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Abstract

Previous studies have shown that neurons within the vestibular nuclei (VN) can faithfully encode the time course of
sensory input through changes in firing rate in vivo. However, studies performed in vitro have shown that these same VN
neurons often display nonlinear synchronization (i.e. phase locking) in their spiking activity to the local maxima of
sensory input, thereby severely limiting their capacity for faithful encoding of said input through changes in firing rate.
We investigated this apparent discrepancy by studying the effects of in vivo conditions on VN neuron activity in vitro
using a simple, physiologically based, model of cellular dynamics. We found that membrane potential oscillations were
evoked both in response to step and zap current injection for a wide range of channel conductance values. These
oscillations gave rise to a resonance in the spiking activity that causes synchronization to sinusoidal current injection at
frequencies below 25 Hz. We hypothesized that the apparent discrepancy between VN response dynamics measured in
in vitro conditions (i.e., consistent with our modeling results) and the dynamics measured in vivo conditions could be
explained by an increase in trial-to-trial variability under in vivo vs. in vitro conditions. Accordingly, we mimicked more
physiologically realistic conditions in our model by introducing a noise current to match the levels of resting discharge
variability seen in vivo as quantified by the coefficient of variation (CV). While low noise intensities corresponding to CV
values in the range 0.04–0.24 only eliminated synchronization for low (,8 Hz) frequency stimulation but not high
(.12 Hz) frequency stimulation, higher noise intensities corresponding to CV values in the range 0.5–0.7 almost
completely eliminated synchronization for all frequencies. Our results thus predict that, under natural (i.e. in vivo)
conditions, the vestibular system uses increased variability to promote fidelity of encoding by single neurons. This
prediction can be tested experimentally in vitro.
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Introduction

The vestibular system provides information about head motion

relative to space that is necessary for maintaining posture,

computing spatial orientation, and perceiving self-motion. Periph-

eral vestibular afferents encode the detailed time course of either

horizontal rotations, vertical rotations, or linear acceleration

through changes in their firing rates and spike timing [1–4].

These afferents project unto neurons within the vestibular nuclei

(VN) [5–7]. In vitro studies have established that VN neurons in

mammals are classified into two main subpopulations (type A and

type B) that differ in their responses to current input as well as

action potential shape [8–11]. In response to depolarizing current

steps, type A neurons show a sustained tonic response while the

type B neurons display spike frequency adaptation. Type B

neurons moreover display a resonance at frequencies within the

behaviorally relevant range that increases the tendency of small

amplitude, high-frequency synaptic inputs to trigger non-linear

firing behavior in the form of synchronization to the peaks of the

input [12,13]. This synchronization severely limits the range of

input frequencies and amplitudes for which the activity of type B

neurons accurately follows the input [13–15]. In contrast, type A

neurons, despite also displaying a resonance, tend to follow the

time course of current injection accurately for a much wider range

of stimulus amplitudes [12,13].

In contrast, the results of in vivo experiments have shown that the

firing of many VN neurons accurately follows the time course of

sensory stimulation over the behaviorally relevant frequency range

(0–20 Hz) [16,17]. While this result is at odds with those of in vitro

studies, it is consistent with the fact that eye movement produced by

the vestibuloocular reflex (VOR), which is largely driven by the

activities of VN neurons, has a very short latency and is accurate over

this same frequency range [18,19]. How can the same neurons

display nonlinear responses such as synchronization in vitro and yet

accurately follow the time course of sensory input in vivo? The

discrepancy can be dramatic. For example, Floccular target neurons

(FTNs) have been shown to correspond to a subpopulation of type B

VN neurons [20,21] that display the strongest tendency for nonlinear

synchronization in vitro, yet do not display such synchronization in

response to sensory input in vivo [16].

Here we test the hypothesis that the apparent discrepancy

between VN response dynamics in the in vitro and in vivo conditions

PLoS Computational Biology | www.ploscompbiol.org 1 July 2011 | Volume 7 | Issue 7 | e1002120



can be explained by an increase in trial-to-trial variability under in

vivo vs. in vitro conditions. To do so, we used a simplified

biophysical model that has been previously used to describe VN

neuron activity in vitro [14]. We show that this model displays

membrane potential oscillations that give rise to a resonance in the

membrane potential response. This resonance is transferred to the

spiking response and causes nonlinear synchronization to

sinusoidal current injections over a wide range of frequencies (0–

20 Hz). We then mimicked the high-conductance state that is

typical of in vivo conditions in our model by increasing the

membrane conductance. Moreover, we mimicked their large

resting discharge rates by increasing the bias current. Interestingly,

both of these changes in parameter values were not sufficient to

remove this synchronization that thus severely limits the range of

inputs for which our model’s response follows the input accurately.

However, we show that adding noise to our model in order to

mimic the resting discharge variability displayed by VN neurons in

vivo can be sufficient to eliminate synchronization over the full

range of behaviorally relevant frequencies.

Results

Our biophysical model is based on the Hodgkin-Huxley

formalism and consists of a single compartment endowed with

several membrane conductances (see Methods and Figure 1). Note

that a full biophysical justification of the model can be found

elsewhere [12,14]. Although previous studies have shown that this

model could display a resonance in its spiking response to

sinusoidal current injections [14], they have not systematically

explored its dependence on different parameters as well as the

interactions between different membrane conductances that

underlies its generation.

As it has been previously shown that resonances in the spiking

response could be caused by resonances in the membrane

potential [22], we first investigated the models capacity to display

membrane potential oscillations in response to current input. To

do so, we first turned off the spiking sodium and rectifier potassium

conductances by setting their maximum conductances values to

zero (i.e. �ggNa~�ggK~0mS=cm2). We note that this approach is

valid for the parameter values used here (see Methods).

Intrinsic membrane conductances give rise to damped
membrane potential oscillations in the presence of
perturbations

It is well known that damped or sustained membrane potential

oscillations can arise from the interplay between several mem-

brane conductances including voltage gated calcium channels

[23]. The magnitude of these oscillations is furthermore strongly

dependent on the amount of depolarizing current bias [22]. As

such, we varied both the maximum calcium conductance �ggCa and

the bias current Ibias in our model. We first studied the membrane

potential response to step current injections as these have been

previously used to demonstrate the presence of membrane

potential oscillations [23].

Our results show that the model can display damped membrane

potential oscillations with different magnitudes and frequencies for

a wide range of Ibias and �ggCa values (Figures 2A,B,C). We

characterized this dependency by systematically varying both Ibias

and �ggCa over a wide range of values and quantified the amplitude

of these damped oscillations by computing an oscillation index (see

Methods). Further, we computed the oscillation frequency from

the squared magnitude of the Fourier transform of the response

(see Methods). Our results show that, for a given value of the

maximum calcium conductance �ggCa, the oscillation index displays

a maximum as a function of the bias current Ibias (Figure 2D). The

oscillation frequency displayed qualitatively similar behavior to

that of the oscillation index (Figure 2E). We note that the

oscillation frequency was mostly within the behaviorally relevant

range found in natural vestibular stimuli (0–20 Hz) [24]. This

indicates that the model can display calcium induced damped

membrane potential oscillations, the magnitude and frequency of

which are highly dependent on the level of depolarizing bias

current Ibias. We note that qualitatively similar results were

obtained when varying the persistent sodium conductance �ggNaP

(Figure S1). The results agree with the known effects of persistent

sodium, namely to depolarize the membrane and amplify the

resonant behavior [23].

