make the most reliable

estimate of some quantity of interest. Similarly, the cell must

estimate the state of the extracellular environment from noisy

input stimuli. For example, E. coli estimate the time derivative

of a signal along which they chemotax [5]. This estimation is

realized by a chemotactic network that essentially implements

the Kalman filter [6], which optimally estimates the internal

state of a linear dynamical system from a series of noisy

measurements [7].

To discover evolutionarily conserved principles underlying

cellular decision making, it is necessary to develop a general

understanding of how biomolecular networks implement such

trade-offs in terms of information processing, rather than in terms

of specific biochemical details [4]. Mathematical models of

molecular networks make it possible to quantitatively express

these trade-offs in terms of input-output characteristics of the

network and, in turn, to examine the effects of network topology

(i.e., wiring) and parameters governing the interactions within the

system.

The ability of a system to filter out fluctuations or to respond to

temporal details in a signal can be captured quantitatively by

analyzing the input and output signals in terms of their time and

frequency characteristics. For instance, a system that performs

smoothing of an input signal acts as a low-pass filter by attenuating

high-frequency fluctuations. While frequency selective behavior of

linear time-invariant systems is well understood and can be

determined completely by knowing the response of the system to a

single impulse [8], the nonlinear character of biological systems

and the highly nonstationary nature of the input stimuli make it

generally impossible to decouple system responses from their input

signals. Indeed, the ability to quantitatively describe a response of
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a nonlinear biomolecular network to a transient stimulus, particularly

in the context of varying strengths of combinatorial and synergistic

regulatory interactions, typified by biological networks, remains a

significant challenge.

Therefore, to explore how different network topologies confer

particular system properties such as responsiveness and noise

suppression, we developed a generalized time-frequency analysis

(TFA) framework for investigating the responses of nonlinear

biomolecular networks. The approach entails systematically

comparing time-frequency characteristics of inputs (stimuli) and

outputs (responses) while varying system parameters. This

methodology allows for the exploration and quantitative compar-

isons of system-level behaviors relative to these parameters.

Results/Discussion

Time-frequency analysis of yeast metabolic responses to
environmental change

We initially examined two yeast systems, the oleate (OLE) [9],

[10] and the galactose (GAL) [11], [12] core transcriptional

networks in Saccharomyces cerevisiae, which both respond to carbon

source switching, but do so with very different network topologies

(Figure 1A). The analysis of the spectral response of these systems

to time varying inputs of simulated oleate and galactose

concentrations makes it possible to study how the circuit structure

and parameters in these two systems affect their ability to balance

noise suppression with responsiveness. To this end, the time-

frequency characteristics of the network input and output signals

were extracted from their spectrograms, which are calculated

using the short-time Fourier transform (STFT) [13]. The

spectrogram illustrates how the frequency content of a signal

varies with time. The value Xi,j of each element in the spectrogram

indicates the power of the signal at a particular frequency (fi) and

at a particular time (tj) (Figures 1B and S1 and Text S1).

Characteristics of the signal and the network response can be

quantified by integration across all frequency bands. Two

characteristics of the networks, noise suppression (low-pass filtering)

and responsiveness (detail preservation), can be inferred from the

spectrograms. First, as a measure of circuit noise suppression, the

spectrogram coefficients for each frequency band were summed

over time and the mean frequency of the signal (m) was calculated.

The noise suppression characteristic (j) is defined as a ratio of mean

frequencies of the stimulus and the system response (j=min/mout,

Figure S1G). A greater j corresponds to a system with a greater

ability to filter high-frequency input fluctuations. Second, in each

frequency band, the relationship between the total variation of the

signal power at the output and input of the system serves as a

measure of responsiveness. Specifically, the total variation of the

spectrogram coefficients within each frequency band (Vi, Figure S1I)

was calculated and the system responsiveness (r) is defined as the

inverse divergence between distributions of normalized input (Vi
in*)

and output (Vi
out*) variations across all frequency bands. A greater r

corresponds to a more responsive system.

To investigate the different features of the GAL and OLE

networks, their noise suppression (j) and responsiveness (r) cha-

racteristics were calculated based on their model-predicted

responses to simulated random, noisy time-varying stimuli. The

TFA analysis revealed that the two networks have distinct noise

suppression and responsiveness properties. The OLE network

effectively filters high-frequency fluctuations of the stimulus, thus

acting as a low-pass filter. At the same time, it is relatively

unresponsive to transient stimulus variations. By comparison, the

GAL network is highly responsive but does not filter high frequency

fluctuations as effectively (Figure 2). Thus, each system exhibits a

different noise suppression-responsiveness trade-off, suggesting that

these properties have selective advantages in different contexts.

