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Abstract

Stimulus-specific adaptation (SSA) occurs when the spike rate of a neuron decreases with repetitions of the same stimulus,
but recovers when a different stimulus is presented. It has been suggested that SSA in single auditory neurons may provide
information to change detection mechanisms evident at other scales (e.g., mismatch negativity in the event related
potential), and participate in the control of attention and the formation of auditory streams. This article presents a spiking-
neuron model that accounts for SSA in terms of the convergence of depressing synapses that convey feature-specific
inputs. The model is anatomically plausible, comprising just a few homogeneously connected populations, and does not
require organised feature maps. The model is calibrated to match the SSA measured in the cortex of the awake rat, as
reported in one study. The effect of frequency separation, deviant probability, repetition rate and duration upon SSA are
investigated. With the same parameter set, the model generates responses consistent with a wide range of published data
obtained in other auditory regions using other stimulus configurations, such as block, sequential and random stimuli. A new
stimulus paradigm is introduced, which generalises the oddball concept to Markov chains, allowing the experimenter to
vary the tone probabilities and the rate of switching independently. The model predicts greater SSA for higher rates of
switching. Finally, the issue of whether rarity or novelty elicits SSA is addressed by comparing the responses of the model to
deviants in the context of a sequence of a single standard or many standards. The results support the view that synaptic
adaptation alone can explain almost all aspects of SSA reported to date, including its purported novelty component, and
that non-trivial networks of depressing synapses can intensify this novelty response.
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Introduction

Natural acoustic environments play host to a wide variety of

sounds that are either repetitive or follow a regular pattern. If an

organism that inhabits one of these environments hears a re-

peating sound and does not react to the first few salient presen-

tations, then it is unlikely that further repetitions will be be-

haviourally relevant. On the other hand, if the organism is to

respond to changes in its environment, then it cannot adapt to

stimuli indiscriminately; rather, it must remain sensitive to even

small deviations from an established pattern. It is within such an

evolutionary context that the brain has acquired stimulus-specific

adaptation (SSA) mechanisms that operate across several time

scales and sensory resolutions [1].

SSA in response to tone sequences has been measured in the

spiking of single neurons at various stages of the auditory pathway,

including the inferior colliculus (IC) in the rat [2,3], medial

geniculate body (MGB) of the thalamus in the mouse [4] and rat

[5], thalamic reticular nucleus in the rat [6], and primary auditory

cortex in the cat [7,8] and rat [9]. It has been suggested [7,8,10]

that SSA in single neurons lies on the path leading to the

generation of mismatch negativity (MMN)–a frontocentrally negative-

going deflection in the event-related potential [11,12], evoked in

response to violations of an established temporal sound pattern,

including changes in frequency, intensity, duration and even the

omission of an expected stimulus (for a recent review, see [13]). It

is thought that MMN, in turn, may be implicated in the redirec-

tion of attention [14], maintain the representation of the auditory

context [12], and contribute to auditory scene analysis [12,15].

In this article we describe a neurocomputational model of SSA

based on a small network of spiking neurons connected by dy-

namic synapses. The model components are all drawn from the

literature [16–19] and are implemented without significant modifi-

cation in order to keep free parameters to a minimum. In terms

of its overall architecture, the model rests upon few anatomical

assumptions, as it consists solely of a small number of homo-

geneous populations joined together in uniform patterns of con-

nectivity, which could exist in the brain (e.g., all-to-all, sparse/

random). The model requires feature-tuned inputs but does not

require that these inputs be mapped topographically. As frequency

selectivity in neurons is best understood, and most SSA studies to

date have only manipulated frequency, the inputs of our model are

tuned to frequencies. This study offers three distinct contributions

to the ongoing discussion concerning stimulus-specific adaptation

in single neurons: a new model of SSA that accounts for an array

of experimental results; a description of a novel stimulus paradigm,
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accompanied by predictions from the model that can be tested

experimentally; and an exploration of the effect of linking adapting

processes in series on SSA and novelty detection in general.

It is sometimes remarked that the time scale of recovery from

adaptation to tones measured in cortex is consistent with the time

it takes cortical synapses to recover from synaptic depression

[7,8,20]. Despite the strikingly suggestive similarity in the dyna-

mics, and the availability of a light-weight model of a depressing

cortical synapse [18], we are not aware of any modelling study to

date that has explicitly attempted to bridge this explanatory gap:

assembling these model synapses into networks with a view to

replicating the results of SSA experiments. Here we undertake just

such a study, taking as our primary data the results obtained by

von der Behrens et al. [9] in the auditory cortex of the awake rat,

which are presented in such a format as to be particularly con-

ducive to the calibration of a model. A more general, theoretical

treatment of the properties of networks constructed using this

dynamic synapse model is given in [21]. Some mathematical

results pertaining to SSA when viewed as an abstract computa-

tional process are discussed in [22].

Having configured the model to respond to oddball sequences

in a manner consistent with the published physiological data, we

then probe it with patterns of standards and deviants generated by

first-order Markov chains [23], wherein the probability that a

given tone is standard or deviant depends on its immediate

predecessor. Oddball sequences actually constitute a specific

subset of two-state Markov chains. Progressing to general Markov

chains enables one to vary not only the probability of a deviant

(pdev), but also the probability of switching between deviants and

standards (psw); or, from another perspective, to control the degree

to which deviants and standards ‘‘clump together’’ in the se-

quence, whilst maintaining their overall proportions. The model

furnishes explicit predictions regarding the response of SSA

neurons to tone sequences generated by Markov chains.

Finally, we examine serial arrangements of depressing synapses

as a possible basis for certain types of novelty detection. This

architecture is motivated by the fact that some neurons respond

more vigorously to deviant tones if they are embedded in a

background of a single standard frequency than if they appear as

one of many, equiprobable random tones [7,10]. At the very least,

the difference in the responses is not so great as one would expect

from a model based on adaptation within channels [24]. A similar

sensitivity to novelty is also apparent in the mismatch negativity

[25,26]. The idea of a two-layer model rests on the plausible sug-

gestion that the pre-synaptic inputs to some depressing synapses

themselves undergo adaptation due to synaptic depression elsewhere.

In the current study, we found that cross-channel adaptation

within a single layer of depressing synapses was sufficient to

account for the excess response to deviants embedded in a single

standard provided that Df was large enough. However, introduc-

ing two layers of synaptic depression in series enhanced the effect,

in that this excess response was larger, and the Df required to elicit

the effect was smaller. In summary, on the one hand, our results

support the case for an explanation of SSA based solely on

adaptation, at least as far as frequency is concerned. On the other

hand, commentators that adopt an adaptation-based interpreta-

tion of SSA tend to speak exclusively in terms of the depression or

fatigue associated with afferents, whereas we demonstrate that

linking depressing synapses in series (and, in principle, recurrently)

can dramatically modify these effects.

Methods

In this section, we first describe the individual components that

constitute the model, and then explain how these components are

assembled to form networks containing units that exhibit SSA. We

then discuss the time-varying patterns supplied as input to these

networks, which are taken to represent the kinds of tone stimuli

used in physiological SSA experiments. The neurocomputational

models presented in this article are constructed from spiking units

partitioned into populations, labelled A to D. We consider three

types of network, and designate each according to the populations

it contains: the AB model, the ABC model and the ABD model.

These networks are illustrated schematically in Figure 1 and are

described in greater detail below. Some results from an ABCD

model, which contains all four populations, are included in

Supplementary Text S1.

Model Components
Spiking neuron models. The units in population A are

independent Poisson processes, whose firing rates are modulated

by the input stimulus. The units in populations B to D implement

the adaptive exponential integrate-and-fire (AdEx) model pro-

posed in [16], which incorporates sub-threshold and spike-

triggered adaptation currents. Every AdEx model uses the

parameters listed in (Table 1 in [16]).

