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Abstract

Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression
patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the
observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two
and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct
interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors.
Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more
appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using
a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with
recently obtained experimental data, we studied the association level between genes and factors, and presented data
supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more
biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size,
might be the reason for decreasing gene co-localization. In the scenario of frequency- or amplitude-modulation of
transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted
genes.
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Introduction

A central theme in the regulation of transcription is the binding

of transcription factor proteins to specific sites along the DNA.

Though these sites can be several tens or hundreds of kilobases

from a target gene promoter, regulation is achieved by the

formation of chromatin loops that bring the sites together to form

transcriptional hubs. It is thought that proximity between distal

regulatory elements and their target genes increases the local

concentration of specific regulatory factors to affect transcriptional

control. Recent studies have also shown that active genes co-

localize in the nuclear space at focal concentrations of the active

form of RNA Polymerase II (RNAPII) called transcription

factories [1,2,3,4,5,6]. A genome-wide enhanced 4C (e4C) screen

demonstrated that specific combinations of genes from different

chromosomes share factories with a high frequency, suggesting

that active genes have preferred transcription partners. Co-

localization of these spatial gene networks at transcription factories

was found to be dependent on the transcription factor Klf1, which

co-regulates many of the partners [7]. Just as distal regulatory

elements are thought to affect gene regulation by spatial clustering,

intra- and inter-chromosomal associations between co-regulated

genes may affect expression by creating specialized microenviron-

ments that are optimized for their transcription. Thus, the

transcriptional program of a cell may be reflected by, or may

even be dependent upon, the spatial organization of the genome.

The appreciation that a very large proportion of the genome is

transcribed with relatively few transcription sites suggests that the

organization of the transcriptional machinery plays a major role in

shaping the nuclear organization of the genome. The positioning

of genes, regulatory sequences and transcription factors in relation

to each other and to landmarks in the nucleus, such as nuclear

bodies and lamina, are important determinants in gene expression

[8].

How specific subgroups of active genes and transcription factors

come to be positioned at factories is still unknown. Gaining an

understanding of the emergence of complex spatiotemporal

patterns of behavior from the interactions between genes in a

regulatory network poses a huge scientific challenge with

potentially high industrial pay-offs [4,9,10,11,12]. Experimental

techniques to dissect regulatory interactions on the molecular level

are critical to this end. In addition to experimental tools,

mathematical modeling and computer tools will be indispensable.

As most genetic regulatory systems of interest involve many genes

connected through interlocking feedback loops, an intuitive

understanding of their behavior is hard to obtain. By explicating

hypotheses on the topology of a regulatory network in the form of

a computer model, the behavior of possibly large and complex
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regulatory systems can be predicted and explained in a systematic

way. One of such recent examples is described in Misteli [13] and

Rajapakse et al [14], where the authors developed a model based

upon self-organization. It is probably the most successful model in

the area, as confirmed in Misteli [13]. However, the model is

phenomenological with an oversimplified system of Kuramoto

oscillators and the random effect is largely ignored.

Here we have developed a model based upon known

experimental data, aiming to account for experimental results

and for predicting and guiding further experiments. Co-localiza-

tion ratio is introduced to characterize the gene co-localizations in

transcription factories. Within a wide parameter region, we

demonstrate that gene co-localization is plausible for both two

and three dimensional cases. Experimental data tells us that sub-

diffusion is observed in various cell-cycle phases (S and G phase) in

yeast [15], which implies that fractional Brownian might be

required to model gene movement, at least locally in time and

space. Using fractional Brownian motion, gene and gene pairs co-

localized with transcription factories are estimated, and tested

against experimental data obtained from RNA-immuno-FISH

experiments. We find that the model, albeit simple, can account

for observed experimental data.

Previous research [1] showed that mouse embryonic fibroblasts

(MEFs) which have flattened nuclei have relatively high numbers

of transcription factories (,2,000) while embryonic, fetal and adult

erythroid cells and normal adult spleen, adult thymus, and fetal

brain cells with spherical nuclei, have fewer transcription factories

(100–300). Therefore, one may wonder what effects varying

numbers of transcription factories and nuclear shape have on gene

co-localization. Our simulation using both flattened and spherical

nucleus, showed that co-localization is not very sensitive to the

number of transcription factories, but is sensitive to the number of

transcription factors.

Transcription factor entry to the nucleus may occur in two

ways: either in a frequency-modulation mode (NF-kB for example

[16]) or via amplitude modulation (Klf1 might be an example)

fashion. Recently Cai et al. observed that Crz1, a stress-response

transcription factor, translocates to nucleus in response to

extracellular calcium signal, showing short bursts of nuclear

localization [17] (frequency modulation). They proposed that

frequency-modulation, rather than amplitude-modulation, of

localization bursts of transcription factors may be a control

strategy to coordinate gene responses to external signals.

Interestingly, we found that frequency-modulation, in comparison

with amplitude-modulation, facilitates gene co-localization. This

might reveal a key advantage of frequency modulation over

amplitude-modulation in coordinating gene expression in cell

nuclei.

Results

Co-localization between genes
Recent studies show that active genes dynamically co-localize to

shared transcription sites and that specific networks of genes share

factories at high frequencies [1,7,18,19]. We built a model by

randomizing the movement of genes and transcription factors,

with a defined number of immobile transcription factories [6,18].

Live cell studies have shown that chromatin is highly mobile but

regionally constrained within eukaryotic nuclei. We therefore

created a defined space for random diffusion of genes (genes

restricted to a square in the 2D model or a cubic in the 3D model)

based on the observed mobility of chromatin in vivo. Each gene

regulatory element is regarded as a point for simplicity, rather than

as a polymer. The transcription process is simulated as follows:

when a gene and its transcription factor come within a defined

proximity, they bind and diffuse together for a limited time (which

is called binding time). If the bound complex encounters a

transcription factory before their binding time elapses, the gene

engages with the polyerase and becomes active, remaining

associated with the transcription factory until termination (the

transcription time); if the gene-factor complex does not encounter

a transcription factory during the binding time, the gene and

factor dissociate and continue their brownian motion separately.

During a productive transcriptional event, the transcription factor

may be released from the gene before it finishes transcription and

is available to randomly interact and bind another gene of the

same family.

We examined the behavior between genes of the same family (X

genes) and two different families of genes (X genes and Y genes)

(see Fig. 1A). Genes and their corresponding factors (X factors and

Y factors) are allowed to move randomly within the restricted

region. However, to simulate the constrained diffusion of

chromatin, the genes cannot exit the defined space. Transcription

factors are allowed to exit the space, but exit of one factor is

followed by entry of an identical factor on the opposite/same side

of the space (We have simulated both cases and found no

significant difference in the simulation). This maintains the

concentration of factors within the space and simulates the

observed behavior of factors to explore the entire nucleus. The

number of genes and factors for each family are equivalent. X

factors can only bind to X genes and Y factors to Y genes, and the

two families of genes and factors are independent of each other.