The shift from glucose to oleate involves a substantial

commitment to build and maintain new organelles (peroxisomes)

that are responsible for metabolizing the new carbon source (fatty

acids) [14], [15], a switch from fermentative to non-fermentative

metabolism (requiring mitochondrial respiration), as well as the

coordination of additional responses to the stress associated with

exposure to fatty acids [9], [16]–[18]. Therefore, the nature of the

oleate response demands that the system be capable of filtering

high frequency fluctuations of the environmental stimulus, which

may otherwise inappropriately commit the cell to significant

morphological and metabolic reorganization. By contrast, the

switch from glucose to galactose requires relatively few enzymes

and transporters to convert galactose into glucose-1P for glycolysis

[19]–[21]. Thus, while the ability of the cell to be highly responsive

to galactose appears to come at the expense of noise suppression,

such noise suppression can be sacrificed to a greater extent than

during the oleate response.

A major difference between these networks lies in their

topologies. The GAL network is comprised of dual positive and

negative feedback loops (FBLs) whereas the OLE network is

comprised of a positive FBL and two (positive and negative) feed-

forward loops (FFLs) (Figure 1A). By removing coherent positive

and negative FFLs (Adr1p and Oaf3p nodes) and leaving only the

positive FBL (on PIP2), the ensemble of the calculated TFA

statistics resembles that of the GAL network (Figure 2). To

investigate how topology of the OLE network contributes to noise

suppression and responsiveness of the system, different configura-

tions of the OLE network were explored. Density distributions of

the j and r for adr1D-, oaf3D-, ‘‘no positive feedback’’-, ‘‘no

positive feedback’’-adr1D- and ‘‘no positive feedback’’-oaf3D- OLE

networks were calculated (Figures S4, S6 and S7 and Table S4).

The ‘‘no positive feedback’’-OLE model represents the OLE

network where Pip2p does not upregulate its own gene PIP2 but

upregulates only its target genes.

The distributions of the TFA characteristics for the adr1D- and

oaf3D-OLE models reveal that both Adr1p and Oaf3p individually

Author Summary

Biological systems constantly balance noise suppression
with responsiveness. In a fluctuating environment, some
changes are insignificant to living cells while others
represent cues to which they must respond. These stimuli
are interpreted by molecular circuits that enable the cell to
strike an appropriate balance between responsiveness and
noise suppression. This trade-off is governed by the
structure and kinetic parameters of molecular networks,
which have been tuned by evolutionary selection for
different stimuli and responses. We consider three
regulatory circuits (two from yeast and one from
mammalian cells), which respond to different environ-
ments and involve very different physiological processes.
To investigate the responses to a time varying signal, we
developed a generalized time-frequency analysis frame-
work for studying such trade-offs using mathematical
models of regulatory circuits and explore how the
structure and parameters of the circuit affect the trade-
offs between noise suppression and responsiveness. The
generalized TFA approach represents an effective tool for
exploring and analyzing different systems-level dynamical
properties. Making use of such properties can facilitate
prediction and network control for systems- and synthetic
biology applications.

Time-Frequency Analysis of Dynamical Networks
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increase the noise suppression and decrease the responsiveness of

the OLE network (Figures S6D, S6E, S7D and S7E and Table S4).

Interestingly, the oaf3D-OLE model has an even more narrowed

noise suppression distribution with a lower mean j value than the

adr1Doaf3D-OLE model (Table S4). The distributions of the j and

r for the ‘‘no positive feedback’’-OLE show that the Pip2p positive

feedback decreases noise suppression and increases responsiveness

of the OLE network (Figures S6F and S7F and Table S4). The

responsiveness/noise suppression ‘‘TFA clouds’’ for the ‘‘no

positive feedback’’-adr1D-OLE and ‘‘no positive feedback’’-oaf3D-

OLE models (Figures S4G and H) are similar to the ‘‘TFA clouds’’

for the adr1D- and oaf3D-OLE models. This demonstrates that

Adr1p and Oaf3p have more dominant contributions to the noise

suppression and responsiveness characteristics than the Pip2p

positive feedback. Overall these results reflect the nonlinear

relationships between regulators in this regulatory network and

suggest that the positive and negative FFLs of the OLE network

serve to filter high frequency environmental fluctuations.