Dynamic synapses. The synapses in the model fall into

three classes: fast excitatory, fast inhibitory, and fast excitatory

with rapid depression and slow recovery. Fast excitatory and inhi-

bitory synapses are based, respectively, on the simplified kinetic

models of the AMPA/kainate and GABAA receptors described in

[17], and we adopt the parameter sets provided there.

The depressing synapse model combines features of the AMPA

synapse model from [17] and the model presented in [18]. It

assumes that a unit supply of resources is divided amongst three

states: recovered (xr), effective (xe) and inactive (xi). Initially, xr~1 and

xe~xi~0. The system of equations governing the flow of

transmitter between states is similar to that found in [18]:

dxr

dt
~{M xr

tre

z
xi

tir

Author Summary

For processing real-life auditory scenes, it is not enough
that auditory neurons code only for basic stimulus
properties, such as frequency and intensity; at some point,
these isolated properties must be woven into a pattern.
Stimulus-specific adaptation (SSA), whereby neurons adapt
to common stimuli but otherwise remain sensitive to
other, rare stimuli, has been proposed as a low-level
substrate for such abstract pattern processing. SSA has
been previously investigated using ‘oddball sequences’ of
tones, in which one frequency is common, the other rare.
In this article, we present the first neurocomputational
model of SSA and show that it can reproduce a wide range
of published data. We also propose a natural generalisa-
tion of the oddball paradigm, based on Markov chains,
which allows the experimenter to manipulate other
characteristics of the sequence such the rate of switching.
Finally, we show that a small network of neurons can
distinguish novelty from mere rarity; e.g., a B stands out in
the sequence ABAAA in a way that it does not in CBADE,
even though it is equally probable in both. We demon-
strate that cascades of depressing synapses can adequate-
ly encode this difference, whereas the simple adaptation-
based models proposed to date cannot.

A Computer Model of Stimulus-Specific Adaptation
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dxe

dt
~zM xr

tre

{
xe

tei

dxi

dt
~

xe

tei

{
xi

tir

:

Following a pre-synaptic action potential,M is set (or reset) to one

for a duration of tpulse~1 ms; afterwards, it returns to zero. In

these equations, M refers to a quantity analogous to that defined

in [18] as USEd(t{tAP). Whereas the model in [18] uses a delta

function to represent the effect of a pre-synaptic spike, this model

and [17] use a brief, square pulse (1 ms). The time constants

tre~0:9 ms and tei~5:3 ms are taken from [17], and control the

rate at which recovered transmitter substance becomes effective,

and effective transmitter substance becomes inactive, respectively.

The third time constant, tir~800 ms, controls the rate at which

inactive substance is recovered and is taken from Figure 1B in

[18]. Note that by setting tir?0 one obtains the non-depressing

version of the AMPA synapse. The excitatory post-synaptic

current for the depressing synapse is then proportional to the

fraction of substance that is effective:

Isyn~gsynxe(Es{Vm)

where Vm is the post-synaptic membrane potential, Es~0 mV is a

reversal potential [17], and gsyn is an overall synaptic efficacy.

Noise sources. Altogether, three sources of noise may be

identified in the model. First, upon initialisation, the parameters of

every synapse in the model (time constants, tpulse, synaptic

efficacies, reversal potentials) are perturbed by multiplication

with log-normal random variables [27] (m~0; s~0:1). The

neuron parameters are not perturbed.

Secondly, every AdEx neuron is subject to an in vivo-like

fluctuating noise current to simulate synaptic background activity.

The noise model and its parameters are taken from eqn. 2; Table 1,

col. 1 in [28], with two exceptions: the overall magnitude of the

current is scaled to compensate for the change in surface area

between the neuron modelled in [28] and that modelled here

[16,19]. The standard deviation of the excitatory conductance,

designated se in [19], is set to one of two values, depending on the

experiment. For the AB and ABC models, se is hand-tuned to

se~0:018 mS to yield a mean firing rate of approximately 1 Hz,

typical of high spontaneous activity in auditory cortex. For the ABD

model, se~0:003 mS. This is the original value used in [17] and

causes membrane potential fluctuations, but few spontaneous

spikes. The third source of noise is due to variability in the spiking

of the Poisson neurons between repeated trials.

The level of spontaneous activity varies amongst SSA studies

[5,9]. A high level of background noise was incorporated into the

models to ensure that the SI values obtained from the model were

conservative (i.e., likely, if anything, to be higher in a cleaner

model), and also to militate against the possibility of obtaining

results that required delicately chosen synaptic weights.

Input Population (A)
Population A comprises sub-populations of Poisson neurons,

each of which fires at a rate that depends on the frequency of the

input tone. The best frequencies of the sub-populations are spaced

uniformly on an octave scale. The number of sub-populations and

the range of octaves spanned is task-dependent: two-tone tasks

utilise 96 inputs spanning a range of 2 octaves; multi-tone tasks

utilise 144 inputs spanning a range of 3 octaves. The firing rate

(Hz) of sub-population i with best frequency bi in response to tone

frequency f has the form of a raised Gaussian profile,

li~
r0z(rmax{r0) exp

(f {bi)
2

{2s2

" #
tone f

r0 silence,

8><
>:

where r0~1 is the spontaneous firing rate in the absence of a

signal; rmax~50 is the maximum firing rate, elicited when the tone

and best frequencies coincide; and s controls the width of the

tuning curve.

As a measure of bandwidth, we take the separation, in octaves,

between the frequencies that evoke firing rates half-way between

the maximum and spontaneous rates, and denote this quantity

V~2:35s. Unlike stimulus parameters, which can be chosen to

match the original SSA experiments exactly, the tuning of the

putative input channels can, at best, only be inferred from the

results of the SSA experiments themselves, or estimated in line

with other experimental data. We typically set V~0:5 octaves in

this study, which we consider to be conservative, given the tuning

width of certain neurons in the inferior colliculus [29] and fibres at

the auditory periphery [30]. Alternative values for V are also

investigated, however. Figure 2A depicts the overlap between two

tuning curves with best frequencies separated by half an octave.

AB Model
The AB model is the simplest instance of an adaptation-based

model that exhibits SSA. It consists of two populations labelled A

and B (see Figure 1A). The computations relevant to SSA are

effectively performed by a single, feed-forward layer of depressing

synapses (A?B).

Population B consists of 48 AdEx neurons, each of which

receives a connection from a distinct Poisson neuron in every

Figure 1. SSA model architectures. The blue boxes depict
populations, and the figures printed inside state the number of units
(or Poisson groups). The number of sub-populations in population A
depends on whether the task is two-tone (96) or multi-tone (144). A) AB
model consisting of a single layer of depressing synapses. B) ABC model
introduces an inhibitory population. C) ABD population consisting of
two layers of depressing synapses. The synaptic pathways drawn
between populations stand for all-to-all connectivity. An exception is
C?B: each unit in B receives 16 synapses at random from units in C.
doi:10.1371/journal.pcbi.1002117.g001

A Computer Model of Stimulus-Specific Adaptation
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sub-population of A via a depressing, excitatory synapse. Thus

population A contains 96|48~4608 or 144|48~6912 Poisson

neurons, depending on whether the experiment is two-tone or

multi-tone, respectively. It is the depression of the A?B synapses

which guarantees the basic behaviour required of the model,

namely, that the responses in B reduce if the same tone is

presented repeatedly, but recover if another tone is presented. This

scenario is presented diagrammatically in Figure 2B. The degree

of overlap in the tuning of the Poisson inputs determines how SSA

varies with the frequency separation between the tones. When Df
is small, the synaptic resources associated with the standard and

deviant frequencies coincide to a greater extent, and the SSA

measured is smaller.