It is well known that neurons receive massive synaptic

bombardment under in vivo conditions, which gives rise to a

high-conductance state [25,26]. Mathematically, the increased

membrane conductance under such synaptic bombardment can

be mimicked by increasing the leak conductance �ggleak and by

Figure 1. Vestibular anatomy and model description. Schematic
of peripheral vestibular system, indicating projections from semi-
circular canals to the vestibular nuclei (VN). VN neurons were modeled
using the Hodgkin-Huxley formalism with several membrane conduc-
tances as shown. Sensory input was mimicked by somatic current
injection.
doi:10.1371/journal.pcbi.1002120.g001

Author Summary

The vestibular system senses the motion of the head in
space and is vital for gaze stability, posture control, and
the computation of spatial orientation during everyday
life. The activities of single vestibular neurons recorded in
the brains of awake behaving animals show that they can
accurately transmit information about the time course of
head motion, which is necessary for several behaviors such
as the vestibulo-ocular reflex required for gaze stabiliza-
tion. In contrast, this is not the case when the same
neurons are recorded in isolation and sensory stimulation
is mimicked experimentally. We investigated the cause for
this discrepancy by studying how a mathematical model of
vestibular neuron activity responds to mimics of sensory
stimulation under different conditions. We found that the
differences in the activities of vestibular neurons recorded
in awake behaving animals and in isolation can be
explained by the addition of synaptic noise, which in turn,
increases the variability of action potential firing that is
seen in more natural conditions. Our modeling results
make a clear prediction that can be tested experimentally.

In vivo Conditions Affect Vestibular Encoding
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adding an appropriate amount of bias current [22,27]. As such, we

characterized the oscillation index and frequency as a function of

both the leak conductance �ggleak and the bias current Ibias.

Although increasing the leak conductance �ggleak decreased the

oscillation amplitude, it also decreased the oscillation frequency to

values that were contained within the behaviorally relevant

frequency range (Figures 3A,B,C). These changes were further-

more seen for a wide range of bias current Ibias values. We

observed that the oscillation index decreased as a function of the

leak conductance �ggleak for a given value of Ibias (Figure 3D). In

contrast, the oscillation index displayed a maximum as a function

of Ibias for a given value of �ggleak (Figure 3D). The oscillation

frequency again displayed qualitatively similar behavior to that of

the oscillation index as a function of both �ggleak and Ibias and

remained within the behaviorally relevant range (Figure 3E). As

such, we conclude that an increased leak conductance is not

sufficient to eliminate our models tendency to display membrane

potential oscillations. These oscillations could potentially be

detrimental to the models ability to accurately encode the

timecourse of current injections as their frequency is within the

behaviorally relevant range. In order to better understand the

source of these oscillations, we performed a standard perturbation

analysis in our model around the resting membrane potential (see

Methods). Our results show that the linearized model gave rise to

oscillation indices and frequencies that were quantitatively similar

to those obtained with the full model (compare Figures 2,3 with

Figure S2). Moreover, computing the eigenvalues of the Jacobian

matrix of the linearized system revealed that they all had a

negative real part. As such, the membrane potential oscillations

are unstable as our model has a stable fixed point. This is

consistent with the damped oscillations that we observed in

response to steps (Figure 2).

Membrane potential oscillations induce a resonance in
the spiking activity

We next investigated whether the membrane potential oscilla-

tions induced a resonance in the membrane potential response and

whether this resonance causes a resonance in the spiking activity.

As such, we used a zap stimulus (i.e. a sinusoidal waveform with a

constant amplitude and a frequency that increases linearly as a

function of time; Figure 4A) as an input to our model. Such inputs

are frequently used to characterize resonant behavior [28,29]. Our

results show that the model does display a resonance in the

membrane potential in response to zap current injection for

different values of �ggleak and Ibias (Figures 4B,C,D). We note that

these responses show asymmetries, which is to be expected since

Figure 2. The model displays damped membrane potential oscillations in response to step current input. The model’s membrane
potential response to step current input was characterized for a physiologically plausible range of bias current and calcium conductance values. A–C)
Example membrane voltage responses and the normalized squared magnitude of their Fourier transforms. These correspond to parameter values as
follows: A) Ibias~{0:1nA, �ggCa~0:05mS=cm2 , B) Ibias~0nA, �ggCa~0:125mS=cm2 , and C) Ibias~0:25nA, �ggCa~0:25mS=cm2 . D) Oscillation index (see
Methods) measuring the strength of the oscillation in the subthreshold response as a function of Ibias and �ggCa. E) The peak frequency component of
the squared magnitude of the responsesÕ Fourier transforms as a function of Ibias and �ggCa . The parameter values corresponding to panels A,B,C are
also shown. Other parameter values were: �ggNaP~0:05mS=cm2, �ggKCa~1mS=cm2 , and s~0nA.
doi:10.1371/journal.pcbi.1002120.g002

In vivo Conditions Affect Vestibular Encoding
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we are using a nonlinear model. We characterized this resonance

by an oscillation index that quantifies its magnitude (see Methods)

as well as its frequency (i.e. the zap frequency for which the

membrane potential oscillation is maximal). Our results show that

both the oscillation index and frequency computed from the

models response to zap currents had qualitatively similar

dependencies on �ggleak and Ibias to those of the oscillation index

and frequency computed from the models response to step

currents (compare Figures 4E,F to Figures 3D,E, respectively).

How does resonant behavior in the membrane potential relate

to resonant behavior in the spiking activity? We investigated this

by turning on the spiking conductances (i.e. �ggNa~10mS=cm2,
�ggK~2mS=cm2) and by studying the variations in the instanta-

neous firing rate in response to zap current injection. Our model

displayed differential resonant behavior in its spiking activity in its

response to zap current injection as a function of the leak

conductance �ggleak and the bias current Ibias (Figures 5A, B,C,D).

We note that these responses also show asymmetries, which is to

be expected since we are using a nonlinear model. In general,

parameter values that gave rise to resonance in the membrane

potential also gave rise to resonance in the spiking activity

(compare Figures 4B,C,D with Figures 5B,C,D, respectively). We

further characterized the resonance in the spiking activity by an

oscillation index that quantifies its magnitude (see Methods) as well

as its frequency (i.e. the zap frequency for which the ensuing

variation in the instantaneous firing rate is maximal). Our results

show that the oscillation index and frequency computed from the

spiking activity had dependencies on �ggleak and Ibias that followed

qualitatively similar trends to those of the oscillation index and

frequency computed from the membrane potential (compare

Figures 5E,F to Figures 4E,F, respectively). Note, however, that

the spiking resonance frequency varied over a wider range than

the membrane potential resonance. Importantly, the resonance in

the spiking regime persisted over a wide range of parameter values

and its frequency overlapped with the behaviorally relevant range.

