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Abstract

Protein-protein interactions (PPIs) are essential to most fundamental cellular processes. There has been increasing interest in
reconstructing PPIs networks. However, several critical difficulties exist in obtaining reliable predictions. Noticeably, false
positive rates can be as high as .80%. Error correction from each generating source can be both time-consuming and
inefficient due to the difficulty of covering the errors from multiple levels of data processing procedures within a single test.
We propose a novel Bayesian integration method, deemed nonparametric Bayes ensemble learning (NBEL), to lower the
misclassification rate (both false positives and negatives) through automatically up-weighting data sources that are most
informative, while down-weighting less informative and biased sources. Extensive studies indicate that NBEL is significantly
more robust than the classic naı̈ve Bayes to unreliable, error-prone and contaminated data. On a large human data set our
NBEL approach predicts many more PPIs than naı̈ve Bayes. This suggests that previous studies may have large numbers of
not only false positives but also false negatives. The validation on two human PPIs datasets having high quality supports our
observations. Our experiments demonstrate that it is feasible to predict high-throughput PPIs computationally with
substantially reduced false positives and false negatives. The ability of predicting large numbers of PPIs both reliably and
automatically may inspire people to use computational approaches to correct data errors in general, and may speed up PPIs
prediction with high quality. Such a reliable prediction may provide a solid platform to other studies such as protein
functions prediction and roles of PPIs in disease susceptibility.
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Introduction

Protein interactions play important roles in most fundamental

cellular processes. There has been increasing interest in recon-

structing the interactome of a cell as large-scale data become

available [1]. The improved knowledge of protein-protein

interactions (PPIs) assists in detecting the susceptibility to human

complex diseases [2–3] and then in discovery of new drugs and

pharmaceuticals [4–8]. A variety of high-throughput experimental

approaches have been developed to identify sets of interacting

proteins, including yeast two-hybrid (Y2H) screening and mass

spectrometry methods. However, these approaches are known to

suffer from high false positives [9–12] and also high false negatives.

A wide variety of computational approaches have been proposed

for predicting PPIs. Some are based on data mining from

published literature [13–17]. Please refer to [18] for a more

complete review. The other studies are based on the amino acid

sequences combined with additional information, such as co-

expression patterns, phylogenetic distributions of orthologous

groups, co-evolution patterns, the order of genes in the genome,

gene fusion and fission events, and synthetic lethality of gene

knockouts [19–27]. For reviews, refer to Bork et al. 2004,

Shoemaker and Panchenko 2007, and Valencia and Pazos 2002

[28–30]. In this article, we focus on integrating the information

from disparate data sources for the prediction of protein-protein

interactions.

Genomic data integration has become popular in recent years

with the intention of improving the power in predicting PPIs, as

more disparate PPIs data are available. Several such methods

have been recently developed, including decision trees [31–33],

support vector machines (SVMs) [34], Bayesian models [22,35–

38,39–44] and other considerations such as improving gold

standard negative (GSN) set [45]. Among them, Bayes models

have provided the most widely used paradigm for probabilisti-

cally integrating diverse data types. To calculate the score for

each protein pair in each data source, the protein pairs are

typically divided into subgroups based on features. One then

calculates the likelihood ratio for the protein pairs in each feature

subset by evaluating the ratio of the proportion of protein pairs in

gold positive data set and the proportion in gold negative data set.

Gold positive (negative) set is a dataset that includes protein pairs

that are highly believed to be interacting (non-interacting). Naı̈ve

Bayes then multiplies directly the scores from multiple data

sources for predicting whether a protein pair is interacting or not.

PLoS Computational Biology | www.ploscompbiol.org 1 July 2011 | Volume 7 | Issue 7 | e1002110



A protein pair is defined as interacting by observing a .1

posterior odds ratio, after multiplying prior odds to the likelihood

ratio. Lee et al. 2004 and Lu et al. 2005 [36–37] integrated

diverse functional genomics to reconstruct a functional gene

network for Saccharomyces cerevisiae. Their results are compa-

rable in accuracy to small-scale interaction assays with an

increased true positive rate. Rhodes et al. 2005 [38] employed a

naı̈ve Bayes model to combine four data sources, ortholog

interactions, co-expression, shared biological function, and

enriched domain pairs. With a careful selection of prior

information, their naı̈ve Bayes model predicts nearly 40,000

protein-protein interactions in humans. They reported a false

positive rate of 50%, though Hart et al. 2006 [39] later estimates

this rate to be 85%. Also using a naı̈ve Bayes approach, Scott and

Barton, 2007 [40] predicted 37,606 human PPIs, with an

estimated false positive rate as high as 76%.

As reviewed above, the predictions of PPIs still suffer a rather

high false positive rate, which can be as high as .80%. In

addition, current PPIs prediction is far from complete with yeast

,50% and human only ,10% identified [1,39]. Hence, it is of

critical importance to effectively reduce the false positive rate for a

more reliable and complete prediction of large numbers of PPIs.