ABC Model
The ABC model extends the AB model by adding an inhibitory

population, C, consisting of 48 AdEx neurons, and two additional

synaptic pathways, A?C and C?B (Figure 1B). The connectivity

of the A?C pathway is identical to that of A?B, described

above, with the exception that the synapses involved do not

depress. Each unit in population B receives input from sixteen

randomly-chosen units in population C via fast, inhibitory

synapses, which collectively form the pathway C?B. As in the

AB model, SSA is sought in population B.

In this model, the indirect pathway A?C?B does not

participate in the generation of SSA. Rather, the tonic inhibition

of population B ensures that spontaneous activity is minimised, so

that spiking activity reflects the input signal, not the background

noise. Peri-stimulus time histograms (PSTH) from a study of SSA

in the awake rat [9], show a transient response at the tone onset,

followed by a period of spiking below the spontaneous rate,

suggestive of inhibition, which lasts for the duration of the tone (see

Figures 1A and 3A in [9]; see also Results).

In summary, the SSA responses in the ABC model are

essentially generated in the same way as those in the AB model,

namely, through the depression and recovery of the A?B
synapses. There is, however, a difference in the resultant firing pat-

terns. In the AB model, activity in population B persists throug-

hout the tone, until the A?B synapses are depressed to the extent

that the units can no longer reach threshold. In the ABC model, in

contrast, the neurons receive a strong, delayed, shunting inhibitory

input, which suppresses both spontaneous and stimulus-driven

spiking. Thus, if a neuron in population B is to fire at all, the

excitatory component from population A must cause it to reach

threshold in the short time window before it is inhibited. An

appropriate balance of excitation and delayed inhibition leads to

binary spiking, i.e., the tendency to respond to a stimulus with

either no spikes or one spike, which is observed in auditory cortical

neurons in general [31], and also in SSA studies in cortex [9] and

MGB [5]. Synaptic depression weakens the excitatory contribution

to the post-synaptic potential and effectively turns this binary

response from ‘on’ to ‘off’.

ABD Model
The ABD model extends the AB model by adding population

D, which consists of 48 AdEx neurons, and an excitatory synaptic

pathway, B?D. There are no inhibitory populations in this

model. The units in population D receive input from population B

only, via depressing synapses, connected in an all-to-all pattern

Figure 2. Operation of the AB and ABD models. A) Tuning profiles
of two Poisson neurons spaced 0.5 octaves apart. B) Graphical
explanation of SSA in the AB model. The A?B synapses associated
with the standard frequency are depressed, so that a neuron in B
responds less to standards (blue), but remains sensitive to deviants
(red). C, D) Graphical explanation of SSA in the ABD model in response
to a single standard followed by a deviant (C), and many standards
followed by a deviant (D).
doi:10.1371/journal.pcbi.1002117.g002

Figure 3. Two-state Markov chains. State transition diagrams (A)
and example sequences (B) for three two-state Markov chains with
different scaled switching metrics. The transition probabilities are
represented using line thickness (see Key). Standards and deviants are
indicated in blue and red, respectively. Each block shows ninety-nine
tones wrapped onto three lines.
doi:10.1371/journal.pcbi.1002117.g003

A Computer Model of Stimulus-Specific Adaptation
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(Figure 1C). Our primary interest is SSA in population D,

although SSA is also present in population B.

Whilst several authors have suggested adaptation on the inputs

to a neuron as the mechanism whereby SSA is generated [7–9],

none have considered the properties of a network consisting of a

cascade of depressing synapses. The ABD model is used to

investigate the simplest instance of such a network, in which there

are just two depressing pathways (A?B; B?D). The B?D
pathway has a recovery time constant of tir~1:5 s [7,32]. The

synaptic weights are gAB~gBD~14 nS.

The original motivation for the ABD model was the suggestion

that the responses obtained for deviants embedded in a single

standard exceeded those obtained for the same deviants embedded

in a ‘‘many standards’’ control condition [10]. We elaborate on

the descriptions of these protocols below. Here it will suffice to

sketch the intuitive difference in the stimuli and the behaviour

required of the model. If deviant tones are presented against a

background of a single, repeating standard frequency, then they

are conspicuous, and the model should respond. However, if the

same deviant frequency appears as one of many equiprobable

random tones, then it is no longer conspicuous, it is simply one

tone amongst many, and the model should not respond. In

summary, the model must respond to the novelty of the tone, not

simply its rarity–which is the same in both conditions.

Figure 2C–D illustrates how the two-layer architecture can

make this distinction. Figure 2C shows how the model responds to

a deviant embedded in a single standard. A repetitive standard

(left) causes the synapses associated with that frequency to depress,

and the neurons in population B stop firing. Because the activity in

population B is low, the B?D synapses do not depress. When a

deviant tone is presented (right), there is a recovered synaptic

pathway leading from population A to D, via B, and the neurons

in population D respond.

Now we consider the many standards configuration. Figure 2D

(left) depicts the presentation of many standards. Because the

frequencies of the standards vary, there is usually time for the

A?B synapses to recover between presentations. As a conse-

quence, the average response in population B is high, and B?D
synapses are depressed. Now, when the nominal deviant tone

is presented (right), there is no longer a complete pathway of

recovered synapses leading from A to D, and the neurons in

population D are silent. The units in population D of the ABD

model react to deviants in an appropriate context-dependent

manner, whereas the units in population B do not. In closing, we

emphasise that the binary distinctions firing/not firing and

depressed/recovered are drawn for the benefit of the illustration.

In the model, we seek only differential effects consistent with this

general behaviour.

Stimulus Configurations
Oddball sequences. Oddball stimuli are sequences of tones

consisting of two frequencies, f1 and f2 (Hz), one of which is

deviant, and the other standard. The ratio of standards and

deviants is controlled. The frequencies are presented to the model

equally-spaced on an octave scale around the centre of the input

range. Each oddball sequence is presented twice: f1 and f2 are

swapped in the second presentation, but the pattern of standards

and deviants is preserved. It is necessary to present the same

frequency in a standard and deviant context in order to control for

any frequency preference associated with the neuron.

As in [7] and elsewhere, d(fx) and s(fx) refer to the mean spike

count elicited in response to frequency fx when presented as the

standard or deviant, respectively. The degree of stimulus-specific

adaptation is quantified using various SSA indices (SI) [7]. The

frequency-specific SI is a normalised measure of the difference in

responses to fx when deviant and standard:

SI(fx)~
d(fx){s(fx)

d(fx)zs(fx)
:

The SI is confined to the interval ½{1,1�. A larger SI corresponds

to greater excess in the deviant response over the standard, and in

fact, when the two responses are very close, SI&
1

2
ln

d(fx)

s(fx)
. SSA is

absent when the SI is not significantly positive. The neuron-specific

SI quantifies the overall level of SSA that a neuron exhibits, and it

has a similar definition:

SI~
d(f1)zd(f2){s(f1){s(f2)

d(f1)zd(f2)zs(f1)zs(f2)
:

The term ‘‘SI’’, without qualification, denotes the neuron-specific

SI. (For discussion of an alternative version of the oddball

paradigm, called the ‘‘switching oddball design’’, see [8] and

Supplementary Text S1.)
Two-state markov chains. Oddball sequences have been

widely used to investigate SSA; but little consideration has been

given to the possibility of employing Markov chains [23] in a similar

capacity–Markov chains being a broader class of random process,

to which oddball sequences belong as a special case. If one

designates states 1 and 2 of a two-state Markov chain as ‘deviants’

and ‘standards’, respectively, then the transition matrix for an

oddball sequence can be written

M~
pdev pstd

pdev pstd

� �
,

where each element, ½M�ij , relates the probability of transiting

from state i to state j. The stationary distribution for this Markov

chain is the vector p~ pdev pstdð Þ, i.e., p~pM. The probability

of switching between states depends on the probability of a

deviant; specifically, psw~2pdevpstd .