Increasing variability promotes faithful encoding of the
stimulus time course through changes in firing rate

It is expected that the resonance in the spiking activity will lead

to nonlinear synchronization of the response with the peaks of the

input current that is expected to be detrimental to the faithful

encoding of the stimulus time course through changes in firing

rate. This synchronization occurs because of the tendency of

excitable systems to display n:m phase locking (i.e. fire n spikes per

m cycles of forcing) in response to sinusoidal stimuli [30–32]. We

thus characterized the models response to sinusoidal current

injections that mimicked the waveforms of sinusoidal sensory

stimuli used experimentally in vivo [16,17,19,24,33–36] and

systematically varied the frequency of stimulation between 0 and

25 Hz. Our results show that the model tends to display phase

Figure 3. Effects of increased leak conductance on membrane potential oscillations. The model’s membrane potential response to step
current input was characterized for physiologically plausible ranges of bias current and leak conductance values. A–C) Example responses and the
squared magnitude of their Fourier transforms. These correspond to parameter values as follows: A) Ibias~0:5nA, �ggleak~0:3mS=cm2 , B) Ibias~0:5nA,
�ggleak~0:5mS=cm2 , and C) Ibias~0:1nA, �ggleak~0:6mS=cm2. D) Oscillation index as a function of Ibias and �ggleak . E) The peak frequency component of
squared magnitude of the responses Fourier transform as a function of Ibias and �ggleak. The parameter values corresponding to panels A,B,C are also
shown. Other parameter values were �ggNaP~0:05mS=cm2 , �ggKCa~1mS=cm2 , �ggCa~0:25mS=cm2, and s~0nA.
doi:10.1371/journal.pcbi.1002120.g003

In vivo Conditions Affect Vestibular Encoding
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locking for high (w12 Hz) frequencies (Figures 6A,B,C). We

therefore quantified the models accuracy at encoding the detailed

time course of sinusoidal current injections through changes in

firing rate by computing the variance accounted for (VAF, see

Methods). Our results show that the VAF was high (&1) for a wide

range of Ibias values and stimulus frequencies below 5 Hz

indicating a strong tendency for faithful encoding of the current

stimulus time course (Figure 6D). Increasing the baseline firing

rate by increasing the bias current widened the range of stimulus

frequencies for which our model displayed negligible phase locking

and could faithfully encode the detailed time course of sinusoidal

input from 0–5 Hz to 0–10 Hz (Figure 6D). However, we

observed low VAF values (v0:1) for stimulus frequencies above

10 Hz for a wide range of Ibias values. In order to test whether

these low VAF values corresponded to parameter regimes for

which our model displays phase locking, we computed a phase

locking index (PLI) (see Methods). As expected, we observed that

parameter regimes that gave rise to high VAF also gave rise to low

PLI values and vice-versa (compare Figures 6D and 6E). This

strong negative correlation between PLI and VAF for a wide range

of Ibias and stimulus frequencies within the natural frequency

range (0–20 Hz) shows that the low VAF values correspond to a

strong tendency for phase locking.

Our simulation results are largely contrary to recordings from

VN neurons performed in vivo. Indeed, many VN neurons

accurately follow the time course of vestibular stimuli through

changes in firing rate and do not display synchronization or phase

locking for frequencies between 0 and 25 Hz [16]. As our

modeling results described above were obtained for high values of

�ggleak and were robust to increases in the bias current Ibias, it is

unlikely that the discrepancy between our model results and

experimental recordings from VN neurons in vivo is due to a

change in membrane conductance or the fact that VN neurons

might be in a depolarized state in vivo. Thus, while our results show

that increasing the bias current Ibias such that the firing rate

increases to values seen in vivo did increase the range of frequencies

for which our model could faithfully encode the time course of

sinusoidal input, this alone was not sufficient to eliminate

Figure 4. Membrane potential responses to zap current input are greatest for a given frequency. The model’s membrane potential
response to zap currents is greatest for a given input frequency. The magnitude of the response and the input frequency for which it occurs vary with
both Ibias and �ggleak. A) Instantaneous frequency of the zap stimulus frequency as a function of time. B–D) Example membrane voltage responses as a
function of time, corresponding to parameter values as follows: B) Ibias~0:05nA, �ggleak~0:3mS=cm2 , C) Ibias~0:35nA, �ggleak~0:3mS=cm2, and D)
Ibias~0:35nA, �ggleak~0:6mS=cm2 . The envelope of each response is fit with a black curve with an arrow marking the peak in the response and the
associated instantaneous frequency. E) Oscillation index (see Methods) as a function of Ibias and �ggleak . F) Oscillation frequency as a function of Ibias and
�ggleak . The parameter values corresponding to panels B,C,D are also shown. Other parameters values were �ggNaP~0:05mS=cm2 and
�ggNa~�ggK~0mS=cm2.
doi:10.1371/journal.pcbi.1002120.g004

In vivo Conditions Affect Vestibular Encoding

PLoS Computational Biology | www.ploscompbiol.org 5 July 2011 | Volume 7 | Issue 7 | e1002120



nonlinear synchronization for the full range of frequencies found

in natural vestibular stimuli (Figures 6D,6E,7A).

Thus, we hypothesized that the increased trial-to-trial variability

that is characteristic of in vivo conditions [25,26] might explain this

discrepancy. It is expected that such variability will limit phase

locking by inducing firing at all phases of the input and thus

promote the faithful encoding of the stimulus waveform by

changes in firing rate (see [37] for review). We thus addressed the

specific question of whether the levels of resting discharge

variability displayed by VN neurons in vivo are sufficient to

account for the suppression of nonlinear phase locking, which is

observed in vitro, thereby allowing faithful encoding of the stimulus

time course through changes in firing rate.

In order to test this hypothesis, we systematically varied both the

bias current Ibias as well as the noise intensity within the

experimentally observed ranges of baseline firing rates

(Figure 7A) and resting discharge variability as quantified by the

coefficient of variation (CV) (Figure 7B), respectively. We note that

previous studies have shown that VN neurons displayed values of

CV in their resting discharge ranging from 0.05 to 0.7 [16,17] and

resting discharge firing rates between 6 and 170 Hz [16,17,34].

Furthermore, we also explored the effects of such increased noise

intensities on the models firing rate resonance, via repeated

presentation of the zap stimulus for the same range of bias current

values and noise intensities. For higher bias currents (0:4nA)

corresponding to the baseline firing rates seen under in vivo

conditions (*50Hz), the addition of noise is seen to reduce the

oscillation index (Figure 7C). Addition of noise also decreased the

oscillation frequency to values near the behaviorally relevant range

(Figure 7D). As an aside, we note that, for low values of bias

current (0:1nA), we observed a sharp increase followed by a

decrease in the oscillation frequency (Figure 7D). This sharp

increase at low noise intensities is consistent with previous studies

showing that, for low noise, model neurons have a resonance at

the spontaneous firing rate, while for higher noise intensities, the

resonance frequency shifts to lower values [22]. We do not further

Figure 5. Spiking responses to zap current input display a resonance. The model’s spiking response to zap current input also displays a
resonance whose intensity and frequency vary with both Ibias and �ggleak . A) Instantaneous stimulus frequency as a function of time. B–D) Example
instantaneous firing rates as a function of time. These correspond to parameter values as follows: B) Ibias~0:05nA, �ggleak~0:3mS=cm2, C)
Ibias~0:35nA, �ggleak~0:3mS=cm2 , and D) Ibias~0:35nA, �ggleak~0:6mS=cm2 . The envelope of the response is fit with a black curve with an arrow
marking the location of the maximum response amplitude. E) Oscillation index as a function of Ibias and �ggleak . F) Oscillation frequency as a function of
Ibias and �ggleak . The parameter values corresponding to panels B,C,D are also shown. All other parameters had the same values as previously described
except �ggNa~10mS=cm2 and �ggK~2mS=cm2 .
doi:10.1371/journal.pcbi.1002120.g005

In vivo Conditions Affect Vestibular Encoding
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explore this regime since VN neurons typically have baseline firing

rates under in vivo conditions that are outside those for which this

regime is observed.