Some of the errors may result from inaccurate data collection and

error-prone data sources, though it is reasonable to assume that

such data are in the minority and the majority properly reflects the

evidence of interactions. To reduce the misclassification rate, it is

necessary for the method to be robust to biased and non-

informative data sources. The popular naı̈ve Bayes model flexibly

integrates the interaction information in a probabilistic way,

compared with other data integration methods. However, the

direct multiplication of likelihood ratio scores may not be able to

effectively handle the effects of errors including missing interac-

tions, sampling biases, and false positives [1]. Such errors can lead

to completely wrong predictions even if they may come only from

one single data source. It is therefore critically important to

develop a novel algorithm that is able to effectively minimize the

effects of the errors in data and therefore reduce the misclassifi-

cation rate for obtaining a reliable prediction of PPIs.

We propose a nonparametric Bayes latent class discriminant

analysis approach, which we refer to as nonparametric Bayes

ensemble learning (NBEL) due to the ability to flexibly ensemble

information about the presence of PPIs across different data

sources. The goal of NBEL is to lower the false positive rate

through automatically up-weighting the data sources that are most

informative about a PPI, while down-weighting less informative

and biased sources. None of existing integration methods, as far as

we know, is able to flexibly weight the data sources for optimally

capturing the information of PPIs. Bader et al. 2004 [46] weighted

their positive and negative training examples inversely according

to their fraction of the training set to favor 0.5 as the prior dividing

threshold. InPrePPI [47] used a naı̈ve Bayesian fashion to

integrate multiple data sources by multiplying a weight, which is

approximately estimated for each data source. However, the

contributions of data sources can be different for the different

protein pairs due to their different biological functions. NBEL

learns the distributions of the likelihood ratios (LRs) for interacting

and non-interacting protein pairs within each data source. If the

distribution of the LRs for interacting and non-interacting pairs is

not well separated for a particular data source, then that source

will be down-weighted automatically in calculating the posterior

probability of a PPI. In this manner, NBEL does not equally

weight the different data sources, but instead learns the weights

adaptively in a probabilistic manner. NBEL is thus more robust

than classic naı̈ve Bayes to unreliable, error-prone and contam-

inated data, and our extensive studies indicate this is indeed the

case. On a large human data set our NBEL approach predicts

many more PPIs than naı̈ve Bayes, which suggests that large

numbers of not only false positives but also false negatives may

exist in previous studies. The validation on two experimental

datasets having high quality supports our observation.

Results

We conducted extensive simulation studies to evaluate and

validate the performance of the proposed NBEL method. We

compared the results with two methods, naı̈ve Bayes and logistic

regression. We then tested our approach on human genomic data

sets. We finally validated the performance of NBEL via two

experimental human PPIs data having high quality.

Simulation Studies
The goal of our simulations is to assess the performance of our

NBEL algorithm compared with two popular methods, naı̈ve

Bayes and logistic regression, in cases in which the interaction

status is known. Current genomic integration approaches usually

evaluate their prediction by comparing with the protein pairs in

gold positive and negative datasets. However, only using gold

positive and negative datasets may be misleading, as such data sets

do not represent random samples of the entire set of human PPIs.

In addition, the standards of selecting interacting protein pairs

from each data source are rather ad hoc, and there is no known

interacting information available for evaluation. One can verify

the prediction using a small portion of experimental PPIs, but it is

obviously not enough for evaluating large amount of computa-

tionally predicted PPIs. Hence, we also extensively tested on

simulation data in which the truth is known.

We set up the simulations with 4 data sources. For the types of

methods we are proposing, the performance of NBEL should

improve as more data sources become available. We consider

5000 total protein pairs. We set the status of the first 1250 protein

pairs as interacting, with the remaining 3750 non-interacting. We

generated the simulated data using the model expressed by

Author Summary

Protein interactions are the basic units in almost all
biological processes. It is thus vitally important to
reconstruct protein-protein interactions (PPIs) before we
can fully understand biological processes. However, critical
difficulties exist. Particularly the rate of wrongly predicting
PPIs to be true (false positive rate) is extremely high in PPIs
prediction. The traditional approaches of error correction
from each generating source can be both time-consuming
and inefficient. We propose a method that can substan-
tially reduce false positive rates by emphasizing informa-
tion from more reliable data sources, and de-emphasizing
less reliable sources. We indicate that it is indeed the case
from our extensive studies. Our predictions also suggest
that large numbers of not only false positives but also false
negatives may exist in previous studies, as validated by
two human PPIs datasets having high quality. The ability to
predict large numbers of PPIs both reliably and automat-
ically may inspire people to use computational approaches
to correct data errors in general, and speed up PPIs
prediction with high quality. Reliable prediction from our
method may benefit other studies involving such as
protein function prediction and roles of PPIs in disease
susceptibility.

Bayesian Inference of Protein-Protein Interactions
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Equation (2) in the Methods section (The parameters used are

summarized in Table 1 in Text S1). We chose the distributions to

allow a varying degree of separation in the interacting and non-

interacting distributions for the different data sources. As discussed

in detail in the Methods section, the more separated the

distributions are, the more informative the data source is about

a PPI. With a high degree of separation in which the two

component distributions have minimal overlap, misclassification

errors will be low for any reasonable method, so our focus is on the

more realistic case in which there is substantial overlap.