We also assume that each gene has only two states (Fig. 1B and

1C) — either it is being transcribed (X gene: u(t) = 1; Y gene:

v(t) = 1) or not being transcribed (X gene: u(t) = 0; Y gene: v(t) = 0).

Fig. 1B and 1C illustrate X-X gene co-localization and X-Y gene

co-localization, respectively, where u(t) is the state function of X

gene and v(t) the state function of Y gene.

The choices of parameter values are based on the literatures and

previous experimental observations, and are presented in Table 1.

For example in our 3D model, the number of genes, factors and

factories in our restricted region (about 1/50 in terms of volume) is

Author Summary

Transcription is a fundamental step in gene expression, yet
it remains poorly understood at cellular level. Textbooks
are full of descriptions of promoter-bound transcription
factors recruiting RNA polymerase, which initiates tran-
scription before sliding along the transcription unit.
However, increasing evidence supports the view that the
DNA template bound with transcription factors slides
through a relatively immobile RNA polymerase at discrete
nuclear sites (known as transcription factories), rather than
RNA polymerase sliding along DNA template. Based on
this transcription factory model, we build a virtual space in
which genes and transcription factors move randomly
while transcription factories are immobile. We find that
under a large number of parameter ranges, this simple
dynamical model is valid for a number of experimental
observations. Moreover, we suggest the occurrence of
gene co-localization might be mainly due to limited
numbers of transcription factors, rather than other factors
such as nucleus size or transcription factory number. This
work offers insight into the general principles of regulation
of transcription and gene expression by simulating the
translocation of transcriptional units (genes and transcrip-
tion factors) using purely random diffusion processes that
result in non-random organization of co-regulated genes.

Dynamic Gene Model
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proportional to the total number of active genes in nucleus

(10,000–20,000 alleles, around 2000 transcription factors, and

100–300 factories observed per nucleus, reviewed by [20]). The

size of genes, transcription factors and factories were also chosen in

consistency with biological data. Since transcription factor binding

sites are often clustered in regulatory elements in chromatin, we

have given genes a binding radius of 25 nm. The diffusion rate of a

gene (0.001 mm2/sec) and transcription factor (0.01 mm2/sec) is

chosen in consistency with previous work [20,21]. The volume of

the restricted region is based on Chubb et al’s results (displace-

ments of genes were in the range between 0.5 mm to 2 mm [22]).

The gene-factor binding time is on the timescale of seconds [23],

and transcription time is consistent with the speed of the

polymerase across a relatively small gene [24].

Standard Brownian motion: 2D model. We start with the

2D model using standard Brownian motion to simulate the

translocation of genes and factors. All parameters were obtained

from experimental data [4,25]. When a gene engages with a

factory for a productive transcription event, the presence of other

genes transcribing in that factory results in a co-localization. The

simulation is run until both X-X gene co-localization events and

X-Y gene co-localization events have happened over 5000 times,

for each set of parameters. As a result, the co-localization ratio (Eq.

(13)) becomes rapidly stable with a small fluctuation over long

Figure 1. Demonstration of positionings and states of gene and transcription factory. (A) Schematic representation of chromatin loops
(black) extruding from a chromosome territory (gray). Transcribed genes (white) in RNAP II factories (black circles). Potentiated genes (free loops) that
are not associated with RNAP II factories are temporarily not transcribed. Potentiated genes can migrate to a limited number of preassembled RNAP II
factories to be transcribed (dotted arrows). Both cis and trans associations are possible. If a piece of gene is being transcribed at a particular time t, we
define the state of that piece of gene as 1 (e.g., u1,1(t) = 1, where the first subscript indicates the specific gene, and the second subscript indicates the
specific factory that the gene is associated with), otherwise, the state of the gene is defined to be 0. Hence, u1,1(t) = 1 means X gene 1 is being
transcribed at factory 1, v1,1(t) means Y gene 1 is being transcribed at factory 1, and u3,2(t) = 1 means X gene 3 is being transcribed at factory 2. Note
that in our simulation we fixed the transcription time for each gene to be 5 minutes. However a gene might be transcribed for longer than 5 minutes
if another factor binding event occurs, so that the whole transcription process starts again (i.e. re-initiation). This is illustrated in the figure why genes
might have various transcription time. (B) Illustration of the co-localization events (red lines) among the same family of genes (X gene) within time
window [0 T] (in dashed line window) in factory 1. Once there is a gene start being transcribe inside factory 1 while there are one or more than one
genes already being transcribed inside the same factory at time t, we say there is a co-localization event happened at time t. Therefore, we have 4 co-
localization events among X genes in total over time T, i.e. Nxx(1,[0,T]) = 4. The inter-co-localization interval Tc,x,x tells the timing of X-X gene co-
localization. (C) Illustration of co-localization events between different families of genes (X gene and Y gene) within time window [0 T] in factory 1.
The X-Y gene co-localization events are similarly defined as X-X gene, as shown by the figure, where we have 4 co-localization events between X gene
and Y gene over time T, i.e. Nyx(1, [0 T]) = 4, and Tc,yx is the inter-co-localization interval between Y gene and X gene.
doi:10.1371/journal.pcbi.1002094.g001

Dynamic Gene Model
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simulation time (Fig. 2A), as pointed out in the Methods section.

The parameter values in Fig. 2A are specified to be 40 X genes, 40

Y genes, 5 X factors, 5 Y factors, and 10 sec binding time. The

yellow triangles are the co-localization ratio obtained from Eq.

(15), which used the inter-co-localization interval for the

calculation rather than the counting of events. It shows that the

two methods (Eq. (13) and Eq. (15)) for calculation of the co-

localization ratio are equivalent.

In Fig. 2B, the histogram of inter-co-localization interval (TC,xx

and TC,xy) is plotted for X-X and X-Y gene co-localization, which

can be well fitted by gamma distributions. The distribution of X-X

gene inter-co-localization interval TC,xx is much narrower than

TC,xy, showing that X-X gene co-localization events are more likely

to happen over time. This means co-localization is more often

observed between genes of the same family. Fig. 2C further

demonstrates the asymmetry of co-localization for homogeneous

and heterogeneous families of genes, by pseudocolor plotting the

mean values of inter-co-localization interval ETc,xx and ETc,xy for

various parameters (4–11 factors and 5–100 seconds binding). The

mean of inter-co-localization interval of genes from the same

family (TC,xx) are generally smaller compared with that from

different gene families (TC,xy) for each parameter set, indicating the

same family of gene tends to co-localization more often. It is also

observed that the inter-co-localization interval increases dramat-

ically as the binding time increases, for both cases, when the

number of factors is fixed.