We first recomputed phase histograms in response to sinusoidal

current injection (Figures 8A,B,C) for the same range of Ibias and

stimulation frequencies used before but with the addition of noise

with a low intensity that gave rise to low resting discharge CV

values (0.04–0.24) and with bias currents giving rise to firing rates

between 25–80 Hz in the absence of stimulation. We note that

these overlap with the experimentally observed ranges of values

[16]. We observed that this noise increased the range of stimulus

phases that elicited spiking for higher stimulus frequencies, which

reduced phase locking (compare Figures 8B,C with Figures 6B,C,

respectively). However, this noise was not sufficient to completely

eliminate phase locking as can be seen from the low VAF and high

PLI values observed for high (w8Hz) stimulation frequencies for a

wide range of Ibias values (Figures 8D,E respectively).

We next performed simulations with a higher noise intensity

giving rise to higher resting discharge CV values (0.5–0.7) and bias

current giving rise to firing rates from 35–85 Hz. Our results show

that the phase histograms in response to sinusoidal current

injection were all sinusoidal in shape, even for parameters that

gave rise to phase locking in the absence of noise (compare

Figures 9A,B,C with Figures 6A,B,C, respectively). This indicates

a lack of phase locking as every phase of the input can now elicit

spiking. We recomputed the VAF as a function of Ibias and

stimulus frequency and found large (w0:7) values over the entire

range explored (Figure 9D). Consequently, the model displayed

Figure 6. Synchronization to sinusoidal input and its consequences on faithful encoding of this input through changes in firing
rate. We characterized the model’s response to sinusoidal current injections with different frequencies using the phase histogram. A–C) Three
example raster plots (top) and phase histograms (bottom) for different values of Ibias and fstim. These correspond to parameter values as follows: A)
Ibias~0:2nA, fstim~3Hz, B) Ibias~0:1nA, fstim~12Hz, and C) Ibias~0:3nA, fstim~15Hz. Also shown are the best fit sinusoidal curve to each phase
histogram (red). D) Variance accounted for (VAF) as a function of Ibias and fstim . E) Phase locking index (PLI) characterizing the model’s tendency to
synchronize to the sinusoidal current as a function of Ibias and fstim. It is seen that the VAF is low for parameters for which the PLI is high and vice-
versa. The parameter values corresponding to panels A,B,C are also shown. Additional parameters were the same as described previously except
�ggleak~0:6 mS=cm2 .
doi:10.1371/journal.pcbi.1002120.g006

In vivo Conditions Affect Vestibular Encoding
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negligible phase locking as quantified by the PLI (Figure 9E). Note

that the range of values of VAF and PLI used in Figures 9D and

9E, respectively, were the same as those used previously (compare

Figures 9D,E with Figures 6D,E and Figures 8D,E, respectively).

As such, this noise intensity was sufficient to eliminate nonlinear

phase locking and thereby give rise to faithful encoding of the

stimulus waveform through changes in firing rate for all stimulus

frequencies within the behaviorally relevant range.

In order to verify the robustness of our results, we also

computed a second measure of nonlinear synchronization, the

nonlinearity index (NI, see Methods), that is based on the ratio of

the Fourier coefficient amplitude squared at the second harmonic

to that at the stimulus frequency. This measure had qualitatively

similar behavior to that of the PLI measure as a function of the

bias current Ibias, stimulus frequency, and noise intensity (compare

Figure S3 to Figures 6,8,9).

Finally, in order to test that these results were not an artifact of

our using current input, we used conductance input rather than

current input stimuli in our model. The effect of noise on phase

locking in this model (Figure S4) were in qualitative agreement

with those shown in Figures 6,8, and 9, illustrating the robustness

of our main result to the type of input used. We note that this

outcome was expected given that increasing the membrane

conductance alone was not sufficient to completely eliminate

phase locking over the behaviorally relevant frequency range.

The effects of noise intensity on our models ability to accurately

encode the time course of sinusoidal current injections through

changes in firing rate are summarized in Figure 10. While the PLI

rapidly decreases as a function of increasing noise intensity, the

VAF rapidly increases (Figure 10A). For comparison, the resulting

firing rate and CV values in the absence of stimulation are also

shown for the same noise intensities (Figure 10B). Because high

noise intensities were sufficient to eliminate nonlinear phase

locking from our model, we used linear systems analysis to

characterize the relationship between input and output in our

model. Specifically, we computed the gain (i.e. the coefficient

relating input and output) as a function of Ibias and stimulus

frequency. Our results show that the gain increases smoothly as a

function of stimulation frequency for a given value of Ibias in the

presence of high noise but not so when noise is not present

(Figures 10C, D). This result is important as previous studies

conducted in vivo have shown that VN neurons generally display

Figure 7. Effects of the bias current and noise intensity on resting discharge rate and variability, and resonance strength and
frequency. The effects of the bias current Ibias and noise intensity s on the resting discharge rate and variability as quantified by the coefficient of
variation (CV) were explored. A) Resting discharge rate as a function of Ibias and s. B) CV as a function of Ibias and s. Parameter values were the same
as those previously described. C) Oscillation index from zap stimuli as a function of Ibias and noise intensity s. D) Oscillation frequency as a function of
Ibias and noise intensity s.
doi:10.1371/journal.pcbi.1002120.g007
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increasing gains as a function of stimulus frequency [16,17]. Our

results therefore suggest that the high-pass filtering characteristics

seen in most VN neurons in vivo which are due, at least in part, to

an intrinsic resonance. This resonance is attenuated by the high

resting discharge variability that results from the intense

convergent synaptic input that the cell receives under in vivo

conditions.

Discussion

Summary of results
The goal of this study was to resolve an apparent discrepancy

between the responses of VN neurons to current injection in vitro

and to sensory input in vivo. VN neurons are prone to display

nonlinear responses such as synchronization to the peaks of

sinusoidal current injection in vitro. In contrast, studies performed

in vivo have shown that VN neuron can respond to sensory input

through changes in firing rate that accurately follow variations in

sensory stimulation over a wide frequency range [16]. We

investigated the cause for this discrepancy by subjecting a

mathematical model based on the Hodgkin-Huxley formalism of

in vitro VN neuron activity to in vivo conditions.

Our results show that this model displays membrane potential

oscillations that persisted for a wide range of parameter values.

These oscillations give rise to a resonance in the membrane

potential which is transmitted to the spike train, causing nonlinear

behavior such as synchronization or phase locking over the natural

stimulus frequency range (0–20 Hz). It is well known that neural

variability resulting from the intense synaptic bombardment to

which VN neurons are subjected to in vivo will promote faithful

Figure 8. Effects of low intensity noise on synchronization to sinusoidal input and its consequences on faithful encoding of this
input through changes in firing rate. We characterized the model’s response to sinusoidal current injections with different frequencies using the
phase histogram as before. A–C) Three example raster plots (top) and phase histograms (bottom) for the same parameter values used in Figure 6 with
the best sinusoidal fits (red). D) VAF as a function of Ibias and fstim . E) PLI as a function of Ibias and fstim . It is seen that low intensity noise somewhat
disrupts phase locking but that there are still ranges of parameter values for which the model displays significant phase locking. The parameter
values corresponding to panels A,B,C are also shown. Parameter values were the same as those previously described except for s~0:0022nA.
doi:10.1371/journal.pcbi.1002120.g008
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encoding of the stimulus waveform through changes in firing rate

[37]. As such, we tested the hypothesis that the levels of resting

discharge variability seen under in vivo conditions could account for

the fact that some VN neuron classes do not display synchroni-

zation in vivo. To do so, we added noise whose intensity was

calibrated in order to match the resting discharge variability

experimentally observed in VN neurons under in vivo conditions.