To examine how the noise suppression and responsiveness TFA

characteristics depend on the type of random time-varying stimuli,

the distributions of the j and r were calculated separately for each

of the stimulus types (Figures S5, S6, and S7 and Table S4). The

distribution of the noise suppression characteristic for the random

sinusoidal stimuli is shifted toward higher values of j compared to

the random ‘‘block’’ and ‘‘saw’’ stimuli regardless of the network

type. This suggests that all of the biomolecular systems investigated

here have a greater ability to suppress the noise of smoothed

(random ‘‘sinusoidal’’) rather than more abrupt (random ‘‘block’’

or ‘‘saw’’) stimuli. The distribution of the responsiveness

characteristic for the random sinusoidal stimuli is shifted toward

lower values of r for the WT-, ‘‘no positive feedback’’-OLE models

and higher for WT-GAL and oaf3D-, ‘‘no positive feedback’’-oaf3D-

and adr1Doaf3D-OLE models compared to the random ‘‘block’’

and ‘‘saw’’ signals. The results indicate that the time-frequency

characteristics of a biomolecular network does indeed depend on

the nature of the stimulus, further supporting the approach of

exploring the network responses to a large ensemble of random

time-varying stimuli.

To understand the responsiveness and noise suppression

properties of networks, typified by the interlinked positive and

negative FBLs of the GAL network and the interlinked negative

and positive FFLs of the OLE network, the parameters

corresponding to the strengths of the FFLs and FBLs were

systematically altered. The strength of each loop was indepen-

dently varied (2,642 parameter sets in total) and each parameter

set was explored with 100 randomized model inputs. The noise

suppression and responsiveness characteristics of the networks as a

function of network parameters were determined by TFA and

displayed as heat maps (Figure 3). The resulting ‘‘portraits’’ expose

fundamental differences inherent to each of the networks and

demonstrate how network dynamics can be predicted for these

and evolutionarily conserved networks.

For the OLE network, TFA revealed that network behavior is

characterized by appropriately tuned opposing positive and

negative FFLs. The network is maximally stable along the arc-

like front shown in Figure 3A. Increasing the strengths of the

Figure 1. The generalized time-frequency analysis of the dynamical properties of molecular networks. (A) Schematic representations of
the GAL (left) and OLE (right) networks. The GAL network is comprised of dual positive and negative feedback loops in which galactose activates
Gal3p relieving Gal80p repression of Gal4p activity which upregulates the expression of GAL genes [11], [12]. The OLE network is comprised of
overlapping positive and negative (coherent type 1 and type 2) feed-forward loops [24] in which oleate directly and indirectly activates core
transcription factors (Oaf1p, Pip2p, Adr1p and Oaf3p) which regulate combinatorially target genes, such as the transcription factor PIP2, the catalase
CTA1, the peroxisomal lipase LPX1 and others [9], [10]. Networks are displayed as interactions of genes and gene products, which are not explicitly
distinguished in the illustration. Solid lines terminating in arrowheads denote positive regulation whereas lines terminating in bars denote repression.
Single solid lines represent protein-DNA interactions whereas double lines denote protein-protein interactions. Dotted arrows represent activation by
the metabolite. The dotted oval arrow denotes activation of galactose transport. (B) Workflow of the generalized TFA. Noisy, time varying stimuli are
used as inputs to a model of the network and the response is determined. Input and output signals are transformed into component frequencies by
the STFT. The contribution of each frequency band (fi) at time interval (tj) is a spectrogram coefficient (Xij) and is represented in the spectrogram by a
color intensity. Stimuli are varied randomly in the context of systematically varying model topologies and parameters.
doi:10.1371/journal.pcbi.1002091.g001

Time-Frequency Analysis of Dynamical Networks
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positive and/or negative FFLs above this front results in non-

physiological responses, characterized by a reversed directionality

of the output relative to the input signals (Figure S8). Decreasing

the strengths of these FFLs below the front results in lowered noise

suppression at the expense of increased system responsiveness

(Figure 3). As might be expected for a nonlinear system, an

increase in noise suppression may not be reflected by a

corresponding decrease in responsiveness of the same magnitude

and vice versa. While the arc-shaped front represents the range of

parameters where the noise suppression and responsiveness

characteristics are similar to the wild-type (WT) state (Figures

S10A and S10B and Table S5), there are other trade-offs as

parameters vary along this arc; for example, the amplitude of the

response changes as a function of the strengths of the positive and

negative FFLs (Figure S9).