Tests on uncontaminated data. We applied our NBEL

approach and compared the performance with the naı̈ve Bayes

and logistic regression under different simulation scenarios, with

the first case assuming uncontaminated data. Uncontaminated

data refers to the data that are simulated error free. We calculated

the estimated posterior probability for an interacting protein pair

by averaging its conditional probabilities over MCMC iterations

after burn-in. We then predicted that there is an interaction in

protein pair i if the estimated posterior probability is above a

threshold. As noted in the Methods section, a 0–1 loss function

results in an optimal threshold of 0.5, with this choice minimizing

the Bayes risk defined as the posterior expectation of the overall

misclassification rate obtained by weighting false positives and

negatives equally.

The histogram of the estimated posterior probabilities for an

example simulation is shown in Figure 1. There is a clear bimodal

distribution with most of the interacting pairs having values close

to one and most of the non-interacting pairs having values close to

zero. The optimal 0.5 threshold separates them well. To compare

with naı̈ve Bayes, we directly multiplied the likelihood ratios (LRs)

from the different data sources to obtain a final score for a protein

pair. We then estimate a threshold that maximally separates the

two modes in the histogram of all the final scores (we call this

estimated threshold as the alternative threshold in short later on in this

paper). To assess the impact of threshold choice on the

performance and build a direct connection for comparing with

naı̈ve Bayes, we also evaluated the performance using the

alternative threshold in applying our NBEL method. We chose

0.5 as the threshold for logistic regression, which typically

produces very close results to using the alternative threshold based

on our observations.

We analyzed 50 simulated data sets using three methods. Our

NBEL method had lower misclassification rates (misclassification

rate is defined as the average of the false positive (FP) rate and the

false negative rate (FN)) than both naı̈ve Bayes and logistic

regression in all 50 simulated data sets, with the averaged

misclassification rates 1.99% for NBEL using the threshold 0.5,

2.25% for NBEL using the alternative threshold, 7.57% using the

alternative threshold for naı̈ve Bayes, and 5.85% for logistic

regression using the threshold 0.5. We can observe that the NBEL

misclassification rates using the two thresholds are very close, and

both are much better than naı̈ve Bayes with an average difference

of 5.58% and logistic regression with an average difference of

3.86%. Given the ideal case that the data sources are

uncontaminated, such misclassification rate reduction from

7.57% or 5.85% to 1.99% can be a remarkable improvement

especially when there is thousands and millions of PPIs data in the

real data tests.

Tests on contaminated data. PPIs data in the real world

however involves a large portion of false positives with possible

varying false positive rates as we discussed in the Introduction

section, although we expect that the situation can be better as the

research goes on. We therefore simulated a series of data involving

varying levels of contaminated data to examine the performance of

our NBEL in reducing misclassification. We carried on the tests by

repeating the same procedure as above but inducing errors to the

data, in which a randomly-selected proportion of the protein pairs

had their interaction status reversed. We created five sets of

contaminated data with different levels of errors, and tested the

performances of our NBEL algorithm on them. For the first data

set, we randomly picked 25 out of 1250 interacting protein pairs

for each data source, and reversed their status into non-

interacting. We then randomly picked 75 out of 3750 non-

interacting protein pairs for each data source, and, similarly,

reversed their status into interacting. The induced error rate is

slightly greater than 7% over all data sources, with the majority of

errors occurring in fewer than two out of four data sources. The

error rate is measured as the average of the induced false positive

and false negative rates. We generated the remaining contami-

nated data sets by multiplying the number of protein pairs with

scores appropriately reversed by 2, 4, 8, and 16 times of that for

the first contaminated data set. Data were otherwise simulated and

analyzed exactly as in Uncontaminated Data. The generated data are

summarized in Table 1.

We applied three methods to each data set. This procedure was

repeated on 50 independently generated data sets. The averaged

misclassification rates, together with the ones for uncontaminated

data, are summarized and plotted in Figure 2 (A). Similarly to

uncontaminated data, our NBEL algorithm using either threshold

has much lower misclassification rate than both naı̈ve Bayes and

logistic regression. Meanwhile, the misclassification rate reduction

tends to be larger when the induced error rate in the data is

higher, with a rather remarkable rate reduction of .22% from

both naı̈ve Bayes and logistic regression when the error rate in the

data is as high as 46.95% in Contaminated data IV. The averaged

standard deviation of FP and FN for 6 datasets varies from 0.0063

to 0.0158 for our NBEL, from 0.0078 to 0.0095 for logistic

regression, and is high for naı̈ve Bayes varying from 0.03 to 0.05.