We found that low noise intensities did not completely eliminate

phase locking behavior. In contrast, we found that high noise

intensities almost completely eliminated phase locking and that

our model could now faithfully encode the time course of

sinusoidal current injections at frequencies contained within 0–

20 Hz for a wide range of input bias currents. These results are

consistent with experimental recordings from VN neurons in vivo,

suggesting that the addition of noise in the in vivo condition

underlies the discrepancy between the responses of VN neurons to

current injection in vitro and to sensory input in vivo. Furthermore,

they suggest that the vestibular system uses increases in variability

to increase the fidelity of encoding by single neurons. This strategy

appears to be found across several sensory systems (reviewed in

[37]).

Correspondence between anatomy and function in VN
In the present study, we focused on the type B neurons as

observed in vitro. This is because these neurons display the greatest

tendency to respond to sinusoidal current injection with

synchronization as well as spike frequency adaptation. In contrast,

type A neurons show a sustained tonic response and faithfully

Figure 9. Effects of high intensity noise on synchronization to sinusoidal input and its consequences on faithful encoding of this
input through changes in firing rate. We characterized the model’s response to sinusoidal current injections with different frequencies using the
phase histogram as before. A–C) Three example raster plots (top) and phase histograms (bottom) for the same parameter values used in Figure 8 with
the best sinusoidal fits (red). D) VAF as a function of Ibias and fstim . E) PLI as a function of Ibias and fstim . It is seen that high intensity noise eliminates
phase locking and promotes faithful encoding of the input waveform by changes in firing rate as can be seen from the sinusoidal phase histograms,
high VAF values, and negligible PLI values. The parameter values corresponding to panels A,B,C are also shown. Parameter values were the same as
those previously described except for s~0:0225nA.
doi:10.1371/journal.pcbi.1002120.g009
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follow the time course of sinusoidal current injections that are up

to three times larger than those followed by type B neurons [8–

11,13]. The differences between type A and type B neurons are

thought to be mediated by differences in the levels of different

membrane conductances [12,14]. In particular, type B neurons

display larger calcium-activated conductances [13]. Such currents

mediate spike frequency adaptation (see [38,39] for review).

Theoretical studies have shown that spike frequency adaptation

leads to high-pass filtering of time varying stimuli [40–42], which is

consistent with our modeling results showing an increased gain for

higher frequencies. We note that one could use the same model as

was used here in order to mimic the activity of type A VN neurons

by changing membrane conductances as was done previously [14].

We predict that a model of type A VN neuron activity would not

display phase locking for the sinusoidal current injections

considered here but would display phase locking for larger

amplitudes.

In vivo studies have found three major functional neuronal

classes in MVN that are based on the responses to voluntary eye

movements and passive whole-body rotation: 1) Vestibular-Only

(VO) neurons, 2) Position-Vestibular-Pause (PVP) neurons, 3)

Floccular Target neurons (FTN). VO neurons project to the spinal

cord and are thought to mediate vestibulo-spinal reflexes that

control posture [43–45], as well as cerebellum and thalamus

[46,47], where they are thought to play a role in spatial orientation

computation. The vestibular system also generates the vestibulo-

ocular reflex (VOR) that functions to effectively stabilize gaze by

moving the eye in the opposite direction to the on-going head

motion. The three-neuron arcs mediating the VOR are well

characterized. The primary pathway consists of projections from

afferents to PVP neurons, which in turn project to extraocular

motoneurons that control the eye muscles. A secondary pathway is

mediated via FTN neurons that receive direct input from the

Floccular lobe of the vestibular cerebellum and also project to the

extraocular motoneurons. The correspondence between type A

and B MVN neurons as observed in vitro and the different

functional classes observed in vivo is not well understood in general.

The most direct link that has been made to date is based on the

findings of electrophysiological and anatomical studies that suggest

a subpopulation of type B neurons receive input from Floccular

purkinje cells, such that they most likely correspond to the FTN

neurons which have been characterized in vivo [20,21]. This

correspondence between type B cells and FTN cells, however, is

unexpected since in vivo experiments have shown that FTN

neurons do not display robust phase locking and instead respond

to sinusoidal head rotations through changes in firing rate that

scale with stimulus intensity for frequencies spanning the

behaviorally relevant range in vivo [16]. Thus, our results provide

a potential explanation of this discrepancy originating in the

intense synaptic bombardment that these neurons receive in vivo.

Figure 10. Effects of varying noise intensity on the VAF and PLI. A) Increasing noise intensity results in decreased PLI and consequently
increased VAF values for Ibias~0:1nA and fstim~12Hz. B) Increasing noise intensity also results in increased resting (ie S(t)~0) discharge rate as well
as increased spiking variability as quantified by CV. C) Gain obtained from our model with no noise (s~0nA) as a function of Ibias and fstim . D) Gain
obtained from our model with high noise intensity (s~0:0225nA) as a function of Ibias and fstim . It is seen that for a given value of Ibias the gain
increases as a function of the input frequency fstim until about 22 Hz.
doi:10.1371/journal.pcbi.1002120.g010
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The correspondence between VO and PVP neurons in vivo and

type A/B neurons in vitro is not known. However, previous studies

have shown that PVP neurons display nonlinear phase locking

behavior in response to high frequency (w12Hz) sinusoidal

rotations [16]. This is consistent with our modeling results

showing that phase locking is not abolished for low noise

intensities (Figure 8). Our results therefore predict that: i) PVP

neurons should have type B like responses in vitro; ii) PVP neurons

with low resting discharge rates will display a greater tendency for

phase locking and, iii): this tendency is a consequence of their low

resting discharge variability. Previous studies have reported that

VO neurons do not display phase locking dynamics but have only

explored frequencies between 0 and 4 Hz [48]. Further studies are

needed to explore VO neuron responses to higher stimulus

frequencies and might help elucidate their correspondence with

either type A or type B neurons.

In conclusion, while it is clear that the filtering properties of VN

neurons as observed in vivo are shaped by intrinsic mechanisms

[13], our simulations are consistent with a growing body of

literature emphasizing the role of network mechanisms [42,49]

such as synaptic bombardment that is present under in vivo

conditions affecting their responses to sensory input.