Moreover, Fig. 2D demonstrates the probability of gene-gene

co-localization in the 2D case for one specific parameter

combination (7 factors, 1 sec binding time). The co-localization

probability can be understood as the chance when a gene starts to

transcribe that another gene is already being transcribed in the

same factory. The histograms of co-localization probability

between X-X genes (Eq. (18), pink) and X-Y genes (Eq. (19),

blue) show that X-X genes colocalize preferentially, compared to

X-Y genes, because the chance for X-X gene co-localization are

clearly higher than that of X-Y gene (i.e., r2(x1, x2|x1) = 0.033

.r2(x1, y1|x1) = 0.02, see Methods section). Finally, Fig. 2E

illustrates the X gene’s co-localization ratio rxx/xy (Eq. (13)) for

various parameters, calculated from counting of co-localization

events for X-X gene and X-Y gene. The red dashed line indicates

the classification threshold for co-localization region where rxx/xy

.0.52 (region above). Interestingly, although the model is based on

completely random movements of genes and factors, there is a region

of parameters in which the system behaves non-randomly, where X

genes tend to colocalize preferentially with other X genes.

The interesting question is where the asymmetry (i.e., tendency

for genes of the same family to colocalize) comes from. Consider

an extreme case in which the number of transcription factors for

each family is severely limited (i.e., one X factor and one Y factor).

In this case, only family member genes in the immediate vicinity of

their factor have a chance of transcribing and co-localization of

the family member genes in the same factory would have a high

probability. On the other hand, if there were enough factors to

bind every gene simultaneously, gene transcription events would

be totally independent and a random distribution of factory

sharing would be expected. Therefore, for a fixed number of

factories, the co-localization ratio is a decreasing function of the

number of transcription factors, as indicated in Fig. 2E, while

gene-factor binding time does not influence gene co-localization

much. Hence, limited resources (finite number of transcription

factors) could be the main reason for co-localization in the

simulation.

Standard Brownian motion: 3D Model. Little information

is available about how gene regulatory components are organized

within the three-dimensional space of the nucleus from

experiments. Our 3D model can provide a temporal-spatio

simulation of the translocation of genes and transcription factors,

and their interactions with factories. Video demonstration for

genes and factor translocation, binding process and transcription

in the 3D case (when the locations of transcription factories are

fixed) is available from our group’s website (www.dcs.warwick.ac.

uk/,feng/gene-factory.avi). Fig. 3A illustrates the positioning of

each transcription element at a specific time t (big green dots

represent the location of each factory, asterisks are the

transcription factors, and genes the small spots. Red and blue

represent different family of genes and factors). The parameters of

Table 1. Parameter values used for 2D and 3D Brownian motion and fractional Brownian motion.

Brownian motion Fractional Brownian motion (BH)

2D 3D 2D 3D

Gene family X gene (Hbb, Hba, Hmbs,
Epb4.9), Y gene (Cpox)

X gene; Y gene X gene; Y gene X gene; Y gene

Factor family X factor, Y factor X factor, Y factor X factor, Y factor X factor, Y factor

# of genes for each family 40 100 40 100

# of factors for each family 5–12 5–25 5–12 5–25

# of factories 9 35 9 35

Binding Time Tb (sec) 10–50 10–150 10–50 10–150

Gene diffusion rate sg
2 0.001 (mm2/s) 0.001(mm2/s) 0.001(mm2/s2H) 0.001(mm2/s2H)

Factor diffusion rate sT
2 0.01 (mm2/s) 0.01 (mm2/s) 0.01 (mm2/s2H) 0.01 (mm2/s2H)

Transcription time Tt (sec) 300 300 300 300

Gene radius rg (mm) 0.01 0.025 0.01 0.025

Factor radius (mm) rg/3 rg/3 rg/3 rg/3

Factory radius (mm) rg *10 / 3 rg *10 / 3 rg *10 / 3 rg *10 / 3

Gene radius after binding with
factor (mm)

1.5 * rg 1.5 * rg 1.5 * rg 1.5 * rg

doi:10.1371/journal.pcbi.1002094.t001
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Figure 2. Simulation results for 2D case. (A) One example of co-localization ratio convergence. The ratio rapidly becomes stable as time
increases. Yellow triangle is obtained from Eq. (15), showing the consistency of calculation of co-localization ratio using different variables. (B) The
inter-co-localization (ICI) interval distribution for Tc,xx and Tc,xy. The parameters are the same as displayed in (A). The inter-co-localization interval
distribution can be fitted with gamma distributions. (C) The mean values of ICI distribution by varying the factor number and binding time between
genes and factors. The mean ICI increases as the binding time increases, and decreases as the factor number increases. (D) The co-localization
probability for X-X gene and X-Y gene. (E) Co-localization ratio for various combinations of factor number and binding time. The ratio threshold is set
to be 0.52. The red dashed curve is the threshold boundary to distinguish whether the co-localization is significant or tends to be random.
doi:10.1371/journal.pcbi.1002094.g002

Dynamic Gene Model
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Figure 3. Simulation results for 3D case, similar as Fig. 2. (A) Demonstration of the 3D framework in a cubic, where the big green dots
represent the location of the transcription factories, asteroids the transcription factors, and small dots the genes. Different families are represented by
either red or blue. (B) The inter-co-localization interval distribution for Tc, xx and Tc,xy. The parameters are the same as in (D). (C) The mean values of ICI

Dynamic Gene Model
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3D simulation can be found in Table 1. Most of the parameters

are the same as the 2D case, except the genes and factors

translocate randomly in a cubic space rather than a square plane

(Fig. 3A).

Fig. 3B–E are obtained similarly as Fig. 2B–E. Interestingly, in

comparison with the 2D case, the area of the co-localization ratio

is considerably enlarged (Fig. 3E). This could be easily understood

from the dynamics of the 3D Brownian motion. The main reason

for the bias (co-localization) is again due to the limited number of

transcription factors, as discussed in the 2D case previously. With

Brownian motion in the 3D cube, it is more difficult for genes and

factors to collide and combine with each other, and then engage

with a factory compared to the 2D square. Hence the probability

that transcription factors of two different families cluster in the

same factory is lower. This explains why the co-localization

regions in Fig. 3E are larger than Fig. 2E.

Fractional Brownian motion. Is standard Brownian motion

good enough to simulate preferential co-localization in nucleus?

Experimental data of chromatin movements reported in yeast cells in

Sage et al [15], Gasser [26] and Heun et al [27] demonstrates that

fractional rather than standard Brownian motion may be more

appropriate to model gene mobilizations. In S and G1 phase of the

cell cycle, the trajectory of the chromatin movement is negatively

correlated (one long increment followed by a short one), and therefore

fractional Brownian motion is a sub-diffusion process (see Methods

section). This means the trajectory of the chromatin movement is

more localized, enabling the genes to colocalize more easily.