This suggests that our NBEL has a very strong function of error-

correction, especially when the proportion of errors in the data is

higher. This makes sense in that NBEL algorithm is designed to

Figure 1. The histogram of the estimated posterior probabil-
ities of interacting protein pairs from NBEL algorithm. This is
from an example simulation using our NBEL. We can observe a clear
bimodal pattern with almost all of the interacting pairs having posterior
probabilities close to one and almost all of the non-interacting pairs
having posterior probabilities close to zero.
doi:10.1371/journal.pcbi.1002110.g001

Bayesian Inference of Protein-Protein Interactions
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flexibly integrate multiple data sources by up-weighting the more

informative but down-weighting the less informative and biased

sources in calculating the posterior probability of a PPI. Such a

weight adjustment procedure is carried through by examining how

well the learnt distributions of interacting and non-interacting

protein pairs are separated within each data source. NBEL is

therefore able to minimize the effects of the problematic data

source that may be the results of missing data, sampling bias, false

positive, or simple data entry errors, while maximize the

information from the authentic interacting PPIs. In contrast, both

naı̈ve Bayes and logistic regression are barely functional in

correcting data errors, with logistic regression slightly better and

the misclassification rates for naı̈ve Bayes close to the given error

rates in all data sets. This may explain why the false positive rate is

so high in the previous PPIs predictions. NBEL algorithm

therefore provides a more powerful tool to integrate multiple data

sources for a better prediction of PPIs. This property can be

critically important, especially when current data for PPIs

prediction include heavy data errors.

However, when the data error rates are extremely high as

illustrated as the last points in Figure 2(A), we can observe that

the misclassification rate is close to non-informative random rate

50%. These overlapped points correspond to Contaminated data V,

having the data error rate 71.36%. This random non-

informative prediction can be expected because the ability to

accurately detect PPIs intuitively requires the majority of the

data sources to be informative with error rate less than 50%.

However, performance can be improved to some extent in the

presence of large amounts of contamination by eliciting prior

information as to whether a protein pair interacts or not from the

literature. To assess this, we repeated the above tests with a fixed

prior. This prior pre-assigns a probability weight to a protein

pairs as to how possible it can be interact or not. However, such

exhaustive prior information is difficult or impossible to obtain

for all protein pairs. We therefore simply pre-assign a weight that

represents the weight of interacting or the proportion of

interacting protein pairs in the whole dataset. We randomly

choose such a prior that is close to the known proportion of 1/4

in this study. We then predicted the interacting protein pairs

from the posterior analysis of the MCMC procedure. The results

are summarized in Figure 2 (B).

We can observe from Figure 2 (B) that the performance is

similar to the one using the unknown prior in the presence of lower

contamination when the error rate is less than 50%. The standard

deviations for 6 datasets also have the similar pattern to the tests

using unknown prior but slightly smaller values. However, when

the contamination is rather high as in Contaminated data V, the

elicited prior leads to much better performance in having a

noticeable reduction of ,7% in misclassification rate. In addition

to further supporting the previous conclusions, the elicited prior of

being interacting or not may provide a realistic approach for

genomic integration of PPIs data, especially when data includes

rather high false positives and/or false negatives.

Tests as the number of data sources increases. As the

number of data sources increases, NBEL will have more evidence

to predict whether a protein pair interacts or not. We varied the

number of data sources to observe the influence on the

misclassification rate. We used the first contaminated data, and

apply NBEL and naı̈ve Bayes when the number of data sources p

is 4, 6, 8, 10, 12, 14, and 16, respectively. The simulation for

every p is repeated 50 times. The averaged misclassification rates

for the three approaches are plotted in Figure 3 (A). We can

observe that the misclassification rates for our NBEL method

using both the thresholds are much smaller than the ones for both

naı̈ve Bayes and logistic regression, with the misclassification rate

for logistic regression obviously smaller than the one for naı̈ve

Bayes. As the number of data sources increases, the

misclassification rates for NBEL and logistic regression reduce

substantially. However, the misclassification rate for logistic

regression is obviously higher than our NBEL, while naı̈ve

Bayes keeps a level of 8%,10%. To observe whether the

misclassification rate can be reduced to such a low rate when the

contamination in data is high, we repeated the above test but

using contaminated data set III, and the comparison of

misclassification rates among three methods are plotted in

Figure 3 (B). We can see that naı̈ve Bayes has a certain level of

error correction when the misclassification rate is rather high, as

the number of data sources increases. However, it stops

decreasing when it reaches a level of 8%,10%, while NBEL

and logistic regression decrease further. From Figure 3, logistic

regression also produces a smaller misclassification rate as the

number of data sources increases to be a large number such as 14

or greater. However, the number of reliable data sources to

integrate in real data tests is usually not that large. While our

NBEL is able to quickly reduce misclassification rate close to zero

when the number of data sources increases to be 6 or 8. These

tests supported our previous tests that our NBEL provides a more

practical tool in predicting reliable PPIs from error-prone data,

and learns from additional sources of informative data.

Receiver operating characteristic. In this part, we show

the performance for all methods using a receiver operating

characteristic (ROC) curve, which is the plot of the true positive

(TP) rate versus false positive (FP) rate. We observed the ROC

curves for all 6 sets of data in Table 1, with and without the known

prior information of interaction. We illustrate our observations of

ROC curves using the contaminated data III in Figure 4, which

has error rate equal to 27.43% with the unknown prior

information of interaction. From Figure 4, we can observe that

our NBEL has a better performance than logistic regression, and

logistic regression has a better performance than naı̈ve Bayes. This

is consistent with the observations in the previous tests. When the

error rate in a dataset is lower, the curves are closer to the left top

corner; when the error rate is higher, the curves are closer to the

diagonal line which is TP rate equal to FP rate. The curves using

the known prior information of interaction are very close to the

ones using the unknown prior. However, when the error rate in a

dataset is extremely high, for example in contaminated data V, the

ROC curve using the known prior gives more reasonable results

than the one using the unknown prior. This confirmed our

observation indicated in Figure 2.