Sources of variability in VN
What are the sources of resting discharge variability in VN

neurons? A unique aspect of the vestibular system, compared to

other sensory systems, is that information processing is strongly

multisensory and multimodal at the first stage of central

processing. This occurs because the vestibular nuclei receive

inputs from a wide range of cortical, cerebellar, and other

brainstem structures in addition to direct inputs from the

vestibular afferents. First, there is complete overlap in the terminal

fields of regular and irregular afferents in each of the major

subdivisions of the vestibular nuclei [50], and the results of

electrophysiological studies have shown that about half of the VN

neuron population receive significant input from both afferent

classes [5,6]. Additionally, not only do neurons typically receive

convergent input from otolith as well as canals afferents, but there

is an impressive convergence of extra-vestibular information

within the VN (reviewed in [51]). Notably, sensory inputs

encoding somatosensory, proprioceptive, and visual information

as well as premotor signals related to the generation of eye and

head movements are sent directly to the vestibular nuclei. In alert

animals, these extra-vestibular signals strongly modify the

processing of vestibular information during our everyday activities,

such that this convergence plays an important role in shaping the

simple sensory-motor transformations that mediate vestibulo-

ocular and vestibulo-spinal reflexes as well as higher-order

vestibular functions, such as self-motion perception and spatial

orientation. Thus, as a result of their cortical, cerebellar, and

brainstem and afferent input afferents, VN neurons are likely to

receive substantial synaptic bombardment in vivo. For example,

extracellular recordings in the cerebellar flocculus reveal irregu-

larities in the spontaneous simple spikes firing rate of the output

neurons (i.e. Purkinje cell) [52]. This provides a clear source of

variability to FTN neurons which might explain their lack of

synchronization to sensory stimulation as predicted from our

modeling results.

Differences between in vivo and in vitro conditions in VN
neuronal activity

Previous reports have found that the high conductance state of

neurons in vivo can have a significant influence on their processing of

synaptic input through changes in intrinsic dynamics [27,53–55].

Specifically, these changes consist of: 1) increased synaptic input that

is dominated by excitation that acts as a net depolarizing bias; 2)

increased membrane conductance and; 3) increased variability. In

general, bridging the gap between in vivo and in vitro conditions is not

well understood because it is not clear which combination the three

aforementioned effects is responsible for the observed changes in

dynamics. For example, both changes in the depolarization bias as

well as in variability can alter burst dynamics in thalamocortical

neurons [54,56].

Previous studies have investigated the effects of in vivo conditions

on the activity of VN neurons [14,57,58]. In particular, it has been

proposed that heterogeneities might allow for the VN neuron

population to accurately encode the time course of vestibular

stimuli while maintaining nonlinear synchronization at the single

neuron level [58]. This hypothesis is contrary to more recent

experimental results showing that many neurons in the VN, such

as FTNs, do not display phase locking in vivo [16]. Our results

instead predict that increased variability seen under in vivo

conditions can account for the fact that these neurons accurately

follow the time course of vestibular stimuli through changes in

their firing rates and that nonlinear behavior such as phase locking

occurs because of intrinsic rather than network dynamics.

Moreover, it has been proposed that in vivo conditions could be

mimicked in VN neurons by increasing the bias current, thereby

increasing the firing rate [14,57]. Our results show that increases

in both bias current and membrane conductance are not sufficient

to eliminate synchronization for the parameter values used in our

model. Instead, our results predict that variability in the form of

noise is the main reason for many VN neurons not displaying

synchronization in vivo. The mechanism by which this noise

attenuates synchronization is not by increasing the baseline firing

rate but instead by enabling the firing of action potentials at all

phases of the stimulus cycle. This prediction can be tested

experimentally in vitro by mimicking in vivo conditions through the

dynamic clamp technique [25]. Similar variability-related effects

have been observed experimentally in recordings from entorhinal

cortical stellate cells in vitro [27]. Indeed, these cells show a strong

tendency to display subthreshold membrane potential oscillations

in the theta range in vitro [59] but no significant peak in the theta

range has been observed in their activities in awake behaving

animals [60]. This suggests that these subthreshold membrane

oscillations are strongly attenuated in vivo. The results of Fernandez

and White [27] support this viewpoint as they observed weaker

oscillations when they increased conductance and variability

through dynamic clamp in vitro.

In particular, we note that our model did not include the inward

rectifier current Ih that is known to be present in VN neurons [21].

While this current has been previously shown to increase the

magnitude of membrane potential oscillations [23], it is unlikely to

be activated in the depolarized state characteristic of in vivo

conditions in VN neurons [21]. Indeed, in order to activate Ih, the

membrane potential must be brought to about 15 mV below the

spiking threshold for at least 300 ms [21]. Such a large

hyperpolarization leads to a cessation of firing as observed in vitro

that lasts for at least 300 ms. However, VN neurons are

spontaneously active with firing rates of *50Hz in vivo and do

not respond to vestibular stimuli (for the intensities typically used

in vivo studies) with a complete cessation of firing that lasts 300 ms

[17]. Instead, VN neurons smoothly encode variations in head

velocity through changes in their firing rate but their firing rates

does not reach zero. Thus, it seems unlikely that the membrane

potential would reach the values that are necessary to activate Ih.

Finally, we note that there exist highly detailed compartmental

models of VN neurons that are more morphologically realistic
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than the model used here [61]. While it would be more realistic to

use a detailed compartmental model with an anatomically

accurate dendritic tree, such a model would have a significantly

greater number of parameters than our current one. Justifying the

values used for many of these parameters (i.e. the precise location,

strength, and dynamics of afferent synapses on the dendritic tree)

would be non-trivial at best. Based on our results, we can conclude

that taking into account the shape of the dendritic tree of VN

neurons is not necessary to explain the discrepancy between in vitro

and in vivo results. Nevertheless, future experiments should focus

on understanding the effects of dendritic processing in VN

neurons.

Stochastic resonance in VN neurons promotes linear
coding: functional consequences

Our results have demonstrated that noise can enhance signal

transmission in our model VN neuron. Such enhancement of

signal transmission by noise is often referred to as stochastic

resonance [62–67], a phenomenon by which noise enhances the

transmission of a subthreshold signal (i.e. a signal whose intensity is

not sufficient to induce spiking activity on its own). We note that

our result is, strictly speaking, not stochastic resonance since we

chose model parameter values within the suprathreshold regime

(i.e. the stimulus could induce action potential firing in the absence

of noise). However, in our model, one of the effects of the noise is

to induce firing for subthreshold stimulus values. Such effects have

been widely discussed before and are commonly referred to as the

Òlinearization of systems by noise [37,68].

While this linearization by noise enables our model VN neuron to

faithfully encode the time course of input within the natural frequency

range (0–20 Hz), such encoding will only be seen for a finite range of

stimulus amplitudes. Indeed, stimuli with larger amplitudes are

expected to elicit nonlinear synchronization in VN neurons despite

high trial-to-trial variability. In particular, such large amplitude

stimuli might lead to activation of Ih from the argument above. The

putative function of such nonlinear encoding remains a mystery and

should be the focus of future studies.

What is the functional role of suppressing synchronization in

VN neurons in vivo? It is clear that such synchronization in the

form of phase locking is used extensively in the auditory system

[69–76]. Previous studies have shown that the addition of noise

leads to a linearization of the steady state current-response

relationship (i.e. the f-I curve) in model neurons [68]. Such

linearization of the f-I has also been shown to give rise to gain

control mechanisms [77–79] which will extend the dynamic range

(i.e. the range of input values that can be coded through a change

in output) of a neuron. We propose that increased variability

serves to increase the dynamic range of VN neurons and therefore

promote more faithful encoding of the stimulus time course

through changes in firing rate over a wider range of vestibular

stimulus intensities encountered by the organism in the natural

environment. This prediction can be tested in vitro using the

aforementioned dynamic clamp technique.