With the information from experiments, we expect that fractional

Brownian motions play an important role in the nuclear dynamics.

To test the hypothesis, we ran simulations in 2D and 3D using

fractional Brownian motion to simulate the translocation of genes and

factors. Fig. 4A is the inter-co-localization interval histogram for the

sub- and super-diffusion with 5 factors and 10 seconds binding time

in 2D. Clearly, the inter-co-localization interval of sub-diffusion

(H = 0.1) is much smaller than super-diffusion (H = 0.9), indicating

that co-localization between members of the same family of gene

occurs more readily for sub-diffusion (H = 0.1, as TC,xx,TC,xy for both

cases). Fig. 4B shows the co-localization region for sub-diffusion

(H = 0.1) and super-diffusion (H = 0.9) movement in 2D. It clearly

reveals that the co-localization region is very large for sub-diffusion as

the co-localization ratio is always above the threshold 0.52, but for

super-diffusion, co-localization is hardly observed. Furthermore,

Fig. 4C illustrates that the co-localization ratio is a monotonically

deceasing function of H in 3D. Intuitively, the average target hitting

time for sub-diffusion movement should be the same as super-

diffusion, but for genes moving with sub-diffusion, the chance of a

gene to re-enter the same factory after exiting that factory would be

much larger than with super-diffusion, since the particle will stay

locally and hit the target once again more easily. In comparison, gene

co-localization level under super-diffusion process would not be

affected much as genes tend to move more globally. This may suggest

that sub-diffusion in gene translocation is biologically significant (as

indicated from the data obtained from [15]).

Co-localization (association level) between genes and
factors

All results above tell us that there exist co-localization regions

between genes, even though the model is set up completely

symmetric (equal number of genes and factors for each family). We

further compared our simulation results with recently obtained

experimental data (Fig. 5A) to validate our model.

Schoenfelder et al [7] reported the intra- and inter-chromo-

somal co-localization frequencies of 33 mouse genes relative to the

Hbb and Hba globin genes in erythroid tissues (Fig. 5A). Gene

regulated by the transcription factory Klf1 preferentially clustered

in factories containing high levels of Klf1. Fig. 5Aa shows the

spatial distribution of transcription factor Klf1 (Kruppel like factor)

relative to RNAPII factories by immunofluorescence in mouse

erythroid cells. The data exhibits nearly all nuclear Klf1 foci

overlapped with RNAPII-S5P foci, indicating 10–20% of

transcription factories contain high levels of Klf1. Therefore, we

restrict 20% of Klf1 associated level with RNAPII (as the

background association level) by selecting the factor number and

binding time in our simulation (Fig. 5B). Fig. 5Ab is the double-

label RNA immune-FISH of nascent transcripts (Hbb, green) and

Klf1 foci (red). This image shows the positions of transcriptionally

active, Klf1-regulated gene (e.g., Hbb) relative to Klf1 foci. It is

found that majority (59%–72%) of actively transcribed alleles of

Hbb, Hba, Hmbs and Epb4.9 (regard as X genes) were

preferentially associated with Klf1 transcription factories. Cpox

genes (regard as Y gene) associate with Klf1 factories at marginally

higher frequencies (26%) than expected by a purely random

distribution. For actively transcribed alleles of the Klf1-indepen-

dent Tubb5 and Hist1 genes (regard as Z genes), they show no

preferential localization to Klf1-containing factories (20%). Hence,

we regard Klf1 as the X factor, and the X gene - X factor

association level is estimated to be around 64% in experiments,

while Y gene – X factor association level is around 20% from this

experiment, matching the Klf1 background association level

(20%). Therefore, we understand that X factors and Y genes are

independent to each other. Fig. 5Ac is the triple-label RNA

immune-FISH for pairs of nascent transcripts (Hbb and Hist1,

blue and green, respectively) and Klf1 foci (red). From exper-

imental observation, this colocalizing pair of genes relative to Klf1

foci reveal that colocalizing pairs of Klf1-regulated genes are

associated with Klf1 transcription factories at very high frequen-

cies (63–79%), and the colocalizing Klf1-independent gene pairs

show no preferential association with Klf1 transcription factories.

In simulation, we calculated the association level between X

gene (Hbb, Hba, Hmbs, and Epb4.9) and X transcription factor

(Klf1), the association level between Y gene (Cpox) and X factor

(Klf1), when confining the Klf1 background association level as

20%. Using sub-diffusion (H = 0.4) to simulate the translocation of

regulatory elements, we calculated the X gene – X factor

association level (Eq. (25)) both in 2D and 3D, by fixing gene

number but varying factor number and binding time (Fig. 5Ba), or

by fixing factor number but varying gene number and binding

time (Fig. 5Bb). It is clearly shown that the experimental data can

be well matched with our model with one set of parameters (gene

number 5, factor number 2, and binding time 130 s) in 3D case.

Next we examine the co-localization between a pair of genes (X

genes, Y genes or Z genes) and Klf1 (X factor). Our simulation

result shows that the co-localization of paired X genes with Klf1 is

0.8, and paired X-Y genes with Klf1 is 0.6, again in agreement

with experiments [7]. All experimental results and our simulation

results except for Z genes are summarized in Table 2.