Table 1. Summary of the contaminated data sets.

L1 (out of
1250)

L2 (out of
3750)

Induced Error
Rate

Contaminated Data I 96 288 7.68%

Contaminated Data II 182 551 14.63%

Contaminated Data III 342 1031 27.43%

Contaminated Data IV 582 1775 46.95%

Contaminated Data V 894 2670 71.36%

In table 1, L1 represents the number of interacting protein pairs that are
reversed, and L2 represents the number of non-interacting protein pairs that
are reversed. We set the status for 1250 out of 5000 protein pairs as interacting,
and 3750 out of 5000 protein pairs as non-interacting.
doi:10.1371/journal.pcbi.1002110.t001

Bayesian Inference of Protein-Protein Interactions
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Tests on Human Data Sets
Rhodes et al. 2005 [38] collected human protein pairs from four

data sources, ortholog from model organism interactome data

(ortholog), genome-wide gene expression data (coexpression),

protein domain data (domain), and biological functional annota-

tion data (bio-function). Scott et al. 2007 collected more data

sources in addition to the major ones in Rhodes et al. (2005)

including coexpression, ortholog, domain, subcellular localication,

post-translational modification co-occurrence, and protein intrin-

sic disorder [40]. We chose to test our approach on the data from

Scott et al. (2007). The protein pairs collected from each data

source are believed to be indicative of the possible interacting

protein pairs, and they are measured by likelihood ratios (LRs).

The protein pairs collected in each data source are firstly divided

into the different feature states. The LR is then calculated for the

protein pairs within that feature state by calculating the ratio of the

proportion of protein pairs in the gold positive dataset to the

proportion in the gold negative dataset. We chose to test on 79,441

protein pairs that have the product of LRs from all data sources

greater than 100. Please review Rhodes et al. 2005 [38] and Scott

et al. 2007 [40] for the principle of data collection.

We applied all the methods to integrate the scores of LRs from all

the data sources of the collected human data for predicting PPIs. We

tested the logistic regression model on LRs, as tested in Qi et al.

(2006) [48]. We used the overlapped data with gold positive (GP)

dataset and gold negative (GN) dataset to train the parameters for

logistic regression model (Please review Text S1 for more

information about GP and GN datasets). We predicted 39,334

PPIs using our NBEL algorithm, 16,234 PPIs using logistic

regression, and 37,606 PPIs using naı̈ve Bayes. The elucidated

prior proportion of interaction for our NBEL is set as 0.5. The prior

proportion of interaction was close to the empirical proportion by

dividing the predictions from the naı̈ve Bayes to the total number of

protein pairs, 37,606/79,441 = 0.4734. Using a beta hyperprior can

lead to an unrealistically high estimated proportion of PPIs. This is

reasonable as current datasets for PPIs prediction are known to

include many false positives, with rate varying from 50% to 85%

[38–40]. As we analyzed in simulation studies, the extremely high

proportion of errors in data may lead to non-informative prediction

of a random probability of 0.5. An elucidated prior for the

proportion of interactions however may alleviate the situation with a

noticeable misclassification rate reduction.

Naı̈ve Bayes requires a prior odds ratio, which is usually estimated

by averaging the interactions per protein in the gold positive dataset.

However, this value may be underestimated, since we do not know all

the true interactions even in a small subset of proteins [38–40]. As

discussed in Scott and Barton, 2007 [40], the prior odds ratio can

change from 1/370 to 1/1093 across the different datasets. We

picked prior odds ratio 1/400 for naı̈ve Bayes as Scott and Barton

2007 and close to 1/381 in Rhodes et al. 2005 [38].

The number of PPIs predicted from NBEL, 39,334, however, is

larger than 37,606 from naı̈ve Bayes and 16,234 from logistic

regression. We further analyzed the number of distinct proteins

and the distinct interactions for the identified interacting protein

pairs using three methods and their overlaps, as summarized in

Figure 5. It appears that most of the unique proteins and protein

Figure 2. Comparison with Naı̈ve Bayes and logistic regression when the data sets have the different induced error rates. The data
set at x axis 0 represents noncontaminated data, and the data sets from x axis 1 to 5 represent contaminated data set I to V, with the induced error
rates varying from 7.68% to 71.36%. y axis represents misclassification rate. A) is the comparison using the unknown prior of interaction. B) is the
comparison using the known prior of interaction.
doi:10.1371/journal.pcbi.1002110.g002

Bayesian Inference of Protein-Protein Interactions
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Figure 3. Comparison with Naı̈ve Bayes and logistic regression when the number of data sources increases. X axis represents the
number of data sources, and y axis represents misclassification rate. A) used contaminated data set I with the induced error rate 7.68%, and B) used
contaminated data set III with the induced error rate 27.43%.
doi:10.1371/journal.pcbi.1002110.g003

Figure 4. Receiver Operating Characteristic (ROC) curves for our NBEL algorithm, naı̈ve Bayes, and logistic regression. We illustrate
ROC curves using the data having error rate of 27.43% without the prior interaction information.
doi:10.1371/journal.pcbi.1002110.g004

Bayesian Inference of Protein-Protein Interactions
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pairs predicted by logistic regression are also predicted by NBEL

and naı̈ve Bayes. However, we observed a more reliable

performance for NBEL and logistic regression than naı̈ve Bayes

from simulation studies, we suggest being skeptical of the protein

pairs that are predicted by naı̈ve Bayes but not as much those by

NBEL and logistic regression. We can also observe that many

more unique proteins and protein pairs are predicted by NBEL.