Methods

Model
We used a conductance based Hodgkin-Huxley-type model of

VN neuron activity in vitro [14,80,81]. The model includes spiking

sodium, persistent sodium, delayed rectifier potassium, calcium,

and calcium-activated potassium currents. We note that our model

did not include the hyperpolarization activated inward rectifier

current Ih which is present in VN neurons [21] and that addition

of this current did not qualitatively affect the nature of our results

(data not shown). The model is described by the following system

of stochastic differential equations:

Cm
_VV~Iinput{Iions

_nn~½n?(V){n�=tn(V )

_xx~½x?(V ){x�=tx(V)

_CC~Kp({ICa){RcC

_pp~½p?(V){p�=tp(V )

ð1Þ

where Iions~INazIKzIK½Ca�zICazINaPzIL are the ionic

currents, which are given by

INa ~�ggNam3
?(V )(1{n)(V{VNa)

IK ~�ggKn4(V{VK)

IK½Ca� ~�ggK½Ca�(
C

KdzC
)(V{VK)

ICa ~�ggCax2(
Kc

KczC
)(V{VCa)

INaP ~�ggNaPp(V{VNa)

IL ~�ggL(V{VL):

ð2Þ

The dynamical variables are the membrane voltage V , the calcium

concentration C, and the activation variables n, x, and p. Although

synaptic inputs are most accurately described by fluctuating

conductances as described by Destexhe et al. [26], an effective

synaptic input [22] can be modeled as an additive current

decomposed into three components: a bias current, additive current

fluctuations, and a stimulus modulation current. As such, we had

Iinput~Ibiaszsj(t)zS(t) where Ibias is the bias current and S(t) is

the stimulus current injection. s is the noise intensity and j(t) is low

pass filtered (4th-order Butterworth with 50 Hz cutoff) [82] Gaussian

white noise with mean zero and standard deviation unity. The

activation variables z [ fn,x,pg obey the following equation:

z?(V )~
1

1zexp {2a(z) V{V
(z)
1=2

� �h i : ð3Þ

Furthermore, while the time constants tx(V ) and tp(V ) are taken to

be independent of the membrane voltage V, the voltage dependent

time constant tn(V ) is given by

tn(V )~
1

2l cosh a(z) V{V
(z)
1=2

� �h i : ð4Þ

Unless otherwise indicated, parameter values were taken as originally

tuned [14], and are listed as follows: �ggNa~10mS=cm2,

VNa~55mV, V
(m)
1=2

~{33mV, a(m)~0:055, �ggK~2mS=cm2,

VK~{80mV, V
(n)
1=2

~{40mV, a(n)~0:055, l~0:2, �ggCa~

0:25mS=cm2, VCa~124mV, V
(x)
1=2

~{30mV, a(x)~0:08, tx~

10ms, �ggK½Ca�~1mS=cm2, Kp~0:05, Kc~1, Kd~0:5, Rc~0:05,

�ggNaP~0:05mS=cm2, VNaP~55mV, V
(p)
1=2

~{56mV, a(p)~0:075,

tp~5ms, �ggL~0:3mS=cm2, VL~{50mV, and CM~1mF=cm2.

The model equations were integrated numerically using an Euler-

Maruyama numerical integration technique [83] with an integration

time step of 0:02ms.
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If the time scale at which �ggNa and �ggK vary at is much smaller

than all other time scales in the model, then one can replace the

sodium and potassium currents in equation (1) by their average

values during an action potential. This is the case for the

parameter values used here. Indeed, the time constant of �ggK is

*0:1ms while the minimum time constant of all other processes in

our model is 5 ms (note that �ggNa tracks the membrane potential

instantaneously and thus has an effective time constant of zero).

We note that, for our parameter values, the average value of

summed sodium and potassium currents during an action

potential is 0:12nA, which is an order of magnitude less than

the range of bias currents used in this study. As such, our approach

of setting �ggNa~�ggK~0mS=cm2 is valid if one is interested in

looking at the dependence of these oscillations on parameter

values.

Neurons are known to receive massive amounts of synaptic

bombardment from afferent inputs in vivo, which puts them into a

high-conductance state. Such conditions are characterized by a

depolarized and fluctuating membrane potential with a reduction

in input resistance (or equivalently an increase in membrane

conductance) [26]. Although each individual synaptic input can be

accurately modeled by including the presynaptic action potential

sequence, the increased membrane conductance and membrane

potential fluctuations due to synaptic bombardment onto a neuron

can be accurately reproduced by increasing the leak conductance,

adding a depolarizing bias current, and adding a noisy current

[22,82,84]. We note that increasing the leak conductance in order

to mimic the increased membrane conductance due to synaptic

bombardment is used in dynamic clamp experiments [27].

In order to verify the robustness of our results to more

biophysical conditions, we also modeled our sinusoidal stimulus

input using an excitatory conductance-based input rather than a

simple current input. In this case we used an input current

Iinput~Ibiaszsj(t)zgex(t)(V{Vex), with the excitatory reversal

potential Vex~0. The excitatory conductance was set to

gex(t)~�ggex(1zS(t)), where S(t) is now a sinusoid with amplitude

of unity, ensuring that gex(t)w0. The overall strength of the

sinusoidal input is then set by �ggex~0:07mS=cm2, the value of

which was chosen to achieve a comparable firing rate modulation

as achieved for equivalent simulations with current input.

Measures
For membrane potential responses to step current inputs, the

oscillation index is calculated from the response in the time

domain V(t), from the following equation:

Iosc~
Vmax{Vmin

Vf{Vi

, ð5Þ

where Vmax is the maximum voltage occurring after the input step

onset, and Vmin is the minimum voltage that occurs after the

maximum. Vi and Vf denote the initial and final values of the

voltage, respectively.

In the case of zap current injection, the oscillation index was

computed from the envelope of the amplitude modulated

membrane voltage response. The envelope was computed by

subdividing the membrane potential waveform into windows of

length 100 ms and by taking the maximum value within each

window. The resulting curve was then low-pass filtered (50th-order

low-pass FIR filter with 1.875 Hz cutoff). The oscillation index is

then given by the envelope maximum minus the value at t = 0. For

the spiking activity, the oscillation index is computed in a manner

similar to that described above but using the instantaneous firing

rate (i.e. the reciprocal of the ISIs) waveform. In that case, each

window was 400 ms long and the filter was a 50th-order low-pass

FIR filter with 0.625 Hz cutoff.

We also characterized the model’s response to sinusoidal

current injections that spanned the behaviorally relevant frequen-

cy range (0–20 Hz). As done before [14], to convert current

density to current, we assume that our model neuron is spherical

with a radius of 20 mm, so that 10 mA=cm2 is equivalent to

*0:5nA. This was done in order to facilitate the comparison of

our simulation with experimental data. We used sinusoid

amplitudes of A~0:13nA, as were previously used experimentally

in vitro [13]. Sinusoidal current injections of a given frequency

lasting one cycle were repeatedly presented with the model

neuron’s initial conditions randomized before each presentation,

until 100 seconds of data had been generated for each

combination of 100 stimulus frequencies and 100 values of bias

current. A cycle histogram was then computed and normalized in

order to give the firing rate R(t), as a function of the stimulus

phase. The firing rate was then fit to the optimal linear regression

model defined as R̂R(t)~A sin(2pfstimtzw)zB, as is done

experimentally [18,19,85]. Although fitting the phase w of R̂R(t)
is nonlinear, an optimal linear fit was made for many possible

phase values held constant, and the best linear fit taken. The

goodness of the fit is then quantified by the variance-accounted-for

(VAF) given by the following equation:

VAF~1{
S(R(t){R̂R(t))2T

S(R(t){SR(t)T)2T
, ð6Þ

where S:::T~ 1
N

PN
i~1 ::: with N the number of bins. In the case of

a perfect fit, the numerator is equal to zero and the VAF is equal

to its maximum value of one. The worst possible fit results in a the

minimal VAF of zero. The gain and phase of the response are then

calculated as the amplitude of the fit sinusoid normalized by the

amplitude of the stimulus and the phase shift of the fit with respect

to that of the stimulus, respectively [18,19,85].