distributions by varying the factor number and binding time between genes and factors. The mean ICI increases as the binding time increases, and
decreases as the factor number increases. (D) The distribution of the co-localization ratio for X-X genes and X-Y genes. (E) The colicalization ratio for
various combinations of factor numbers and binding times. The critical ratio is 0.52. The red dashed curve is the threshold boundary to distinguish
whether the co-localization is significant or tends to be random.
doi:10.1371/journal.pcbi.1002094.g003
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Figure 4. Co-localization regions for sub- and supperdiffusion Brownian motions. (A) The inter-co-localization intervals for super- and sub-
diffusion for 5 transcription factors and 10 sec binding time. (B) Co-localization regions for different factors and binding times for sub-diffusion case
(H = 0.1) and super-diffusion case (H = 0.9) in 2D. (C) Co-localization ratio versus the Hurst index H in 3D.
doi:10.1371/journal.pcbi.1002094.g004
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Figure 5. Co-localization between genes and transcription factors. (A) Experimental results with immuno-RNA FISH reveal co-localization
between transcription factors and factories (RNAPII), genes and transcription factors, and gene pairs and transcription factors. This is the contour plot
from original experimental data. (Aa) Immune-fluorescence detection of Klf1 (red) and RNAPII-S5P (green) in definitive erythroid cells, with a scale bar
of 2 mm. This shows the co-localization between Klf1 and transcription factories RNAPII. This Klf1 background association rate (level) is estimated to
be 20%. (Ab) The co-localization between transcription factor Klf1 and Hbb gene. (Ac) The co-localization between factor Klf1 and genes pairs (Hbb
and Hist1). (B) Simulation results when we hold the Klf1 background association level as 20%, while the translocation of transcription units (genes,
factors and factories) are following sub-diffusion process (H = 0.4). (Ba) Gene-factor association level (numbers indicated behind the stars) with various
factors and binding time, both for 2D and 3D cases. The number of genes (for each family) is fixed to be 5 and the Klf1 (X factor) background
association level is fixed to be 20% (the stars indicate the parameter values when this condition is satisfied). The detailed Klf1 association level for
each X gene and Y gene are presented in the figure below, revealing the fact that the simulation results for 3D case (gene-factor association
level = 0.6) match the experimental result (gene-factor association level = 0.64) quite well for a specific set of parameters (5 genes, 2 factors and
130 sec binding time). (Bb) Gene-factor association level (numbers besides the stars) with various genes and binding time for 2D and 3D cases. The
number of factors is fixed to be 2 and the Klf1 background association level is fixed to be 20%. (Bc) The association rate of Klf1 (X factor) with Z gene
and paired X-Z genes when there is a negative correlation between X and Z gene, or X and Z factors, under 3D case. The parameter used here are 5
genes, 2 factors, and 130 sec binding time. Preventing probability means the chance for stopping another gene (factor) to enter the factory when
there is already one gene (factor) in that factory. When p = 0, it represents the independent situation of X factor (gene) and Y factor (gene).
doi:10.1371/journal.pcbi.1002094.g005
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We tried to understand why X-Z gene pairs (Hbb/Tubb5,

Hba/Tubb5, Hbb/Hist1, Hba/Hist1) association level with Klf1

factors is low. One method is to introduce interactions (negative

correlation) between X gene transcription factors and Z gene

transcription factors or X genes and Z genes themselves. In other

words, Z genes (or Z factors) might be negatively correlated with X

genes (or X factors), while Y genes and X genes are independent.

To assess this, we ran simulations with the following exclusive

rules: if an X gene (factor) is in a factory, it will prevent the entry of

a Z gene (factor) with a probability p. In factor case, it simply

implies that Z gene is co-regulated by X and Z factors. The

simulation results on the gene-factor association level (Fig. 5Bc) did

not show much difference after including the preventing

probability among genes or factors, and it is not easy to

simultaneously fit the experimental data which implies that Z

gene – X factor association level as 0.2, indicating the negative

correlation between different families of genes (factors) might not

be the primary reason for different values of Klf1 association rate

among different families of genes, as observed from experiments

[7]. Hence, more sophisticated interactions are required, and we

will further investigate this phenomenon in our future work.

Nucleus size, factory numbers and factor numbers
Osborne et al. [1] shows approximately 2000 transcription

factories in the extended and flattened nuclei of mouse embryo

fibroblast. In contrast (Fig. 6A), they found that erythroblast, B cell,

T cell and fetal brain cells, which have spherical nuclei with

significantly smaller radii and nuclear volumes, have dramatically

fewer transcription factories (100–300 per nucleus). It was argued

that the large differences in factory numbers seen in nuclei from

tissues versus cells grown on a surface appear genuine and may be a

consequence of a reduced potential for inter-chromosomal sharing

of factories in flattened cell nuclei [28]. To test how the changes in

nuclei shape and transcription factory number will effect on gene

co-localization, we ran simulations with flattened cells, squashing

the original cubic from 26262 to 0.56464 but maintaining its

volume (Fig. 6A). We have also tested the situation when the

flattened cell is of volume five times bigger than the spherical cell

(0.5|
ffiffiffiffiffi
80
p

|
ffiffiffiffiffi
80
p

), according to the experimental observation (data

available by request). We partitioned the flattened cell into four

subunits (0.56262) and restricted the translocation of genes within

each subunit, so all genes are restricted locally for consistency with

experiments while transcription factors are free to move within the

entire space. We found, consistent with our ‘limited resource’

theory, that no matter if we increase the volume of the flattened cell

or not, the colocalized transcription is increased rather than reduced

in the flatten cell, and is almost independent of the number of

transcription factories (Fig. 6A). Moreover, it is also observed from

Fig. 6A that increasing the volume of nucleus might increase the co-

localization ratio. We will investigate the reason mathematically in

our future research work.

From the analysis above, we propose the possibility to reconcile

the facts observed in experiments and our model simulations:

increasing the transcription factors might be the only possible

mechanism to prevent gene co-localization. To confirm this, we

ran the simulations with different number of transcription factors

(Fig. 6B), for different volumes of the flattened cell. The left panel

of Fig. 6B (unchanged volume) clearly demonstrated that when the

number of transcription factors is around 30, the colalization ratio

is reduced to around 0.5 (non-co-localization) and is independent

of the number of transcription factories. When the nuclear volume

is enlarged 5 times bigger that of the original spherical nucleus

(Fig. 5B right panel), co-localization is even easier to happen for

various cases, but increasing the number of transcription factory

can hardly be the only reason for higher chance of co-localization.

Frequency- and amplitude-modulation in nucleus
In eukaryotic cells, external signals can modulate the expression

of target genes by regulating the nuclear versus cytoplasmic

localization of transcription factors. Experimentally, we have

observed two possible types of modulations: one is amplitude

modulation, implying that external signals regulate a static number

of transcription factors into the nucleus (Klf1 might be an example

[7]); the other is frequency modulation, in which external signals

alter the frequency of nuclear bursts (entry/exit cycles) of the

transcription factor (for example, p53 [29], NF-kB [16] and Crz1

[17]).

Cai et al observed that the nuclear localization burst frequency

of Crzl, a transcription factor that regulates more than 100 target

genes, increases in response to the increase in extracellular calcium

concentration [17]. In addition, they suggested and experimentally

verified that this frequency-modulation mechanism of transcrip-

tion factor localizationcan coordinate the expression of multiple

target genes, whereas amplitude-modulation cannot.

We assessed whether co-localization is affected by these two

different modulations, using our model. Our previous model

setting is equivalent to a (fixed) amplitude modulation scenario

where the number of transcription factors is kept as a constant in

the nucleus. We investigated whether frequency-modulation of

factors could be involved in the control of multiple target gene co-

expression compared to amplitude-modulation. In our simula-

tions, we regard Crzl as X factor (no Y factor is present), and

assume that Crzl binds to two families of target genes (X1 gene and

X2 gene), which have completely different diffusion rates, radiuses

and transcription times (binding time as 10 sec, and other detailed

parameters are presented in Table 3). We ran our simulations in

3D cubic with a sub-diffusion (H = 0.4).