Two-state Markov chains offer a way to decouple the

probability of switching from the probability of a deviant. This

generalised Markov chain has two degrees of freedom, and its

transition matrix has the form

M~
1{

1

2
psw=pdev

1

2
psw=pdev

1

2
psw=pstd 1{

1

2
psw=pstd

0
BB@

1
CCA:

As the maximum valid choice for psw depends on pdev, it is

convenient to define a scaled switching metric, csw~
1

2
psw=pdev,

which, for a given pdev, expresses how often a Markov chain

transits from one state to the other, as a value between zero (never

switches) and one (switches at highest possible rate). Figure 3 shows

state transition diagrams and example realisations of Markov

chains where pdev~0:3 is held fixed and csw is varied. The

response of the ABCD model to three-state Markov chains is

discussed in Supplementary Text S1.
Block, random and sequential stimuli. Multiple tone

frequencies are routinely used to evaluate the frequency-response

areas of neurons and have also been used to assess stimulus-specific

adaptation [2,7]. Pérez-González et al. [2] measured the

responsiveness of neurons in the rat IC to one hundred-tone

sequences, consisting of ten frequencies repeated ten times. In this

protocol, the tones are presented in three configurations: block,

A Computer Model of Stimulus-Specific Adaptation
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sequential and random. In block mode, tones of identical frequency

are presented in blocks, ascending from the lowest frequency to the

highest. In sequential mode, an ascending, stepwise series of tones

is repeated ten times. In random mode, the tones are ordered

randomly.

Deviants amongst many standards. Oddball experiments

cannot, by themselves, adjudicate the question of whether the

enhanced response to a deviant, if present, is due to its novelty–the

fact that it stands out against a uniform background–or simply its

rarity. Previously, to address this issue, the ‘‘deviant amongst many

standards’’ protocol has been used as a control condition for

MMN oddball experiments [25,26]. A sequence of many, equi-

probable tones is presented, which is constructed in such a way

that the deviant frequency still appears in the same positions as it

did in an oddball sequence. The average responses to deviants

presented in the two contexts are then compared to delineate the

effect of the context on the processing of the same sound. (Note

that in the many standards condition, the term ‘deviant’ is

employed in a nominal sense, as it refers to the true deviant in the

corresponding oddball sequence.) The signal is enhanced when the

deviant tone is presented against a background of a single standard

(the difference is termed the ‘‘true MMN’’), and the same is true

for the spiking responses of single cortical neurons [7] (see

discussion in [10]), which we aim to model here.

Results

AB Model
This section reports the response of the AB model to oddball

sequences only. The responses of the AB model to other types of

sequence are discussed in the ABD Model section.

Oddball sequences. In the first set of experiments we tested

the AB model using eight-hundred tone oddball sequences. The SI

was measured for four conditions, setting pdev to either 0:1 or 0:3,

and setting Df to either 0:25 or 0:5 octaves. In all conditions, the

tone rate was 1 Hz, and the tone duration was 200 ms. Two

parameters of the model were also varied: the A?B synaptic

weight (gAB), and the bandwidth of the tuning curves in population

A (V~0:3, 0:4 or 0:5 octaves). The results are plotted in

Figure 4A.

We first consider the effect of the A?B synaptic conductance

on the SI. In all conditions, as gAB is increased, the SI increases

and forms a plateau. When gAB is set to zero, there is no synaptic

connectivity between the populations. In this case, the SI values

must be derived entirely from spikes due to spontaneous activity,

and the expected SI value is zero. As gAB increases, activity in

population B is driven by the stimulus to a greater extent. The SI

value consequently starts to increase and eventually differs from

zero significantly (solid markers: two-sided Wilcoxon signed rank

test, pv0:05). Once the signal-related activity is strong enough

to overpower the noise background, a larger synaptic weight

increases the overall spike counts (not shown) but does not affect

the SI appreciably. A synaptic weight of gAB~14 nS produces

high firing rates in the pdev~0:1/Df ~0:5/V~0:5 condition. The

peak instantaneous firing rate at the onset of a deviant is 100 Hz,

which reflects a burst of spikes in quick succession; the tonic firing

rate is 17 Hz (see Figure 4D). In order to retain realistic firing

rates, we did not test stronger synaptic weights.

We next examine the influence of the input bandwidth (V) on

the SI. Each selection of bandwidth corresponds to a row in

Figure 4A. Using a narrower bandwidth increases the SI in each

condition over the range of gAB used. Due to spontaneous noise in

the system, the SI does not increase at every data point; however,

the effect of bandwidth on sets of points taken as a whole is readily

apparent. This relationship between bandwidth and SSA is to be

anticipated, given the improvement in resolution that follows from

a decrease in V. However, one additional complication should be

noted before proceeding. In the AB model, a narrower bandwidth

also leads to a lower level of excitation in population B because

fewer units in population A are activated. This implies that the

improvements in SI which result from constricting the bandwidth,

evident in Figure 4A, are smaller than they would be if gAB were

concurrently increased to compensate for the drop in net

excitation.

We centre our discussion of the effect of pdev and Df on the SI

around a particular results set, presented in Figures 4B and 4C, in

which the model parameters were held fixed (gAB~14 nS and

V~0:5 octaves). Figure 4B provides histograms showing the SIs

measured in population B for five stimulus conditions: the four

conditions listed above, plus an additional control condition, in

which the two tones are equiprobable, i.e., pdev~0:5. The in-

fluence of basic oddball sequence parameters upon SSA is con-

sistent with physiological studies [3,7,9]: increasing Df increases

SSA, as does decreasing the probability of a deviant. SSA is

insignificant in the control condition, according to a two-sided

Wilcoxon signed rank test (pv0:05).

Figure 4C shows scatter plots of the frequency-specific SIs for f1

and f2. Plots of a similar kind feature in [3,5,7,9] and provide an

alternative perspective on the data used to produce the histograms

of neuron-specific SIs, and specifically, whether those SIs derive

from adaptation to f1 or f2. The results here are typical of those

presented in all the cited studies, including [9]. Data points are

asymmetrically distributed around the SI(f2)~{SI(f1) diagonal

(drawn) when SSA is exhibited and extend further into the positive

quadrant when SSA is stronger. The distribution around the

perpendicular diagonal, SI(f2)~SI(f1) (not drawn), is symmetric,

indicating that SSA is not due to adaptation to one frequency

more than the other [3,5]. This symmetry is unsurprising if the

depression characteristics of synapses are independent of the

tonotopic location of their pre-synaptic efferents, as they are in this

model.

Effect of noise and tone rate. The SI values measured in

population B, though significant, are much lower than those

typically observed in physiology [3,7,9], although using a smaller

value for V leads to some improvement (Figure 4A). The raster

plot in Figure 4D shows the response of a neuron in population B

over 800 trials of the pdev~0:1 and Df ~0:5 condition. The

spontaneous noise background produces many spikes that are

independent of the signal, and this in turn leads to lower SI values.

Simply disabling the noise and repeating the experiments was not

a practical course of action. The spontaneous spikes are brought

about by membrane potential fluctuations (see Methods), the

presence of which influence the effectiveness of synaptic currents

[28]. Consequently, disabling the noise would mean a wholesale

re-adjustment of synaptic weights. In other words, there was no

straight-forward, controlled way to compare the performance of

the model with the noise switched on and switch off. Another

factor which could result in small SI values was the slow tone rate

used (1 Hz). Figure 4 shows the SI values obtained for different

inter-stimulus intervals (ISI; the reciprocal of the tone rate) when

pdev~0:1 and Df ~0:5 were fixed. Larger SI values were mea-

sured for oddball sequences with short ISIs. The issues of noise

and tone rate are discussed further in the next section.