By contrast, the dual negative and positive FBL in the GAL

network is highly responsive over a broad range of parameters

extending along the diagonal from the left bottom corner of the

heat map (Figure 3D). The strengths of positive and negative FBLs

can be varied over an extensive parameter range, while

maintaining near WT responsiveness and noise suppression,

indicating a remarkable level of robustness of the system (Figures

S10C and S10D and Table S5). Indeed, while the GAL network

does have the capacity to act as a low-pass filter [1], a significant

deviation from WT parameters would be required for this system

to reach the effectiveness of the OLE network in terms of low-pass

filtering (Figure 3C). Based on these simulations, decreasing the

strength of the negative FBL with the fixed strength of the positive

FBL, would increase the noise suppression of the network and

decrease its responsiveness (Figures 3C and 3D).

To investigate how the TFA portraits depend on the type of

random time-varying stimuli, the heat maps presented in Figure 3

were split into three separate heat maps, each of which represents

an averaged j/r over 33/34/33 random ‘‘block’’/sinusoidal/

‘‘saw’’ stimuli. The separated heat maps for the OLE (Figure S11)

and the GAL (Figure S12) models show similar patterns within

each model for different types of stimuli; however, the ranges of j
and r values (as the strengths of FFLs and FBLs are changed) differ

depending on type of stimulus. For example, the difference

between maximum and minimum j and r values of the

‘‘sinusoidal’’ heat maps is greater compared to the ‘‘block’’ or

‘‘saw’’ stimuli regardless of the network. This analysis highlights

that TFA portraits (in this case, the projection onto the plane of

positive and negative FFL/FBL strengths) tend to be robust to

changes in stimulus type in terms of the patterns of j and r
changes in the parameter space (as shown in Figures S11 and S12).

The LPS-induced regulatory network in macrophages
To investigate the extent to which overall network architecture

(versus biochemical parameters) defines the dynamical properties

of a system, we examined the LPS and Toll-like receptor 4

(TLR4)-induced regulatory circuit from mouse macrophages by

TFA, which, like the OLE network, is characterized by overlapping

positive and negative coherent FFLs. In this regulatory network

Figure 2. Feed-forward loops of the OLE network endow the system with ability to filter high-frequency fluctuations of the stimulus
whereas feedback loops of the GAL network confer responsiveness to the environmental changes. (A, B) Distribution of the noise
suppression and responsiveness statistics for GAL (WT) and OLE (WT or adr1Doaf3D) networks, respectively. (C–E) Responsiveness/noise suppression
plots for GAL (WT) and OLE (WT, adr1Doaf3D) networks, respectively. The j and r were calculated based on 3000 random time-varying stimuli and
system responses (see also Figures S3, S4, S5, S6 and S7). The contour plots were constructed using a bivariate Gaussian kernel density estimator (see
Text S1). Noise suppression values less than 1 indicate the system responses to these stimuli contain higher harmonics than the input signals and vice
versa. Low responsiveness values indicate poorly matched input and output signals. D denotes lack of a corresponding gene.
doi:10.1371/journal.pcbi.1002091.g002

Time-Frequency Analysis of Dynamical Networks

PLoS Computational Biology | www.ploscompbiol.org 4 June 2011 | Volume 7 | Issue 6 | e1002091



NF-kB, ATF3 and C/EBPd transcription factors coordinate the

expression of cytokine encoding target genes in response to LPS

[22] (Figure 4A). The network is also interesting because it must be

tightly regulated to respond vigorously to the presence of a

pathogen, but at the same time must remain in check to avoid

uncontrolled inflammatory responses. Analogously to the OLE and

GAL models, the behavior of the LPS-induced network model was

initially investigated in the wild-type state in the presence of 3000

random and noisy stimuli (Figures S4C, S6C and S7C and Table

S4). The WT-LPS model has a similar responsiveness/noise

suppression distribution as the OLE model, i.e. biased toward more

noise suppression. The distribution of the noise suppression and

responsiveness TFA characteristics for different stimulus types are

presented in Figures S5C, S6C and S7C and Table S4.

Similarly to the OLE model, the strength of each FFL of the

LPS-induced network was independently varied and each

parameter set was explored with 100 randomized model inputs.