Fig. 7A demonstrates the dynamics of transcription factor

translocation into and out off the nucleus with various frequencies,

and Fig. 7B shows the factor entry profile into nucleus under

frequency-modulation. Each period is composed of an active burst

part and refractory part. During the refractory time, only very few

(residual) factors are in nucleus, and as a result, only very few genes

can be transcribed. While in the active burst time (2 min as

reported in [17]), many transcription factors swarm into the

Table 2. Comparison of sub-diffusion 2D simulation results (Fig. 5b, 3D case) and the experimental results.

Factor background level Gene-factor association level Paired genes-factor association level

Klf1 X Y Z X-X X-Y X-Z

Simulation 0.2 0.6 0.2 r2(z1,u
T

|z1) 0.8 0.6 r3(u1,z1,u
T

|u1,z1)

Experiment 0.2 0.64 0.2 0.2 0.8 0.64 0.2

doi:10.1371/journal.pcbi.1002094.t002
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nucleus, and diffuse as the model described in the amplitude

modulation case.

In Fig. 7C and Fig. 7D, we illustrate the evolution of the

normalized expression level of two kinds of genes (X1 and X2 gene)

as a function of the factor amplitude and burst frequency,

respectively. Clearly, X1 gene and X2 gene yield uncoordinated

expression patterns under amplitude modulation; while the curves

of X1 and X2 gene normalized expression levels almost coincide

under frequency modulation, as suggested in [17].

Now we are in the position to assess the impact of frequency and

amplitude modulation on gene co-localization. To this end, we

have two types of factors and corresponding genes. One type is

Figure 6. The simulation results for ratio of co-localization in flattened and spherical nucleus. (A) The co-localization ratio increases as
the degree of flatness of the nucleus increases when there are 5 factors and 10 sec binding time, and is independent of the number of transcription
factories, at least in the flattened nucleus, such as E10 (embryonic blood), E14 (fetal liver erythroid), AS (adult anemic spleen erythroid), Sp (normal
adult spleen), Th (adult thymus) , Br (fetal brain), mouse embryonic fibroblasts (MEFs) in experiments. Scale bar = 10 mm. The cubic of spherical
nucleus and rectangular block of flatten nucleus demonstrate the positioning of transcription factories, factors and genes (refer to Fig. 3A). Note that
the volumes of the cubic spherical nucleus and the rectangular flattened block are either the same (solid line), or the volume of the flattened nucleus
is 5 times bigger than that of the spherical nucleus (dash line). (B) The co-localization ratio is a decreasing function of the number of transcription
factors for both flattened nucleus of the same volume as the spherical one, and the nucleus of 5 times larger volume. No matter the volume, the co-
localization ratio is independent of the transcription factories.
doi:10.1371/journal.pcbi.1002094.g006

Table 3. The parameters for two different genes under
amplitude modulation and frequency modulation.

H = 0.4 X1 gene X2 gene

Gene diffusion rate sg
2 (mm2/s2H) 0.0005 0.0015

Transcription time Tt (sec) 50 150

Gene radius rg (mm) 0.05 0.016

doi:10.1371/journal.pcbi.1002094.t003
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Figure 7. Amplitude modulation and frequency modulation of factor number. (A) Illustration of transcription factor translocation into and
out of the nucleus. (B) The burst of factor nuclear localization under the frequency of 0.15(min21) The red dash line represents the average factor
number over each period. (C) The normalized expression level of X1 gene and X2 gene versus factor number (amplitude modulation). (D) The
normalized expression level of X1 gene and X2 gene versus burst frequency of factor (frequency modulation). (E) X gene and Y gene co-localization
ratio versus burst frequency of X transcription factor.
doi:10.1371/journal.pcbi.1002094.g007
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frequency modulated (X gene and X factor), the other is amplitude

modulated (Y gene and Y factor). Like the symmetric model we

simulated in above sections, X factor and Y factor bind to X gene

and Y gene respectively. Besides, X gene and Y gene have

identical properties (parameters are in Table 1). For comparability,

the average number of X factors in the whole simulation time

should be the same as the static number of Y factor. Unlike the

previous symmetric models, here X gene co-localization ratio

differs greatly from Y gene co-localization ratio, as indicated in

Fig. 7E. For all burst frequencies, X gene’s co-localization ratio is

larger than Y gene, which implies that genes regulated by

frequency modulated factors may colocalize in the nucleus more

than genes of amplitude regulated factor. Although in our

simulation there is almost no X-X gene co-localization event in

refractory time of burst, X-X gene co-localization event in active

time happens more than Y-Y genes since the average number of X

factor in active time is larger than Y factor number. We conclude

that in additional to the coordination of target gene expressions,

another functional role of frequency modulation of factor entry

may be to facilitate co-localization between target genes. This can

be one interesting biological experiment to evidence whether

frequency modulation allows higher co-localization and higher

levels of coordinate expression of groups of genes.

Discussion

In the current paper, we have investigated whether a simple

diffusion model can account for the co-localization observed in

experiments, based upon parameters measured from experiments.

We first assess the ratio of gene co-localization. It is found that the

co-localization ratio is determined by the inter-co-localization

intervals and is biased. We then applied the theory and numerical

simulations to two and three dimensional cases with standard and

fractional Brownian motion. We have shown that the experimen-

tally observed co-localization is possible in both two and three

dimensional cases and conclude that our dynamical model can

match many experimental data.

However, a direct comparison with experimental data is still not

easy since we do not have data of the dynamics of multi-genes. All

experimental results are static results [7]. With the development of

new experimental techniques, we expect that the dynamic data

should be available soon. Such data would be valuable for us to

understand the interactions between genes.

It is clear that our model is a simplified version of gene

mobilization in the nucleus: each gene is treated as independent

(fractional) Brownian motion which is only true in local loci and

small time intervals (Fig. 1A) [30,31]). The transcription process is

also a simplified process. Moreover, we tried to introduce negative

correlation between different families of genes and factors with

preventing probability p. However, the simulation results on the

gene-factor association level (Fig. 5Bc) did not show much

difference after including the preventing probability among genes

or factors. Hence, more sophisticated interactions are required,

and we will further investigate this phenomenon in our future

work.

In the models above, all genes are treated as a point (point

model). Modelling of genes as segments on 3D chromosomes as

polymer chains [32] would be more appropriate. The 3D whole

genome conformation will be based on Hi-C data (see Lieberman-

Aiden et al [33]). The dynamics of each polymer chain will be

modeled according to the well known polymer physics [34], in

collaboration with our experimental data. The simulation would

be computationally very expensive and would therefore need to be

run on state-of-the-art clusters. The interactions in the model

between genes (chromosomes) etc. should fit well with the known

experimental data accumulated in our experimental teams for the

past years.