ABC Model
Oddball sequences. The next task was to calibrate the

parameters of the ABC model so that the neurons in population B

exhibited similar adaptation characteristics in response to oddball

A Computer Model of Stimulus-Specific Adaptation
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sequences to units in the auditory cortex of the awake rat,

according to the results reported by von der Behrens et al. [9]. The

ABC model was tested with oddball sequences using pdev~0:1, 0:3
or 0:5 (control), and Df ~0:1 or 0:5 octaves. The tone rate and

tone duration were initially held fixed at 1 Hz and 200 ms,

respectively. A total of 1600 tones were presented in each oddball

condition: f1 was deviant in the first block of 800; f2 was deviant in

the second block of 800. These stimulus parameters are identical

to those used in the evaluation of the AB model described earlier

and to those specified in [9].

Figure 4. SI values obtained from the AB model. A) SI values measured in each condition (column) as a function of gAB (abscissa) and V (row).
Filled circles indicate an SI that differs to zero significantly (pv0:05, signed rank test). B) Histograms of the neuron-specific SIs collected over the 48
neurons in population B for five stimulus conditions, which are listed above. The median SI is printed in black on each set of axes and marked using a
vertical dotted line (*pv0:05, signed rank test). C) Scatter plots of the frequency-specific adaptation indices for f1 and f2 obtained in the model. The
number of data points out of 48 that fall strictly above the marked diagonal is printed in the top-right corner of each plot, respectively. SSA is deemed
present when this figure represents a significant majority of the neurons. D) Raster plot showing the response of an exemplary neuron in population
B over 800 trials. Red and blue dots plot spikes in response to standards and deviants, respectively. Thick line indicates tone duration. E) SI as a
function of onset-to-onset ISI. The thick, grey line provides an exponential fit.
doi:10.1371/journal.pcbi.1002117.g004
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Von der Behrens et al. [9] provide figures offering several

perspectives on the same data. These include histograms and

scatter plots of SIs, peri-stimulus time histograms and spike raster

plots that display activity on a fine time scale, and graphs showing

the response to deviant tones conditioned on various recent tone

histories. The principal aim was to obtain a qualitative match to

their data, as presented in these various formats, and wherever

possible, to achieve a quantitative fit as well. This section reports

the outcome of this process and includes some additional results.

Some useful numerical data for our purposes consisted in the

median SI values added to the histograms in Figure 4 of [9]. It was

observed that these SI values exhibited the same partial ordering

in pdev and Df as those in Figure. 4B and were on the same order

of magnitude (*0:01, max. 0:1). Thus rather than engage in a

fine-grained, high-dimensional parameter search, which would

consume several weeks, we hand-tuned the parameters, starting

with the loose fit already obtained in the AB model and

proceeding from there using heuristics. We initially set V~

0:5 octaves and gAB~14 nS, leaving two parameters free: gAC

and gCB–the synaptic weights on the A?C and C?B pathways.

These two parameters control the same notional quantity, namely,

the inhibitory effect of population A on population B. The first

increases the firing rate in population C; the second increases the

inhibitory efficacy of each spike. It was therefore appropriate to fix

one arbitrarily and vary the other. Accordingly, gAC was set to

5 nS, which was sufficient to generate moderate, tonic spiking

activity in population C (*30 Hz). gAC was then progressively

adjusted until 20 nS was reached, at which point the median SI

values were close to those in [9], and the PSTH exhibited similar

qualities to those obtained by physiologists (see next section).

Figure 5A shows the set of SI histograms obtained for the final

choice of parameters in response to the five oddball stimulus

conditions. The plots compare the median SIs obtained from the

model (black dotted lines) with those published by von der Behrens

et al. (red dotted lines). A good visual fit to the published SI

distributions (Figure 4A in [9]) is obtained, both in terms of central

tendency and spread. One notable difference between the

physiological and modelling results relates to the ordering of SIs

in those conditions where the parameters are opposed in their

effects, i.e., deviants are rare but close in frequency to standards,

or deviants are well-separated in frequency from standards but are

common. In [9], the step that makes deviants more common (pdev

from 0:1 to 0:3) reduces the SI to a greater extent than moving

them closer in frequency to standards (Df from 0:5 to 0:25), and

the same pattern is observed in SSA measurements made in IC

[3]. However, the reverse is true for the model, where reducing Df
has a greater impact on SSA (Figure 5A, cols. 2, 3). This particular

discrepancy could be addressed by choosing a smaller bandwidth

parameter, V, to improve the SI values in both of the Df ~0:25
conditions, which are slightly too low in the model. The effect of

small bandwidth changes on the model are examined shortly.

Figure 5B presents scatter plots of frequency-specific SI values,

which should be compared with Figure 4B in [9]. The plots are

visually similar in terms of the extent to which the points scatter in

the (z,z) direction, which is to be expected, given the similarity

in the SI histograms noted above. The plots differ, however, in

that the spread of points along the reverse diagonal appears

slightly greater in von der Behrens et al.’s data. This suggests the

presence of some neurons for which adaptation is strong for one

frequency and weak for the other. Although we randomly per-

turbed synaptic weights and other parameters to ensure individual

characteristics for each neuron (see Methods), it nevertheless

appears that adaptation to f1 and f2 remain roughly equal in our

model, and that the spread of SI values is chiefly due to noise.

Finally, we analysed the robustness of the model with respect to

the parameters in order to ensure that the SIs obtained did not rely

on a fine-balanced set of synaptic weights. We perturbed each

of the three main parameters of the model by +10% and

investigated the effect upon the (mean) SI measured in each

condition. These parameters were the bandwidth V, the excitatory

weight gAB, and the inhibitory weight gCB. The outcome of this

procedure is shown in Figure 5C. In each subplot, the left-most of

the data points and the dotted horizontal line indicate the

unperturbed SI. It is evident that changes in the synaptic weights

do not affect the SI considerably. The SI is most affected by

changes to the input bandwidth, V. This can perhaps be explained

by the fact that the bandwidth affects both the resolution of tones

and the total excitatory input to population B. Using a narrower

bandwidth (V~0:45 octaves) raises the SI value for the pdev~0:1
and Df ~0:25 condition slightly.

Tone rate and duration. In order to investigate the effect of

tone rate upon SSA, we presented oddball sequences with

pdev~0:1 and Df ~0:5 octaves to the ABC model with different

inter-stimulus intervals. The tone duration was fixed at 200 ms.

Figure 5D plots the SI measured as a function the ISI used. There

is a clear trend showing that a shorter interval between tones–that

is, a faster tone rate–results in greater SSA. This can be

understood in terms of the rate at which the A?B synapses

recover from depression: a shorter ISI provides less time for the

synapses to recover, which reduces the mean response to standards

and increases the SI. At the opposite extreme, during very long

ISIs, the synapses undergo a complete recovery between tones,

and SSA disappears.

The influence of the tone rate upon SSA has already been

explored experimentally in several auditory areas (IC [2,3]; MGB

[4,5]; cortex [7]). The results, where clear, tend to reveal a positive

correlation between tone rate and SI. Von der Behrens et al. [9]

suggested that the SI values they recorded in cortex were smaller

than those obtained by Ulanovsky et al. [7,8] because they used a

slower presentation rate (1 Hz; ISI~1 s), and their measurements

were from an awake, rather than an anaesthetised, animal. In

order to explore this proposal, we fitted an exponential curve to

the data points in Figure 5D and read off the SI value expected in

response to the tone rate used by Ulanovsky et al. (1.36 Hz;

ISI~736 ms). The result was an SI just above 0:2–very close to

the mode of the SI histogram published Figure 2C, col. 2 in [7] for

a comparable oddball sequence. This suggests that the differences

in the cortical responses measured by von der Behrens et al. and

Ulanovsky et al. are principally due to presentation rate.