This may be again the result of the function of error-correction

from NBEL, as discussed in detail in the Methods section. We

therefore expect a more reliable prediction using NBEL than naı̈ve

Bayes. A larger number of predicted PPIs may suggest that the

previous estimations may not only have a large false positive (FP)

rate [1], but also may have a large false negative (FN) rate. This

also suggests the necessity of considering both the FP and FN rates

for PPIs predictions.

We validated the above analysis by testing on another two human

PPIs datasets with high quality. Mammalian protein-protein

interaction database (MIPS) [49] manually curates high-quality

experimental PPI data from the scientific literature, and includes only

data from individually performed experiments that are believed to

have the most reliable evidence from physical interactions. We

downloaded 355 human PPIs with 423 proteins from MIPS. After

eliminating the protein pairs with undesignated IDs and the ones with

IDs mapping problems, we had 351 protein pairs and 420 proteins.

We then compared 351 protein pairs with the human data set we

collected, and found 46 protein pairs that are overlapping between

two datasets. Among which, we had 26 interacting proteins falling

into the set that are predicted by NBEL, but had 23 by naı̈ve Bayes

and only 11 by logistic regression. Further analysis indicates that the

predictions from NBEL include all the ones from naı̈ve Bayes and

logistic regression. This observation coincides to what is observed

applying NBEL to our collected human dataset. Our NBEL

algorithm predicted an additional portion of protein pairs that are

missed by naı̈ve Bayes and logistic regression. This indicates that the

predictions using naı̈ve Bayes and logistic regression may have a

rather large number of false negatives so that a large portion of

interacting protein pairs are missed and predicted as non-interacting.

We tested on another large dataset, HomoMINT [50] having

38,414 PPIs. The data together with the ones from MIPS data are

summarized in Table 2, and the test results are summarized in

Table 3. In Table 3, N1 indicates the total number of protein pairs

in a database that are overlapped with our collected 79,441 human

PPIs; N2 indicates the number of protein pairs in N1 that are

predicted by NBEL; N3 indicates the number of protein pairs in N1

that are predicted by naı̈ve Bayes; N4 indicates the number of

protein pairs in N1 that are predicted by logistic regression. We

measured true positive (TP) by calculating the proportion of protein

pairs in N1 that are predicted by either naı̈ve Bayes or NBEL. Thus,

TP~
N2

N1

for NBEL, TP~
N3

N1

for naı̈ve Bayes, and TP~
N4

N1

for

logistic regression. False negative (FN) is simply 1{TP.

We observe that the analysis on the second dataset has a similar

pattern to that observed in the first experimental data from MIPS.

The analyses from all datasets have a high true positive rate (a low

false negative rate) from NBEL and a low true positive rate (a high

false negative rate) from naı̈ve Bayes and logistic regression. The

overlapped predictions between three methods occupy most of the

predictions from naı̈ve Bayes and logistic regression but only a

small portion from NBEL, which is consistent with the our

previous analysis on our whole human data as shown in Figure 5.

Again, the analysis using naı̈ve Bayes and logistic regression missed

a large portion of interacting protein pairs in having not only a

large false positive rate [1] but also a large false negative rate.

Discussion

The emergence of large-scale data has made it popular to study

protein-protein interactions (PPIs) in recent years. However, one

of the major issues is that a rather high proportion of false positives

and negatives exist in current predictions. Data errors may occur

from every data source and every stage of data collection and

processing procedure. The usual approach to reduce the data

errors is to minimize them from their generating source. However,

such an approach can be extremely time-consuming and

inefficient. Particularly, information may change as we improve

our understanding in the underlying biological mechanism. A

breakthrough to significantly reduce the misclassification rate is

demanded for a reliable prediction of PPIs.

We proposed a nonparametric Bayes ensemble learning (NBEL)

algorithm to integrate the multiple genomic data for obtaining a

more powerful prediction of PPIs. Instead of the direct

multiplication of scores from all data sources in naı̈ve Bayes, our

NBEL algorithm learns the distributions of interacting and non-

interacting proteins within each data sources, and then automat-

ically up-weights the informative and down-weights the less

informative data sources. NBEL therefore has the function of

error-correction which leads to a significant lower misclassification

rate in predicting PPIs. We tested our NBEL algorithm on

extensive simulations with various input data error rates varying

from 0% to .70%, which mimic a rather high false positive rate

.70% that is reported in previous PPIs predictions. Our

simulation results indicated that our NBEL algorithm has a much

lower misclassification rate, with the rate reduction varying from

7% to 25% from naı̈ve Bayes and logistic regression. This suggests

that NBEL is significantly more robust than naı̈ve Bayes and

logistic regression to highly contaminated data. Such a function

becomes stronger as the number of data sources increases. Our

tests on a large human data set indicate that NBEL predicts a

larger number of PPIs than naı̈ve Bayes and logistic regression,

which are validated using two reliable experimental PPIs data.