The heat maps of the TFA characteristics resulting from this

simulation were significantly different from those of the OLE

network emphasizing that the network architecture itself is not

Figure 3. The noise suppression (j) and the responsiveness (r) of the networks are sensitive to both to the topologies and rate
parameters. (A, B) The j and r, respectively, of the OLE network as a function of the strengths of positive and negative FFLs. (C, D) The j and r,
respectively, of the GAL network as a function of the strengths of positive and negative FBLs. Each point on the heat maps represents the averaged j
and r, respectively, over 100 random and noisy stimuli (see also Figures S11 and S12). The strengths of the FFLs/FBLs are on a logarithmic scale. White
lines represent WT parameters and their encircled intersection is the WT network.
doi:10.1371/journal.pcbi.1002091.g003
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sufficient to define the dynamical characteristics of the system.

Indeed, while the OLE network appears tuned toward greater

noise suppression, the LPS network appears to be tuned to lie at

the boundary of responsiveness and noise suppression (Figures 4B,

4C, S10E, S10F, S13). This is perhaps not surprising considering

that macrophages must be finely tuned to respond to the presence

of a foreign substance, yet if cellular responses vary dramatically

with the character of the signal, variations in cytokine release has

the potential to lead to inappropriate inflammatory responses.

The ability to be poised at the boundary of responsiveness and

stability is a hallmark of systems operating in a critical regime

between order and disorder. A recent study of mouse macrophages

stimulated with a variety of pathogen associated molecular

patterns provided evidence that macrophages gene expression

dynamics are indeed critical [23], supporting the conclusions

drawn from the TFA analysis.

Deviation from the parameters that define the wild-type

network has a dramatic effect on the network behavior. Increasing

the strength of LPS/TLR4/NFkB activation from the WT state

increases the noise suppression of the network, but at the cost of

reducing responsiveness. Similarly, decreasing the strength of the

activating arm increases responsiveness, but at the cost of reducing

noise suppression. Changing the strength of ATF3 repression leads

to an opposite pattern with less dramatic changes in network

behavior. Thus, altering the strength of either the positive or

negative FFLs leads to networks that are predicted to change the

finely tuned balance between noise suppression and responsiveness

that is critical to a controlled inflammatory response.

Conclusion
While experimental tools of systems biology allow us to discern

molecular network structures, it is evident that the parameters

governing the interactions within the system are essential for

understanding its dynamics. However, in most cases, one has only

partial knowledge of the parameter values in the system, with

many parameters being either entirely undetermined or known

only imprecisely. The generalized TFA framework is particularly

useful in such scenarios as it can reveal various aspects of

dynamical system behavior such as noise suppression, responsive-

ness, and their trade-offs, relative to the parameter space of the

system. Moreover, other dynamical properties of a network can be

investigated in the same manner by extracting appropriate features

from the time-frequency representations or other metrics for

features such as noise suppression and responsiveness can readily

be incorporated and compared in the TFA framework. Addition-

ally, the generalized TFA framework is not constrained by the

STFT; wavelets or other multiresolution or multiscale analysis

approaches can also be used for time-frequency representations.

The noise suppression and responsiveness portraits of the OLE, the

GAL and the LPS-induced networks (Figures 3, 4B and 4C) reveal

radically different behaviors and biological roles for these circuits.

Such portraits can also suggest new avenues for experimental

research in synthetic biology aimed at modulating the biochemical

properties of the interactions to affect systems-level trade-offs,

while maintaining physiologically viable responses.

Methods

Computational modeling
To systematically explore the dynamical properties of the OLE,

GAL and LPS-induced networks three basic types of random noisy

stimuli (‘‘block’’, ‘‘saw’’, and sinusoidal signals) were used.

Random stimuli were generated using precalcInputSignals MATLAB

function (http://magnet.systemsbiology.net/tfa). The amplitude

range of the generated random time variant stimuli was scaled so

that the maximum amplitude of the stimulus for the GAL network

corresponds to 11.1 mM of external galactose, the maximum

amplitude of the stimulus for the OLE network corresponds to

4.2561026 M of intracellular oleate and the maximum amplitude

of the stimulus for the LPS-induced network corresponds to 1,500

molecules/cell of the nuclear NF-kB. The duration of the

generated random time variant stimuli was scaled to be equal to

3000 min. The ordinary differential equation (ODE) kinetic

models of the OLE [10] (see also Text S1 and Tables S1, S2

and S3) and GAL [12] (see also Text S1) networks and the delay

differential equation (DDE) kinetic model of the LPS-induced [22]