After having a biophysically realistic model (with some coarse-

grain approaches), we would expect to use the model to predict

some key stages of hematopoietic differentiation. These predictions

will then be tested by our experimental groups. Certainly this

would be a very challenging task and it is a multi-scale spatio-

temporal dynamics. Ideally we should be able to predict key

decision making mechanisms at the molecular and cellular level

that control genome function and may lead to the lymphoid versus

myeloid differentiation. The transcription factories story might fit

well with some general computational principle as reviewed in

Oehler et al [35].

In general, we have to take into account the interactions

between genes, both in cis and in trans, between genes and

transcriptions, and between genes and transcription factories. As

mentioned in Methods section (Eq. (1)), we can include the

interactions between transcription units in the drift terms [36]:

m
d2xT

i (t)

dt2
~{zT

ðt

{?

dxT
i (t)

dt
KH (t{s)ds{mY

XNf

j~1

(xT
i (t){cj)z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zT kBTe

p dBH (t)

dt

where m is the mass, xi
T is the position of transcription factor of X

gene, Y is the shape parameter of the harmonic potential, ci is the

centre of each factory and Nf is the number of transcription

factories, kB is the Boltzman constant, zT is a friction constant, Te is

the temperature and KH(t) is a kernel so that the fluctuation-

dissipation theorem holds true. For each gene, it obeys similar

equation

m
d2xi(t)

dt2
~{zT

ðt

{?

dxi(t)

dt
KH (t{s)ds{mY(xT (t))

XNf

j~1

(xi(t){cj )z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zT kBTe

p dBH (t)

dt

but with a potential depending on whether its corresponding

transcription factor is in a factory or not (the term Y(xT(t)). How to

find the right parameters of the interactions in the equations above

would be an interesting issue. In the past decades, many

techniques have been developed, mainly using the idea of Markov

chain Monto Carlo and Bayesian approaches (for example,

Pavliotis and Stuart [37]). With the drift term introduced here,

we could expect that sub-diffusion has a larger co-localization

region than super-diffusion.

Methods

Standard Brownian motion
Assume that we have m X genes and k Y genes, with n

transcription factors of X gene and l transcription factors of Y

gene. Denote their positions at time t as

X genes : x1(t),:::,xm(t);

X factors : xT
1 (t),:::,xT

n (t);

Y genes : y1(t),:::,yk(t);

Y factors : yT
1 (t),:::,yT

l (t):

Dynamic Gene Model
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All genes and transcription factors move according to diffusion

processes, i.e.

dz(t)~b(H)dtzszdBz(t) ð1Þ

where b is the drift term depending on the global activity in the

nucleus H, s2
z is the diffusion coefficient of transcription element z

(where z can be x, y, xT or yT) and Bz(t) is the independent

fractional Brownian motion. The genes and transcription factors

move around with a constant diffusion coefficient

Gene : s2
x~s2

y~s2
g; ð2Þ

Factor : s2
xT ~s2

yT ~s2
T : ð3Þ

The drift term summarizes the interactions between association of

centromeres, clustering of co-regulated genes, association of a

regulatory element and its target genes, interaction of a genome

region with the nuclear envelope etc [13]. For a gene h, define a

sequence of stopping (binding) times for X genes and Y genes as

X gene : tj
h~ infft : d(xh,X T )ƒe0,twtj{1

h zTbg ð4Þ

Y gene : vj
h~ infft : d(yh,Y T )ƒe0,twvj{1

h zTbg ð5Þ

with th
0 = 0, vh

0 = 0, and j = 0, 1, …. Moreover, Tb is the binding

time of a transcription factor, d(:,:) is the distance, e0 is the

minimal distance between gene and factor if they are not bound (in

simulation we set e0 = rg+rf, where rg and rf are the radiuses of gene

and factor, respectively), and XT and YT are the sets of all available

(unbinded) transcription factors at time t, i.e.

X T~fxT
i jd(xT

i ,fx1,:::,xmg)we0g;

Y T~fyT
i jd(yT

i ,fy1,:::,yng)we0g;
ð6Þ

Once a transcription factor binds to a gene of the same family,

they will move together with gene diffusion coefficient sg (which is

much slower than transcription factor diffusion coefficient sT), i.e.,

xi(t)~xT
j (t)~Xi(t) if d(xi(t

k
i ),xT

j (tk
i ))ƒe0: ð7Þ

When the bound gene-factor enters a factory, transcription starts.

The transcription time for both X and Y gene are given by

X gene : j
j
h,s~ infft : d(xh,Fs)ƒe0,twj

j{1
h zTtg ð8Þ

Y gene : g
j
h,s~ infft : d(yh,Fs)ƒe0,twg

j{1
h zTtg ð9Þ

where j = 0, 1, …, j0
h,s = 0, g0

h,s = 0, Fs is the sth factory, s = 1, 2,

…, Nf, and Tt is the transcription time length. We have

xh(t)~xh(j
j
h,s), j

j
h,svtvj

j
h,szTtg ð10Þ

yh(t)~yh(g
j
h,s), g

j
h,svtvg

j
h,szTtg ð11Þ

The physical meaning is clear: when the transcription starts, the

gene is frozen and stays in the factory. For a given factory s, we can

calculate the co-localization event. Define the co-localization event

as the counting process of the inter co-localization interval Tc,xx

between one X gene and another X gene (see Fig. 1b) as

Nxx s, 0 T½ �ð Þ~ # co-localization events in time window 0 T½ �ð Þ:

We can define the co-localization event between X gene and Y

gene Nxy(s,[0 T]) similarly. Let uh,s(t), vh,s(t) (or uh,s
T(t), vh,s

T(t)) be the

indicator function of the gene (or factor) transcription event of the

sth factory for the hth gene (X or Y). Note that each process uh,s(t),

vh,s(t) (or uh,s
T(t), vh,s

T(t)) is a dichotomous random process.

The quantity we intend to calculate is

lim
T??

Nxx(s,½0,T �)
Nxy(s,½0,T �)zNxx(s,½0,T �) : ð12Þ

However, there is a problem if we calculate the ratio as above.

When we count the events of Nxx(s,[0 T]), the population size is m

(m21), but for Nxy(s,[0 T]), it is mk. Hence we define

rxx=xy~ lim
T??

Nxx(s,½0,T �)
m{1

Nxy(s,½0,T �)
k

z
Nxx(s,½0,T �)

m{1

: ð13Þ

as the co-localization ratio of X gene (co-localization ratio of Y gene

can be similarly defined as ryy/yx). When rxx/xy is larger than 0.5, an X

gene tends to transcript with another X gene more often in a factory.

Let us first confirm that rxx/xy is independent of time and converges to a

constant rapidly. From the definition of Nxx(s, [0 T]), it is the counting

process of a renewal process with the inter co-localization interval Tc,xx.

From the renewal theorem [38,39] we know that when TR‘,

lim
T??