This indicates that rather high not only FP rate but also FN rate

may exist in previous studies. This also suggests the importance of

evaluating both the FP and FN rates in PPIs prediction.

We successfully demonstrated the feasibility of predicting high-

throughput PPIs computationally, with substantially reduced false

positives and false negatives. Our work may inspire people to utilize

computational approaches to correct data errors for any problem in the

field of computational biology that needs predictions from multiple

data sources. The ability of predicting large numbers of PPIs both

reliably and automatically may speed up PPIs prediction. Such a

reliable prediction may provide a solid platform to other related studies.

One example is the study of protein functions prediction since the

group of protein pairs that tend to interact with each other may have

similar functions. Another example is the study of roles of PPIs in

disease susceptibility as the dynamic changes of PPIs may relate to

disease causality.

There are still future works left for obtaining more complete and

reliable inferences of PPIs. Current estimates of PPIs have a very low

coverage [1]. The set of known interactions is even less representative

of the whole network since the subset of interactions is by no means

random. The analysis also showed that there is little overlap between

the high-throughput datasets [1]. Paradoxically, some attempts to

increase data quality, for example, multiple validations, make these

biases more severe [1]. Although Lu et al. 2005 [37] indicated no

appreciable dependence between any possible pairs of data sources

for yeast. Information sharing does exist in the different levels among

data sources for human. For example, it is believed that the

interacting protein pairs sharing the same biological process may also

Bayesian Inference of Protein-Protein Interactions
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have physical associations between the enriched domains. Redundant

information thus exists among the data sources of the biological

functional annotation data and the protein domain data [38]. This

invalidates our assumption of conditional independence in the

different data sources given the unknown PPI status. Although some

manual procedure as a semi-naı̈ve Bayes is proposed in current works

[22,35–38,40–41] to reduce such dependency, dependency exists

more or less among any two of the disparate data sources. An effective

integration method releasing the restriction of the conditional

dependence is therefore demanded. Furthermore, since the network

of PPIs is essentially time-evolving, an approach that is able to model

the PPIs dynamically is desirable.

Methods

In this section, we describe our NBEL method to integrate the

likelihood ratios (scores) from the disparate data sources for the

prediction of PPIs.

Let Y denote an n|p matrix, with rows corresponding to

different protein pairs and columns to different types of scores

from different data sources, with high values of the scores

providing evidence of an interaction between the proteins. Typical

analyses of protein interaction networks are based on one type of

data, but here we propose a nonparametric Bayes latent class

discriminant analysis approach for combining information from

different data sources. We refer to this as ensemble learning

following terminology in the machine learning literature. Let yij

denote the score in row i and column j of matrix Y and let zi~1 if

the ith pair interacts with zi~0 otherwise.

Our nonparametric Bayes ensemble learning (NBEL) model

assumes that

(yij jzi~0)*f0j ; (yij jzi~1)*f1j , ð1Þ

where f0j is the unknown distribution of the jth score across protein

pairs that do not interact, and f1j is the unknown distribution of

the jth score across protein pairs that do interact, for j~1,:::,p. For

identifiability, we assume that f0jvf1j , denoting that f0j is

stochastically less than f1j . Following a Bayesian approach, we

place priors on the unknown distributions f ~ff0j ,f1j ,j~1,:::,pg.
In particular, we characterize each distribution using an infinite

mixture model with

fzi j
(y)~

X?

h~1

phg(y;Hhzi j,
t{1

h ), ð2Þ

where g(.) is a parametric kernel (e.g., Gaussian), ph is a mixture weight

on component h, th is a precision parameter specific to mixture

component h, and Hhzi j
are location parameters specific to mixture

Figure 5. Prediction comparison among our NBEL algorithm, naı̈ve Bayes, and logistic regression. A) listed he number of distinct and
the overlapped proteins between two methods. B) listed the number of distinct and overlapped interactions among three methods.
doi:10.1371/journal.pcbi.1002110.g005

Table 2. Human protein-protein interactions datasets with high quality for validating our NBEL algorithm.

Databases Number of proteins Number of protein pairs Online Websites

From MIPS [49] 420 351 http://mips.helmholtz-muenchen.de/proj/ppi/

From HomoMint [50] 38,414 8,030 http://mint.bio.uniroma2.it/HomoMINT/Welcome.do

Combined dataset 38,834 8,381

We overlapped protein pairs from each database in Table 2 with the whole collected human PPIs dataset that we tested on, and then compared the predictions out of
the overlapped protein pairs for validating the performance of our NBEL algorithm.
doi:10.1371/journal.pcbi.1002110.t002
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component h, interaction status z, and score type j. It is well known that

mixtures are extremely flexible. By allowing the kernel locations for

each component to vary flexibly with interaction status and score type,

we obtain a highly flexible model. The stochastic ordering restriction

can be enforced by restricting Hh0jvHh1j for all h, j.