We next examined the effect of tone duration on SSA. We

expected that most synapses would depress within a few milli-

seconds of the tone onset (see switching oddball discussion above),

and that any effect of tone rate on SSA would thus be indirect; that

is, shortening the tone would decrease the SI only by virtue of

lengthening the silent interval between the offset of one tone and

onset of the next. The SIs obtained for various ISIs and tone

durations, shown in Figure 5E, support this conclusion. Each unit-

slope diagonal in this coordinate space corresponds to a given time

to recovery, and it can be seen that the bubbles along these

diagonals are approximately equal in size. The smaller SIs are

along those diagonals which correspond to longer times to

recovery. A residual increase in SI is also apparent for shorter

tone conditions represented along the top diagonal. A key question

for calibrating future models concerns how tone duration

contributes to SSA. If increasing the tone duration and ISI by

the same amount does not affect SI, then it is likely that synapses

depress rapidly and remain depressed throughout the tone

duration–which is the case in this model. If increasing the tone

A Computer Model of Stimulus-Specific Adaptation
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duration and holding the ISI fixed does not affect SI, then one

may conclude that depressing synapses contribute only to the

phasic response of the neuron.
Peri-stimulus time histograms. Another concern was the

response of the model on shorter time scales, such as that revealed

by PSTHs averaged over the course of individual tones. Some

qualitative features of the responses in Figure 3 in [9] sought

included: the presence of spontaneous spiking noise, a phasic

response at the tone onset, a drop below spontaneous activity

throughout the duration of the tone, and a recovery to the

spontaneous rate of firing at the offset. Little effort was undertaken

to match the spike counts from [9] absolutely, as those data mixed

spike counts from single-unit and multi-unit recordings.

Figure 6A plots the PSTH averaged over 1600 tones and 48

units in the pdev~0:1 and Df ~0:5 condition, concentrating on

the changes in the sustained firing rate. The mean spike rate in the

absence of a signal is about 1 Hz; a burst accompanies the onset of

the tone, and this is followed by a period of inhibition. The time

courses of the phasic response and the recovery from inhibition

(*20 ms) are similar to those published in Figure 3A in [9]. It

should be noted that although Figure 6 gives the impression of a

20 ms burst of spikes, model neurons in fact typically fire once, if

at all, and the breadth of the PSTH peak derives from variation in

the timing of single spikes. Figure 6B is a raster plot showing the

spikes emitted by a single neuron in population B.

Figure 6C (left column) overlays the PSTHs computed for the

onset portion of standard and deviant tones in the four non-control

oddball conditions. Changes in the oddball parameters, and

between standard and deviant, appear to impact only the height of

the PSTH peak; its shape and duration are unaffected. Waveforms

plotting the difference between the deviant and standard PSTHs

are shown in right-hand column of Figure 6C (compare Figure 3B

Figure 5. SI values obtained from the ABC model. A) Histograms of the neuron-specific SIs collected over the 48 neurons in population B for
five stimulus conditions, which are listed above. The median SI is printed in black on each set of axes and marked using a vertical dotted line
(*pv0:05, signed rank test). The corresponding median SI from (Figure 2 in [9] is superimposed in red (**pv0:01). B) Scatter plots of the frequency-
specific adaptation indices for f1 and f2 obtained in the model. The number of data points out of 48 that fall strictly above the marked diagonal is
printed in the top-right corner of each plot, respectively. C) Effect of small parameter changes (+10%) on the SI. The condition is printed at the top of
each column. D) Mean SIs obtained from oddball experiments, in which the ISI was independently varied, and pdev~0:1 and Df ~0:5 were controlled.
Error bars denote standard deviation. The thick, grey curve shows an exponential fit to the data. The two read-offs correspond to the ISIs used by von
der Behrens et al. (1 second; red) and Ulanovsky et al. (736 ms; blue). E) Bubble plot showing the mean SIs obtained from oddball experiments, in
which the ISI and tone duration were varied. Note that unit-slope diagonals (light blue) are iso-contours for time to recovery (offset-to-onset).
doi:10.1371/journal.pcbi.1002117.g005
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in [9]). The largest and smallest difference waveforms correspond

to the highest and lowest SI conditions.

The suppression of noise in population B due to inhibition leads

to larger SI values in the ABC model than in the AB model, even

though the period available for integrating signal-driven spikes is

much shorter in the former, as a comparison of Figures 4D and 5B

reveals. This points to the possibility of a noise-reduction role for

inhibition, which comes into effect during periods of stimulation.

Recent tone history. The SI provides a measure of stimulus-

specific adaptation over an entire oddball sequence, but it does not

convey any information concerning how the response to a deviant

tone is affected by the immediate history of tones (unless one

initially assumes a model for how SSA comes about). To address

this issue, following von der Behrens et al., Figure 7A plots the

mean spiking activity in response to a deviant, conditioned on a

fixed number of immediately preceding standards, and normalised

by the mean response to all tones in the sequence. The results are

to be compared with those in Figure 4 in [9] and have been set out

in a similar format.

A good match to the physiological data has been achieved in at

least three regards. First, in both figures, the deviant response is

shown to increase with the number of preceding standards, and

this trend is arguably an increasing form of exponential decay

(see fitted curves). Secondly, the data are on the same order of

magnitude, and assuming an exponential trend, the asymptotic

responses (# stds:§10) fall into similar ranges: the largest

asymptote (*1:3) is seen in the high SI condition (pdev~0:1 and

Df ~0:5), and smaller asymptotes (*1:1 to 1:2) are reached in the

other three conditions. The third remark relates to the rise times of

the trends. In the high SI condition, the deviant responses do not

change after about three standard tones. In the low SI condition

(pdev~0:3 and Df ~0:25), the rise time is slowest, to the extent

that, on both figures, the exponential curve appears almost linear

over the range of interest.

Markov sequences. The model and the experimental

evidence [9] make it clear that the response to a tone is affected

by the tones which immediately precede it, and it is possible that

the SI value represents the accumulation of these local history

effects. The probability of a deviant being preceded by another

deviant in an oddball sequence is always pdev. Generalising the

oddball sequence to a two-state Markov chain provides a means of

manipulating the probability of standards and deviants following

one another, whilst maintaining the overall proportion of each (see

Methods).

We next used the ABC model to predict how the neurons in the

von der Behrens et al. study would respond to patterns of

standards and deviants generated by a two-state Markov chain.

The tone duration and tone rate were held fixed at 200 ms and

1 Hz, respectively. Each sequence comprised 1000 tones and was

presented twice, with deviants and standards exchanged in the

second presentation. In order to best reveal the influence of

varying the scaled switching metric (csw), we set Df ~0:5 to obtain

a large baseline SSA.

Figure 7B plots the mean responses to deviants and standards as

a function of csw for pdev~0:1,0:3. (Recall that csw~1 corresponds

to switching as frequently as possible.) There is a clear increase in

the deviant response as csw increases. The standard responses are

less affected, although for pdev~0:3, an increase in the response is

visible. These trends can be interpreted as follows. Lowering csw

reduces the probability of transiting to the opposite state, so that

sub-sequences of consecutive standards and deviants tend to be

longer (cf. Figure 2). Decreasing csw causes deviants to clump

together, so that the mean deviant response drops considerably.

However, standards, by virtue of appearing very often, tend

naturally to form long, unbroken groups anyway, and conse-

quently, lowering csw does not greatly influence the mean response

to the standard. This explains why a small difference in the

standard response is apparent for pdev~0:3, but not for pdev~0:1.

As the deviant response increases substantially with csw, whereas

the standard response increases only very little, it is clear that the

SI value will increase with csw, and this is indeed what is observed

from the model (Figure 7C).