The phase locking index (PLI) is computed using the entropy of

the cycle histogram [86]. Unlike measures of vector strength [87],

this measure can quantify the degree of phase locking present in

multi-peaked phase histograms, as present in our case. It is given

by:

PLI~1{E0=Emax

E0~{SP(w) log2 P(w)T

Emax~ log2 N:

ð7Þ

where P(w) is the probability of firing a spike as a function of stimulus

phase. E0 gives the entropy of the probability distribution and Emax is

the maximum entropy possible and is that of a uniform distribution.

The PLI thus ranges between 0 and 1. As phase locking is a nonlinear

phenomenon, we supplement this measure with the use of an

additional more intuitive measure we refer to as a nonlinearity index

(NI). This is done by taking the Fourier transform of the of the firing

rate, R(t), in response to sinusoidal stimulation. We then take the

ratio of the magnitudes of the Fourier coefficient squared (jFCj2) at

three times the stimulus frequency divided by that at the stimulus

frequency. We thus define NI as:

NI~jFCj23fstim
=jFCj2fstim

: ð8Þ

If the firing rate is a linear function of the sinusoidal stimulus, then it

can only contain power at the stimulus’ frequency. If there is phase
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locking, however, then the magnitude squared of the Fourier

coefficients at higher harmonics of the stimulus frequency will be

non-zero.

Linearized model
In the subthreshold regime with spiking sodium and rectifying

potassium conductances set to zero, our nonlinear neuron model

reduces to the following:

_VV ~FV (V ,C,x,p)

_CC ~FC(V ,C,x)

_xx ~Fx(V ,x)

_pp ~Fp(V ,p),

ð9Þ

where FV (V ,C,x,p)~ ½Iinput { (ICazIK½Ca�zINaPzILeak)�=Cm,

FC(V ,C,x)~Kp({ICa){RcC, and Fx(V ,x)~ ½x?(V ){x�=
tx(V ), and Fp(V ,p)~½p?(V ){p�=tp(V ). The steady state values

of all dynamical variables, V�,C�,x�, and p�, can then be found

numerically by solving the four equations Fi~0, for i [ fV ,C,x,pg.
The system can then be linearized in the neighbourhood of these

fixed points by Taylor expanding the four functions Fi and keeping

only first order terms in the expansions [88]. Redefining the four

system variables in terms of their deviation from steady state,

d~yy~~yy{~yy� with the vector of dynamical variables defined as

~yy~½V ,C,x,p�’,~yy�~½V�,C�,x�,p��’, and 0 denotes vector transposi-

tion, the linearized system can then be described by the system of

equations:

d _~yy~yy~Md~yy ð10Þ

where M is the Jacobian, which is given by:

M~

LFV

LV

LFV

LC

LFV

Lx

LFV

Lp

LFC

LV

LFC

LC

LFC

Lx
0

LFx

LV
0

LFx

Lx
0

LFp

LV
0 0

LFp

Lp

2
6666666666664

3
7777777777775
~yy~~yy�

ð11Þ

Finally, the Matlab function eigs is used to find the four

eigenvalues, Ei for i [ f1,2,3,4g, of the matrix M ordered by their

magnitudes. All four eigengalues have a negative real part

implying that the fixed point is stable. However, the last two

eigenvalues were complex conjugates of each other, which implies

the existence of oscillatory dynamics in the time course of the

perturbations as they decay to zero. The frequency of such

oscillations is given by the imaginary part of the third or fourth

eigenvalues divided by 2p. In order to assess the strength of these

oscillations, the linearized model was simulated for step current

inputs and the same oscillation index previously used for step

current responses was calculated.

Supporting Information

Figure S1 Effects of increased persistent sodium con-
ductance on membrane potential oscillations. The

model’s membrane potential response to step current input was

characterized for physiologically plausible ranges of bias current

and persistent sodium conductance values. A–C) Example

responses and the normalized squared magnitude of their Fourier

transforms. These correspond to parameter values as follows: A)

Ibias~{0:125nA, �ggNaP~0:02mS=cm2, B) Ibias~0:3625nA,

�ggNaP~0:098mS=cm2, and C) Ibias~0:8nA, �ggNaP~0:168mS=
cm2. D) Oscillation index as a function of Ibias and �ggNaP. E)

Oscillation frequency as a function of Ibias and �ggNaP. The

parameter values corresponding to panels A,B,C are also shown.

Other parameter values were �ggCa~0:25mS=cm2, �ggKCa~1mS=
cm2, �ggleak~0:3mS=cm2, and s~0nA.

(TIF)

Figure S2 The linearized models response to step input
agrees quantitatively with that of the full model. A) (left)

Oscillation index and (right) oscillation frequency as a function of Ibias

and �ggCa for the linearized model. B) (left) Oscillation index and (right)

oscillation frequency as a function of Ibias and �ggleak for the linearized

model. C) (left) Oscillation index and (right) oscillation frequency as a

function of Ibias and �ggNaP for the linearized model. In each case, other

parameter values were the same as those used for the full model

shown in Figures 2,3, and S1, respectively.

(TIF)

Figure S3 A nonlinearity index (NI) gives qualitatively
similar results to those obtained with the PLI measure. A)

NI as a function of the bias current Ibias and stimulus frequency

without noise. B) Example PSTH responses corresponding to

Ibias~0:1nA and fstim~12Hz. C) The squared magnitude of the

Fourier transform of the PSTH response. D) NI as a function of the

bias current Ibias and stimulus frequency with low intensity noise. E)

Example PSTH responses corresponding to Ibias~0:1nA and

fstim~12Hz. F) The squared magnitude of the Fourier transform

of the PSTH response. G) NI as a function of the bias current Ibias

and stimulus frequency with high intensity noise. H) Example PSTH

responses corresponding to Ibias~0:1nA and fstim~12Hz. I) The

squared magnitude of the Fourier transform of the PSTH response.

(TIF)

Figure S4 Synchronization to sinusoidal conductance
input and the effects of noise. A) VAF as a function of the

bias current Ibias and stimulus frequency without noise. B) PLI as a

function of the bias current Ibias and stimulus frequency without

noise. C) NI as a function of the bias current Ibias and stimulus

frequency without noise. D) VAF as a function of the bias current

Ibias and stimulus frequency with low intensity noise. E) PLI as a

function of the bias current Ibias and stimulus frequency with low

intensity noise. F) NI as a function of the bias current Ibias and

stimulus frequency with low intensity noise. G) VAF as a function

of the bias current Ibias and stimulus frequency with high intensity

noise. H) PLI as a function of the bias current Ibias and stimulus

frequency with high noise. I) NI as a function of the bias current

Ibias and stimulus frequency with high intensity noise. All other

parameters values were the same as those used in the equivalent

simulations shown in Figures 6, 8, and 9 for current input, with the

additional excitatory synaptic conductance �ggex~0:075mS=cm2.

(TIF)
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