network were solved using the standard ODE and DDE solvers,

respectively, in MATLAB. Each experiment in Figure 2 consists of

Figure 4. LPS-induced regulatory network driven by NF-kB, ATF3 and C/EBPd transcription factors lies at the boundary of
responsiveness and noise suppression. (A) Schematic representation of the LPS-induced regulatory network. The network is comprised of
overlapping positive and negative (coherent type 1 and type 2) feed-forward loops [24] in which LPS indirectly activates core transcription factors
(NF-kB and ATF3) which regulate combinatorially target genes, such as the transcription factor C/EBPd, interleukin 6 (IL6), tumor necrosis factor,
alpha-induced protein 6 (TNFAIP6), Ccl3 chemokine and others [22]. Network notation is described in Figure 1. (B, C) The j and r, respectively, of the
LPS-induced regulatory network as a function of the strengths of the LPS/TLR4/NFkB activation and the ATF3 repression (see Text S1). Each point on
the heat maps represents the averaged j and r, respectively, over 100 random and noisy stimuli (see also Figure S13). The strengths of the LPS/TLR4/
NFkB activation and the ATF3 repression are on a logarithmic scale. White lines represent WT parameters and their encircled intersection is the WT
network.
doi:10.1371/journal.pcbi.1002091.g004

Time-Frequency Analysis of Dynamical Networks
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3000 stimuli (1000 random ‘‘block’’ signals, 1000 random ‘‘saw’’

signals, and 1000 random sinusoidal signals; see Figure S2). Heat

maps in Figures 3, 4B and 4C were constructed based on 33

‘‘block’’, 33 ‘‘saw’’, and 34 sinusoidal random signals. Model

responses (the target gene expression profiles) to random noisy

stimuli were calculated using MATLAB functions that are

available from http://magnet.systemsbiology.net/tfa. More ex-

tensive details of these calculations are given in Text S1.

Construction of spectrograms
Spectrograms were constructed using the PlotSpectrogram MA-

TLAB routine (http://www.mathworks.com/matlabcentral/filee

xchange). The spectrogram coefficients in the routine were

calculated as X (f ,t)~20 log
Ð

s(t)h(t{t)e{i2pftdt, where s(:) is

the signal to be transformed and h(:) is the Hamming window

function. Each spectrogram was preprocessed prior to subsequent

analysis. Coefficients of each spectrogram less than 80 dB below

the maximum were set to zero. Then each spectrogram coefficient

(Xi,j ) was scaled by a factor of
PN
i~1

PM
j~1

Xi,j , where N and M are the

number of frequency bands and time intervals, respectively. The

illustration of the time-frequency analysis of the network responses

to the random noisy ‘‘block’’ stimulus is presented in Figure S1.

Analysis of spectrograms
The mean frequency of the signal was calculated as m~PN

i~1

fi

PM
j~1

Xi,j

 !
: The total variation of the spectrogram coefficients

within each frequency band fi is defined as Vi~
PM{1

j~1

Xi,jz1{Xi,j

�� ��:
The system responsiveness, r, was calculated as the inverse

symmetric Kullback-Leibler divergence between the normalized

distributions of V in* and V out* across all frequency bands r~

2
PN
i~1

V in�
i log

V in�
i

Vout�
i

� �
z
PN
i~1

Vout�
i log

Vout�
i

V in�
i

� �� �{1

, whereV
in�=out�
i ~

V
in=out

iPN
i~1

V
in=out

i

:
Other statistics for the noise suppression (the Kullback-

Leibler ansd Kolmogorov-Smirnov distances) and responsiveness

(the inverse Kolmogorov-Smirnov distance) characteristics of the

OLE and GAL networks were also calculated (Figure S3). These are

consistent with the results presented in Figure 2. The noise

suppression and responsiveness statistics were calculated using the

getHMforAllVarPrms MATLAB function (http://magnet.systemsbiol-

ogy.net/tfa).

Complete details of all methods used and the specifics of

computational models are available in Text S1.

Supporting Information

Figure S1 Illustration of the time-frequency analysis of the OLE

and GAL network responses to the random noisy ‘‘block’’ stimulus.

(A–C) Zero-mean stimulus and the OLE and GAL model responses,

respectively. (D–F) Spectrograms of the zero-mean stimulus and the

OLE and GAL model responses, respectively. (G–H) The spectro-

gram coefficient sum distributions across frequency bands and

corresponding cumulative distributions, respectively. (I–J) The

spectrogram coefficient total variation distributions across frequen-

cy bands and corresponding cumulative distributions, respectively.

(TIF)

Figure S2 Examples of the OLE and GAL network responses to

random noisy stimuli. (A) The OLE and GAL network responses to

random noisy ‘‘block’’ stimuli. (B) The OLE and GAL network

responses to random noisy ‘‘saw’’ stimuli. (C) The OLE and GAL

network responses to random noisy sinusoidal stimuli.