Figure 6. PSTHs from the ABC model in response to tones in an
oddball sequence. A) Average, tonic firing rate of a neuron in
population B during silence and tone input (pdev~0:1;Df ~0:5),
showing the effect of inhibition on the spontaneous rate during a
tone (thick line). The phasic portion has been clipped. B) Raster plot of
the spikes from a single neuron in population B during standard and
deviant trials. C) PSTHs (left column) showing the onset responses for
standard (blue) and deviant (red) tones in different oddball conditions,
and the excess in the response to a deviant over that to a standard
(right column, green). The analysis bin width in all PSTHs is 2 ms.
doi:10.1371/journal.pcbi.1002117.g006
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Block, sequential and random stimuli. We measured the

mean response of units in population B to tones presented in the

block, sequential and random configurations (see Methods). Histo-

grams of the spike counts obtained are provided in Figure 8B and

exhibit the same ordering as the results in Figure 4A in [2]. The

mean response to tones presented in block mode was the lowest,

followed by sequential mode, and then random mode. This

ordering can be explained in terms of a combination of depression

and the overlap in the tuning of the inputs.

In block mode, of one hundred tones, ninety are preceded by an

identical tone, and nine are preceded by an adjacent frequency.

Most signals are directed via depressed synapses, and the average

output is small. In sequential mode, ninety tones are preceded by

an adjacent frequency, and nine are preceded by a tone remote in

frequency (i.e., the first tone of each ascending series); conse-

quently, the average output is higher than in the block mode case.

Finally, in random mode, it is quite improbable that a tone will be

preceded by another of the same frequency (10%) or an adjacent

frequency (&20%). The average spike count obtained in random

mode is therefore considerably higher.

Pérez-González et al. (Figure 4B in [2]) also conducted a control

experiment to test whether the stimulus configuration had any

effect upon the responses of units that did not exhibit SSA and

found that it did not. To simulate non-habituating units, we

disabled the depression in the A?B synapses (tir?0). Histograms

of spike counts for units in population B of the modified model are

plotted in Figure 8C for each configuration and exhibit little

difference. Pairwise significance tests between the three distribu-

tions confirm that the responses are unaffected by the sequence

configuration once synaptic depression is removed (two-sample

Kolmogorov-Smirnov test, pv0:01). We also note that the spike

counts are an order of magnitude higher when the input synapses

are non-depressing, as they are in [2].

ABD Model
Block, sequential and random stimuli. Block, sequential

and random stimuli were submitted to the ABD model and the

responses in populations B and D were recorded. The patterns in

the data were similar to those obtained for the ABC model and

can be understood in the same terms. A figure is included in

Supplementary Text S1.

Markov sequences. The firing rates in populations B and D

in the ABD model were measured in response to two-state Markov

chain stimuli. The sequences were presented at a rate of 4 Hz, and

tones had a duration of 100 ms. A rapid presentation rate was

used, because strong SSA is required in population B in order to

highlight the contribution of two layers of depressing synapses to

the activity in population D. If the responses to the standards and

deviants in population B are similar, then the changes in the state

of the B?D synapses are too subtle to register in population D,

which tends simply to ‘inherit’ the responses of population B.

A tone separation of Df ~0:5 octaves was used in these

experiments.

Figure 9A and 9B plot the response to Markov chains in

populations B and D, respectively. The first and second row plot

the mean standard and deviant spike counts per tone for pdev~0:1
and pdev~0:3, respectively. The bottom row plots the SIs derived

from these spike counts. The spike counts and SIs in population B

Figure 7. Adaptation rates in the ABC model and response to two-state Markov chains. A) Each marker plots the normalised mean
response to a deviant as a function of the number of standards since the previous deviant. The normalisation is with respect to the mean response to
all tones in that condition (pdev , Df ). Error bars plot the standard error of the mean. Deviants preceded by ten or more standards are collected into a
single data point. The solid curves are exponential trends fitted by a non-linear, least-squares regression. The results of von der Behrens et al. are
plotted in red (measured from Figure 4 in [9]). B) Spike counts elicited by standards and deviants as a function of csw, shown for pdev~0:1 (upper) and
pdev~0:3 (lower). C) SIs measured as a function of csw.
doi:10.1371/journal.pcbi.1002117.g007
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follow qualitatively identical trends to those obtained for the ABC

model (Figure 7B,C). This follows from the fact that a single layer

of adaptation in involved in both cases. Population D in general

inherits the responses of population B, with one exceptional note.

In the pdev~0:3 condition, for large csw (w0:5), the deviant

response declines, rather than increases. This decline can be seen as

the result of depression in the B?D synapses. These synapses only

become depressed following sufficiently high activity in population

B, and this in turn can only be obtained when f1 and f2 switch

back and forth frequently. When pdev~0:1, the highest probability

of switching (psw) possible is 0:2, which corresponds to csw~1 (see

Methods). Evidently, this is not high enough to manifest the effects

of depression in population D. However, for pdev~0:3 and csw~1,

psw~0:6: f1 switches to f2 on six out of ten trials. This explains

why the decline in the deviant response is present for pdev~0:3
only. This analysis is also consistent with the pattern of standard

responses observed.

Deviants amongst many standards. Figure 10 shows the

spike counts elicited in populations B and D in response to deviants

presented in the context of both a single standard and multiple

standards (see Methods). Two experiments were performed. In both

experiments, sequences were presented at a rate of 4 Hz, and tones

had a duration of 100 ms.

In the first experiment, tones could appear in ten positions,

spaced uniformly at 0:25 octave intervals over the centre of the

input region. A total of 1000 tones were presented, 100 of which

were deviants (i.e., pdev~0:1). Experiments were performed in ten

conditions. In the first five conditions, the deviant occupied one of

the five high-frequency positions, respectively, and the remaining

tones were standards, which occupied one of the five low-

frequency positions. The deviants and standards were always

symmetrically positioned around the centre of the input region, as

illustrated in the bottom panel of Figure 10A. This resulted in

standard-deviant frequency separations (Df ) of 0:25, 0:75, 1:25,

1:75 and 2:25 octaves. In the remaining five conditions, the

deviants occupied the same respective positions as in the first five,

both in terms of frequency and locations within the sequence, and

the standards were distributed over the nine remaining positions

with uniform probability. (The proportions were balanced so that,

in each condition, a standard appeared in each non-deviant

position exactly ninety times.)

The output of population B relies on a single layer of depressing

synapses (A?B). The graph in the top panel of Figure 10A shows

the mean spike counts evoked in population B by standards (blue),

deviants in the context of a single standard (red), and deviants in

the context of many standards (black/red stripes). The responses to

the standard tone are consistently the smallest. In every condition

except Df ~0:25, the response to a deviant was greatest when it

was embedded in a single standard. This can be explained simply

by cross-frequency adaptation. When the deviant and standard

tones were spaced closely (Df ~0:25), the deviant underwent

adaptation due to the standard. In the many standards con-

trol condition, the deviant was exposed to less cross-frequency

adaptation on average. When the deviant and standard tones were

spaced further apart (Df §0:75), the opposite was true. The

deviant underwent very little adaptation due to the single stan-

dard, but in the many standards condition, the deviant was

adapted by some of the nearby control tones. This accounts for the

fact that curves intersect at a location roughly equal to the input

bandwidth (V~0:5 octaves; see vertical, cyan line). The shape of

the curves can otherwise be explained in terms of edge effects, i.e.,

the fact that tones at the extreme edges do not experience

adaptation from tones at frequencies on both sides.