Dunson and Peddada 2008 [51] propose a restricted dependent

Dirichlet process (rDDP) prior for modeling of unkown stochas-

tically ordered distributions of the form shown in (2). However,

they do not consider the case in which the stochastic ordering is

over latent groups or cases in which data are available from

different data sources. Conditionally on the data Y and the

distributions f, the posterior probability of an interaction in pair i is

Pr (zi~1jY ,f )~

yi P
p

j~1
f1j(yij)

yi P
p

j~1
f1j(yij)z(1{yi) P

p

j~1
f0j(yij)

ð3Þ

where yi is the prior probability of an interaction in pair i. This

prior probability can be set to 0.5 to be uninformative, or one can

incorporate available information outside of that included in the

score yi1,:::,yip in the choice of yi. Expression (3) describes that the

information, such as the sharing and dependence among protein

pairs, is borrowed via the normal mixture model and integrated

for predicting protein-protein integrations.

The information can be transferred across the different protein

pairs within columns (data sources). The distributions for

interacting protein pairs and non-interacting protein pairs are

learnt via the normal mixture model in expression (2). If only one

data source were available (p = 1), there would be no ability to

predict the interaction status latent variables fzig and separately

estimate the interacting and non-interacting score distributions

without labeled data in which zi was known without error for a

training subset. However, when repeated scores are available

(p.1), we obtain identifiability through the dependence structure

in the multiple scores. In particular, the model will automatically

interpret multiple scores that are high as evidence that the pair is

more likely to be interacting. Essentially, the shared dependence

on the latent class zi induces dependence in the multiple scores

yi1,:::,yip, allowing us to nonparametrically identify the different

score densities under the stochastic ordering restriction. If a

particular score (say score j = 3) tends to be unreliable, then it will

have relatively low correlation with the other scores marginalizing

out the latent zis, and hence the separation between f0j and f1j will

be small. This small separation and low correlation will

automatically lead to unreliable data sources being down-weighted

and potentially even effectively excluded. This type of flexible

adaptive weighting should substantially improve misclassification

rates, and hence reduce false positives. This will be assessed

through simulation studies in Section Results.

To complete a Bayesian specification of the model, we choose

g(y;H,t)~N(y;H,t{1), the univariate Gaussian distribution

centered on H with precision t. In addition, following an rDDP

specification (Dunson and Peddada 2008 [51]), we let

yi~y*beta(ay,by), i~1,:::n,

ph~Vj P
lvh

(1{Vl); Vh*beta(1,a),

Hh0j*N(mj ,c
{1
j ),

Dhj*Nz(0,k{1
j ),

t{1
hj *Ga(at,bt), h~1,:::T ,

where Dhj~Hh1j{Hh0j , Nz denotes a normal distribution trun-

cazted below by zero, and Ga(at,bt) denotes the gamma distribution.

Letting yi~y for simplicity, y represents the prior probability that a

random selected protein pair is interacting. By choosing a beta hyper-

prior on y, we let the data inform about the proportion of interacting

pairs. Normalizing the scores prior to analysis within each column of

Y, we recommend the following default hyperparameter values,

ay~by~1, a~1, mj~0, cj~1,kj~1, at~bt~1:

We propose a blocked Gibbs sampler to estimate the posterior

probabilities of unknowns (Ishwaran and James 2001 [52]) (Please find

the details from Text S1). Our focus is on inference on the protein

interactions based on the marginal posterior probabilities of

zi~1(i~1,:::n), which can be calculated using a Rao-Blackwellized

approach. In particular, discarding a burn-in to allow convergence, we

average the conditional posterior probabilities Pr (zi~1j{) for each i

across a large number of MCMC iterations. Under 0–1 loss, the Bayes

optimal classification rule sets ẑzi~1(ŷyiw0:5) where ŷyi is the

estimated posterior probability of zi~1. We recommend collecting

5,000 iterations, with the first 1,000 iterations discarded as a default.

Supporting Information

Text S1 The text file includes the parameters used to
generate the simulated datasets, posterior computation,
and the description of Gold Standard datasets.

(PDF)
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Table 3. Validation by comparing NBEL algorithm with naı̈ve Bayes via two human datasets.

Our NBEL Naı̈ve Bayes Logistic Regression

N1 N2 TP FN N3 TP FN N4 TP FN

From MIPS [49] 46 26 56.52% 43.48% 23 50.00% 50.00% 11 23.91% 76.09%

From HomoMint [50] 1688 1235 73.16% 26.84% 1005 59.54% 40.46% 484 28.67% 71.33%

In table 3, N1 indicates the total number of protein pairs in a database that are overlapped with our collected 79,441 human PPIs; N2 indicates the number of protein
pairs in N1 that are predicted by NBEL; N3 indicates the number of protein pairs in N1 that are predicted by naı̈ve Bayes; N4 indicates the number of protein pairs in N1

that are predicted by logistic regression.
doi:10.1371/journal.pcbi.1002110.t003
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