(TIF)

Figure S3 Responsiveness/noise suppression contour plots for

(A, B, C) GAL, (D, E, F) WT-OLE, and (G, H, I) adr1Doaf3D-OLE

networks. Contour plots were calculated based on TFA charac-

teristics of 3000 random stimuli/system responses (see Figure 2 in

the main text). j1 denotes the symmetric Kullback-Leibler

divergence between the distributions of the input and output

spectrogram coefficient sums across all frequency bands. j2

denotes the Kolmogorov-Smirnov distance between the distribu-

tions of the input and output spectrogram coefficient sums across

all frequency bands. r1 denotes the inverse Kolmogorov-Smirnov

distance between the normalized total variation distributions of the

input and output spectrogram coefficients across all frequency

bands. The noise suppression and responsiveness statistics were

calculated using the getHMforAllVarPrms MATLAB function

(http://magnet.systemsbiology.net/tfa).

(TIF)

Figure S4 Responsiveness/noise suppression plots for (A) WT-

GAL, (B) WT-OLE, (C) WT-LPS, (D) adr1D-OLE, (E) oaf3D-OLE,

(F) ‘‘no positive feedback’’-OLE, (G) ‘‘no positive feedback’’-adr1D-

OLE, (H) ‘‘no positive feedback’’-oaf3D-OLE, (I) adr1Doaf3D-OLE

models. The j and r were calculated based on 3000 random time-

varying stimuli and system responses. The contour plots were

constructed using a bivariate Gaussian kernel density estimator

(see Figure 2 in the main text and Figures S3, S5, S6 and S7). The

‘‘no positive feedback’’-OLE model represents the OLE network

where Pip2p does not upregulate its own gene PIP2 but

upregulates its target genes.

(TIF)

Figure S5 Colored scatter plots of the noise suppression and

responsiveness statistics for (A) WT-GAL, (B) WT-OLE, (C) WT-

LPS, (D) adr1D-OLE, (E) oaf3D-OLE, (F) ‘‘no positive feedback’’-

OLE, (G) ‘‘no positive feedback’’-adr1D-OLE, (H) ‘‘no positive

feedback’’-oaf3D-OLE, (I) adr1Doaf3D-OLE models. The j and r
were calculated based on 3000 random time-varying stimuli and

system responses (see Figure 2 in the main text and Figures S3, S4,

S6 and S7). The color of the dots represents the type of stimuli

applied to the networks. The blue, red and green dots represent

‘‘block’’, sinusoidal, and ‘‘saw’’ signals, respectively. The ‘‘no

positive feedback’’-OLE model represents the OLE network where

Pip2p does not upregulate its own gene PIP2 but upregulates its

target genes.

(TIF)

Figure S6 Distribution of the noise suppression characteristic for

(A) WT-GAL, (B) WT-OLE, (C) WT-LPS, (D) adr1D-OLE, (E)

oaf3D-OLE, (F) ‘‘no positive feedback’’-OLE, (G) ‘‘no positive

feedback’’-adr1D-OLE, (H) ‘‘no positive feedback’’-oaf3D-OLE, (I)

adr1Doaf3D-OLE models. The j was calculated based on 3000

random time-varying stimuli and system responses (see Figure 2 in

the main text and Figures S3, S4, S5 and S7). The color of the

density plots represents the type of stimuli applied to the networks.

The blue, red, green and black density distributions represent

random ‘‘block’’, sinusoidal, ‘‘saw’’ and all together stimuli,

respectively. The ‘‘no positive feedback’’-OLE model represents

the OLE network where Pip2p does not upregulate its own gene

PIP2 but upregulates its target genes.

(TIF)

Figure S7 Distribution of the responsiveness characteristic for

(A) WT-GAL, (B) WT-OLE, (C) WT-LPS, (D) adr1D-OLE, (E)

oaf3D-OLE, (F) ‘‘no positive feedback’’-OLE, (G) ‘‘no positive
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feedback’’-adr1D-OLE, (H) ‘‘no positive feedback’’-oaf3D-OLE, (I)

adr1Doaf3D-OLE models. The r was calculated based on 3000

random time-varying stimuli and system responses (see Figure 2 in

the main text and Figures S3, S4, S5 and S6). The color of the

density plots represents the type of stimuli applied to the networks.