The output of population D relies on a two layers of depressing

synapses (A?B?D). The spike counts from population D are

plotted in the middle panel of Figure 10A. Many of the comments

made in connection with population B in the paragraph above

apply here too, as population D inherits the responses of

Figure 8. Response of the ABC model to tones presented in block, sequential and random configurations. Each row of this figure
corresponds to a different presentation mode: block, sequential and random. A) Pattern of tone frequencies. B) Histograms of the mean spike count
per tone for population B units. C) Histograms of the mean spike count per tone with depression on A?B synapses disabled. The solid markers on
the abscissae (in B, C) show the grand mean spike count, averaged over every tone and every unit for that condition.
doi:10.1371/journal.pcbi.1002117.g008
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population B to some extent. However, the excess in the response

to deviants in the single standard condition, as compared to the

many standards condition, is now far greater. This can be attri-

buted to the depression of the B?D synapses when many

standards are presented, and conversely, their recovery when a

single standard is presented (see Methods). Despite the large effect

at Df §0:75, the deviants in the control condition still evoke a

larger response at Df ~0:25, although the single standard and

many standard curves now intersect at a separation lower than

0:5 octaves.

These results demonstrate that a two-layer network is able to

discriminate true deviants from tones that are simply rare, even

given a frequency separation smaller than the tuning curve

bandwidths of the input neurons, provided that Df exceeds some

lower limit. Nevertheless, in principle, there remains the possibility

that the apparent novelty detection in population D is due to cross-

frequency adaptation, as it was in population B.

In order to address this issue, a second experiment was

performed, in which six tone positions were spaced at 0:5-octave

intervals around the centre of the input range. A total of 600 tones

were presented, 100 of which were deviants (pdev~1=6). Using a

broader spacing lessened the effects of cross-frequency adaptation.

The adaptation channels can thereby be considered as (almost)

independent. Owing to the broader spacing, only six tone

frequencies were used. Experiments were thus performed in six

conditions, corresponding to the three positions that the deviant

could occupy crossed with the type of standard (single or many).

The tone positions are illustrated in the bottom panel of

Figure 10B. The results are set out, in the same format as before,

in the top and middle panels of Figure 10B.

The pattern in the results is now unambiguous. The activity in

population B evoked by the deviant is very similar, regardless of

whether it is novel or not. In population D, the response to the true

deviants is larger for all Df tested. Importantly, the order of the

deviant responses at Df ~0:5 is reversed in population D. In the

first experiment, to follow a rather extreme suggestion, the

magnification of the true deviant response in population D could

have been attributed to a monotonic non-linearity introduced by

synaptic and threshold effects as it inherited from population B

(e.g., perhaps spike counts greater than two in population B were

greatly enhanced in population D). However, this reversal of

ordering cannot be explained by these kinds of mechanisms.

Discussion

We have proposed a model of stimulus-specific adaptation in

single neurons based on the convergence of depressing synapses.

The inputs to the model are Poisson processes, whose mean firing

rates depend on stimulus features. In this work, the stimulus

feature considered is frequency, represented on an octave scale.

Figure 9. Response of the ABD model to two-state Markov
chains. A) Mean spike counts per tone (top, middle panels) and SI
values (bottom) measured in population B in response to Markov chains
with various csw (see Methods). B) Corresponding results for population
D.
doi:10.1371/journal.pcbi.1002117.g009

Figure 10. Effect on context on the response to a deviant in the
ABD model. A) Mean spike counts per tone in response to deviants
(red), standards (blue) and deviants embedded in many control
standards (black/red striped) in population B (top panel) and D (middle
panel). Each column in the bottom panel indicates the frequency of the
deviant (red circle) and the standard (blue circle) used in the single
standard condition. In the many standards condition, tones appear in all
the positions with uniform probability, but the nominal deviant
frequency is still marked by a red circle. The tone positions are spaced
at intervals of 0:25 octaves. B) Results shown in the same format for six
tone positions spaced at 0:5 octave intervals. The vertical, cyan lines
mark the intersections of the deviant (oddball) and deviant (control)
curves, where present, according to a piecewise linear interpolation
between data points.
doi:10.1371/journal.pcbi.1002117.g010
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The firing-rate profiles are Gaussian-shaped, with bandwidths

similar to auditory filters. Although we have concentrated

exclusively on frequency as a stimulus feature, SSA in response

to other features, such as intensity, duration and modulation, can

in principle be modelled, provided that a population encoding of

these features is available as input to the model.

The objective was to model the spike counts of individual

neurons in response to tones embedded in various types of

sequence. The model was initially calibrated to match the SSA

recorded for oddball sequences in one study [9]. Stimulus

configurations used in other studies were submitted to the model,

including oddball sequences at other repetition rates [3,5,7] and

sequences in which the tones were presented in blocks, in

ascending sequences, and at random [2]. The trends in the results

generated by the model (e.g., with respect to Df , pdev and ISI) were

consistent with those measured in the respective physiological

experiments, even though the latter covered a variety of brain

areas, species and anaesthetic protocols.

A second contribution of the work concerns the proposed

Markov stimulus paradigm. A two-state Markov chain provides a

particularly useful generalisation of the oddball sequence, in that it

allows the experimenter to decouple the effects of probability (i.e.,

the ratio of standards to deviants) from the effects of switching. In a

conventional oddball sequence, the rate of switching is implicitly

dictated by the deviant probability. As Markov chains have not yet

been used in SSA experiments, the model also provides a direct

prediction concerning the outcome of such experiments, if the

explanation of SSA based on the convergence of depressing

synapses is correct. Specifically, the SI for a fixed deviant pro-

bability should increase as the probability of switching increases.

The current formulation of the model allows that SSA be

generated de novo wherever depressing synapses receive stimulus-

specific inputs. A one-layer model does not account for the entire

range of SSA effects observed to date, for example, instances

where SSA increases as Df increases because the response to the

standard declines [3], the tonic SSA responses observed in cortex

[7], the slow adaptation component apparent over the course of an

entire oddball sequence [8], the fact that SSA does not always

decay with increasing SOA [4,5] and that SSA is sometimes still

strong even at very long SOAs [5]. However, a large-scale model,

formed by assembling ‘modules’ of this kind, could plausibly

account for the spread of SSA throughout the auditory pathway.

In fact, there is evidence that neurons in IC and MGB might

integrate distinct sources of SSA from multiple locations and at

various latencies [3,5]. As a first step towards this proposal, we

created a two-layer model, in which one adapting process receives

input from another. (This organisation is possibly reminiscent of a

feed-forward process in which cortical neurons are driven by

depressing thalamo-cortical synapses, which in turn are driven by

adapting IC neurons, though we did not have this anatomical

organisation in mind exclusively.) The neurons in the second

population exhibited stronger SSA, and the ‘‘novelty component’’

of the response–as measured using the deviant amongst many

standards control [25,26]–was also stronger after the signal had

traversed multiple depressing layers. However, some care is

required when interpreting these results. An increase in SI can in

part be explained by the thresholding effect of the neurons, which

would be present, whether or not the intermediate synapses were

depressing. It was also shown that a one-layer model can explain

the fact that responses to deviants are larger when embedded in a

sequence consisting of a single standard, provided the frequency

separation between the deviant and standard is large enough.

Arranging depressing synapses in series leads to the elicitation of

novelty responses for smaller frequency separations.

Stimulus-specific adaptation in single neurons is likely to remain

the subject of intense investigation in the foreseeable future, as it

demonstrates a primitive form of auditory memory, upon which

other novelty-related neural responses, such as auditory mismatch

negativity, could build [10]. This article brings a new stimulus

paradigm (Markov chains) and network architecture (two layers of

adaptation, linked in series) to the attention of the research

community. We suggest that adaptation should not be prematurely

dismissed as the principal cause of SSA, as it is possible to capture

a richer range of phenomena if adapting channels are allowed to

form more complex circuits.

Supporting Information

Supplementary Text S1 This document describes the response

of the ABC model to switching oddball sequences, and block,

sequential and random tone configurations. It also describes the

response of the ABCD model to sequences generated by 3-state

Markov chains.

(PDF)
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