E(
Nxx

T
)~

1

E(Tc,xx)
, and lim

T??
E(

Nxy

T
)~

1

E(Tc,xy)
: ð14Þ

Hence, as T is large enough we should have

rxx=xy~
kE(Tc,xy)

(m{1)E(Tc,xx)zkE(Tc,xy)
: ð15Þ

Therefore whether there is a co-localization event in the nucleus is

completely determined by the inter co-localization interval distribution

Tc,xx and Tc,xy.

Fractional Brownian motion
Is the standard Brownian motion good enough to match the

experimental data? Chromatin loci are highly mobile but their

motion is restricted within confined volumes. Each gene is

constrained by interactions with immobile nuclear structures.

Although chromosomes are relatively static, individual chromatin

domains undergo Brownian motions and can extend far beyond

the edges of their chromosome territory.

A normalized fraction Brownian motion BH(t) is a continuous-

time Gaussian process starting at zero, with mean zero, and having

the following covariance function

E½BH (t)BH (s)�~1

2
(jtj2H

zjsj2H
{jt{sj2H

) ð16Þ

where H, called the Hurst index or Hurst parameter associated to

the fractional Brownian motion, is a real number in [0,1].

Dynamic Gene Model
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The value of H determines what kind of process the fraction

Brownian motion is:

N if H = 0.5, the process is in fact a standard Brownian motion;

N if 0.5,H,1, the increments of the process are positively

correlated (super-diffusion);

N if 0,H,0.5, the increments of the process are negatively

correlated (sub-diffusion).

According to Eq. (16), when H is greater than 0.5, it moves

faster than the normal diffusion (H = 0.5), hence it is called

superdiffusion. We also use fractional Brownian motion in the

model developed in the previous subsection.

Co-localization moment and ratio between genes
To compare with experimental data, next we introduce some

quantities which are experimentally measurable. The transcription

rate of an X gene is

r1(u1)~ lim
s??

Ð s

0
(
PNf

j~1

u1,j(t))dt

S
~Nf E½u1,1(t)�, ð17Þ

where E[?] stands for the expectation, and Nf is the number of

transcription factories. This means that for an X gene, its

transcription rate depends on the number of factories and the

probability that this gene is being transcribed over time inside each

factory. Similar definition can be given for Y gene transcription

rate. The co-localization between two X genes is defined as

r2(u1,u2ju1)~ lim
s??

Ð s

0
(
PNf

j~1

u1,j(t)u2,j(t))dt

Ð s

0
(
PNf

j~1

u1,j(t))dt

~
E½u1,1(t)u2,1(t)�

E½u1,1(t)� , ð18Þ

describing the probability that when an X gene is being

transcribed in a factory, another X gene is also being transcribed

in the same factory at the same time. Similarly the co-localization

ratio for an X and a Y gene is given by

r2(u1,v1ju1)~
E½u1,1(t)v1,1(t)�

E½u1,1(t)� , ð19Þ

When X genes and Y genes are independent, we have

r2(u1,v1ju1)~E½v1,1(t)�~ r1(v1)

Nf

ð20Þ

The X-X genes co-localization ratio defined before is simply given by

rxx=xy~
r2(u1,u2ju1)

r2(u1,v1ju1)zr2(u1,u2ju1)
ð21Þ

This should give us a clear explanation why we call rxx/xy the co-

localization ratio. Therefore, when two X and X genes are

colocalized, it should have

rxx=xyw0:5:

Co-localization moment and ratio between genes and
factors

Defined

r1(uT )~ lim
s??

Ð S

0
x(
PNf

j~1

PNT

i~1

uT
i,j(t))dt

S
~E½x(

XNf

j~1

XNT

i~1

uT
i,j(t))� ð22Þ

as the X transcription factor association rate with all factories,

where NT is the number of transcription factors and x(w) is the

indicator function, i.e.

x(w)~
1, ww0

0, otherwise

�

We assume that all processes are stationary. When uT
i,j(t) is sparse,

we have

E½x(
XNf

j~1

XNT

i~1

uT
i,j(t))�~E½

XNf

j~1

XNT

i~1

uT
i,j(t)�: ð23Þ

Hence the transcription factor association rate r1(u
T) is simply Nf NT

E[uT
1,1(t)]. The advantage of our approach over the experimental is

that we have a dynamical model and we can concentrate on each

individual transcription factory. To this end, we will concentrate on the

dynamic behaviour of a single transcription factory: peer through one

single factory. Under the ergodicity assumption, we intend to match

the modelling results with experimental results which are obtained with

spatio average. Hence we drop the transcription factory subscript j

from now on. In our simulations, for a fixed number of transcription

factors, we find a binding time so that X factors (as Klf1 in

Schoenfelder et al [7]) are colocalized with the factories with a rate

r1(uT )~E½x(
XNT

i~1

uT
i (t))�: ð24Þ

The colocalizaton ratio between the first X gene and X factors is given

by

r2(u1,uT ju1)~ lim
s??

Ð s

0
x(u1(t)(

PNT

j~1

uT
j (t)))dt

Ð s

0
x(u1(t))dt

~

E½x(u1(t)(
PNT

j~1

uT
j (t)))�

E½u1(t)� :

ð25Þ

This gives us the Klf1-associated ratio for the first X gene (say, Hbb,

Hba, Hmbs and Epb4.9 in Schoenfelder et al [7]) per factory. Again,

when the event is sparse, we have

r2(u1,uT ju1)~

E½x(u1(t)(
PNT

i~1

uT
i (t)))�

E½u1(t)� ~
NT E½u1(t)uT

1(t)�
E½u1(t)� : ð26Þ

Similarly,

r2(v1,uT jv1)~

E½x(v1(t)(
PNT

i~1

uT
i (t)))�

E½v1(t)� : ð27Þ
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is the Klf1-associated rate with Y genes or Z genes. When they are

sparse and independent, it equals NT E[uT
1,1(t)]. A pair of X genes

colocalized ratio per factory with Klf1 is

r3(u1,u2,uT ju1,u2)~

E½x(u1(t)u2(t)
PNT

i~1

uT
i (t))�

E½u1(t)u2(t)� : ð28Þ

Since X and Y genes are independent in our model, the co-localization

ratio of an X and a Y gene pair with Klf1 becomes

r3(u1,v1,uT ju1,v1)~

E½x(u1(t)v1(t)
PNT

i~1

uT
i (t))�

E½u1(t)v1(t)� : ð29Þ

When they are sparse and independent, we have

r3(u1,v1,uT ju1,v1)~
NT E½v1(t)�E½u1(t)uT

1,1(t)�
E½v1(t)�E½u1(t)�

~
NT E½u1(t)uT

1,1(t)�
E½u1(t)� ~r2(u1,uT ju1):

ð30Þ
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