The blue, red, green and black density distributions represent

random ‘‘block’’, sinusoidal, ‘‘saw’’ and all together stimuli,

respectively. The ‘‘no positive feedback’’-OLE model represents

the OLE network where Pip2p does not upregulate its own gene

PIP2 but upregulates its target genes.

(TIF)

Figure S8 Physiological vs. non-physiological network responses.

(A, B) The Euclidian distance between input and output

derivatives of the OLE and GAL networks as a function of the

strengths of positive and negative FFLs and FBLs, respectively.

Each point on the heat maps represents the averaged Euclidian

distance over 100 random and noisy stimuli (see Figure 3 in the

main text). The strengths of the FFLs/FBLs are on a logarithmic

scale. Non-physiological range of parameters for the OLE model is

surrounded by the gray curve. (C) Example of a non-physiological

response of the OLE model, which corresponds to the encircled

area on the heat map (A). (D) Example of a physiological response

of the GAL model, which corresponds to the encircled area on the

heat map (B). There are no obvious non-physiological responses

for the GAL model in the explored parameter space.

(TIF)

Figure S9 Amplitude of (A) OLE and (B) GAL network responses

as a function of positive and negative FFL and FBL strengths,

respectively. Each point on the heat maps represents the averaged

amplitude over 100 random and noisy stimuli (see Figure 3 in the

main text). The strengths of the FFLs/FBLs are on a logarithmic

scale. White lines represent WT parameters and their encircled

intersection is the WT network.

(TIF)

Figure S10 Noise suppression and responsiveness heat map

areas within 615% of the wild type j and r values for (A, B) OLE,

(C, D) GAL and (E, F) LPS models, respectively. Heat map areas

with j and r values below or above the threshold (615% of WT

values) are set to be equal to the minimum or the maximum value

of the heat map, respectively. White lines represent WT

parameters and their encircled’ intersection is the WT network.

(TIF)

Figure S11 The noise suppression (j) and the responsiveness (r)

of the OLE model as a function of the positive and negative FFL

strengths. Each point on the heat maps represents the averaged j
or r over (A, B) 33 random ‘‘block’’ or (C, D) 34 random

sinusoidal or (E, F) 33 random ‘‘saw’’ stimuli. The strengths of the

FFLs are on a logarithmic scale. White lines represent WT

parameters and their encircled intersection is the WT network.

(TIF)

Figure S12 The noise suppression (j) and the responsiveness (r)

of the GAL model as a function of the positive and negative FBL

strengths. Each point on the heat maps represents the averaged j

and r over (A, B) 33 random ‘‘block’’ or (C, D) 34 random

sinusoidal or (E, F) 33 random ‘‘saw’’ stimuli. The strengths of the

FBLs are on a logarithmic scale. White lines represent WT

parameters and their encircled intersection is the WT network.

(TIF)

Figure S13 The noise suppression (j) and the responsiveness (r)

of the LPS model as a function of the positive and negative FFL

strengths. Each point on the heat maps represents the averaged j
and r over (A, B) 33 random ‘‘block’’ or (C, D) 34 random

sinusoidal or (E, F) 33 random ‘‘saw’’ stimuli. The strengths of the

FFLs are on a logarithmic scale. White lines represent WT

parameters and their encircled intersection is the WT network.

(TIF)

Table S1 Equations defining the OLE network model.

(DOC)

Table S2 Dynamic variables of the OLE network model.

(DOC)

Table S3 Kinetic parameters and derived parameters used in

the OLE network model.

(DOC)

Table S4 Mean, standard deviation (SD) and coefficient of

variation (CV) values of the noise suppression (j) and responsive-

ness (r) characteristics for the WT-GAL, WT-OLE, WT-LPS,

adr1D-OLE, oaf3D-OLE, ‘‘no positive feedback’’-OLE, ‘‘no positive

feedback’’-adr1D-OLE, ‘‘no positive feedback’’-oaf3D-OLE and

adr1Doaf3D-OLE models calculated for 1000 ‘‘block’’, 1000

‘‘saw’’, and 1000 sinusoidal random signals (see Figure 2 in the

main text and Figures S3, S4, S5, S6 and S7).

(DOC)

Table S5 Mean values of the noise suppression (j) and

responsiveness (r) WT characteristics for the GAL, OLE and LPS

models calculated for 33 ‘‘block’’, 33 ‘‘saw’’, and 34 sinusoidal

random signals (see Figures 3 and 4 in the main text).

(DOC)

Text S1 This document contains additional supplemental

information on the generation of random stimuli, mathematical

models and computational methods used in this work.

(DOC)
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