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Abstract

We describe the first large scale analysis of gene translation that is based on a model that takes into account the physical
and dynamical nature of this process. The Ribosomal Flow Model (RFM) predicts fundamental features of the translation
process, including translation rates, protein abundance levels, ribosomal densities and the relation between all these
variables, better than alternative (‘non-physical’) approaches. In addition, we show that the RFM can be used for accurate
inference of various other quantities including genes’ initiation rates and translation costs. These quantities could not be
inferred by previous predictors. We find that increasing the number of available ribosomes (or equivalently the initiation
rate) increases the genomic translation rate and the mean ribosome density only up to a certain point, beyond which both
saturate. Strikingly, assuming that the translation system is tuned to work at the pre-saturation point maximizes the
predictive power of the model with respect to experimental data. This result suggests that in all organisms that were
analyzed (from bacteria to Human), the global initiation rate is optimized to attain the pre-saturation point. The fact that
similar results were not observed for heterologous genes indicates that this feature is under selection. Remarkably, the gap
between the performance of the RFM and alternative predictors is strikingly large in the case of heterologous genes,
testifying to the model’s promising biotechnological value in predicting the abundance of heterologous proteins before
expressing them in the desired host.
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Introduction

Gene translation is a complex process through which an mRNA

sequence is decoded by the ribosome to produce a specific protein.

The elongation step of this process is an iterative procedure in

which each codon in the mRNA sequence is recognized by a

specific tRNA, which adds one additional amino-acid to the

growing peptide [1]. As gene translation is a central process in all

living organisms, its understanding has ramifications to human

health [2,3,4], biotechnology [5,6,7,8,9,10,11,12] and evolution

[4,7,11,13].

In recent years there has been a sharp growth in the number of

new technologies for measuring different features related to the

process of gene translation [5,6,10,14,15,16,17,18,19]. However,

this process is still enigmatic, with contradicting conclusions in

different studies. In particular, the identity of the essential

parameters that determine translation rates is still under debate

[6,20,21]. Recent studies have suggested that the order of codons

along the mRNA (and not only the composition of codons) plays

an important role in determining translation efficiency

[7,20,22,23]. Starting with the seminal work of MacDonald

et al. [24,25] and the work of Heinrich et al. [24,25] theoretical

models for the movement of ribosomes (and other biological

‘machines’) have been presented [26,27,28]. Despite being

relatively realistic these models haven’t been used for the analysis

of large scale genomic data. The models that have been used for

this purpose, while making promising and worthy first strides, have

not attempted to capture the nature of the translation elongation

process on all its various physical aspects [6,13,26,27,28,29,30].

The most widely used predictors of translation efficiency are the

codon adaptation index (CAI) [28] and the tRNA adaptation

index (tAI) [27]. As we describe later, the tAI is the mean

adaptation of a gene (i.e., of its codons) to the tRNA pool of the

organism. The CAI is similar to the tAI albeit in this predictor the

weight of each codon is computed based on its frequency in a set of

highly expressed genes. Based on measures such as the tAI, it is

possible to estimate the translation rate of single codons. Thus, it

possible to study (local) translation rate profiles along genes [7,31].

As we depict later, in this study we take into account some

additional physical aspects of translation elongation.

The aim of the present research is twofold:

First, we address the need for a simple, physically plausible

computational model that is solely based on the coding sequence (i.e. a

vector of codons in each gene). In addition we further require that
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the model will allow for a computationally efficient analysis of the

translation process on a genome-wide scale and across many

species. Focusing on the coding sequence, we by no means wish to

imply that it is only factor taking place in the determination of

translation rates. Nevertheless, since it has been widely recognized

as a prime factor in the translation elongation process, we will

herby study it in isolation. To this end, we introduce a new

approach for modeling translation elongation. Our model is aimed

at capturing the effect of codon order on translation rates, the

stochastic nature of the translation process and the interactions

between ribosomes. We demonstrate that our approach gives

more accurate predictions of translation rates, protein abundance

and ribosome densities in endogenous and heterologous genes in

comparison to contemporary approaches.

Second, using our model, we address the need for a better

understanding of the translation process. Our analysis unravels

several central and yet uncharacterized aspects of this process.

Results

A Stochastic Flow Model of Translation Elongation
Our model is based on the Totally Asymmetric Exclusion Process

(TASEP, see, for example [24,25], and subsequent studies [32]. In

the TASEP, initiation time as well as the time a ribosome spends

translating each codon is exponentially distributed (mean transla-

tion times are of course is codon dependent). In addition,

ribosomes span over several codons and if two ribosomes are

adjacent, the trailing one is delayed until the ribosome in front of it

has proceeded onwards (Figure 1A, Methods, see also Text S1).

Despite its rather simple description, the mathematical

tractability of the model described above is poor and full, large

scale, simulations of it are relatively slow. In order to allow for

analytical treatment and in order to reduce simulation times, we

introduced two simplifications. First, instead of describing the

dynamics at the level of a single mRNA molecule we describe the

dynamics after it was averaged over many identical mRNA

molecules (Methods). Second, we limit ourselves to a spatial

resolution that is of the size of a single ribosome. These

simplifications will be further explained and justified later.

The simplified model, entitled Ribosome Flow Model (RFM), is

illustrated in Figure 1 B–C. mRNA molecules are coarse-grained

into sites of C codons; (in Figure 1B C = 3); in practice, as we

discuss with more details latter, we use C = 25 (unless otherwise

mentioned), a value that is close to various geometrical properties

of the ribosome such as its footprint on the mRNA sequence and

the length of its exit channel [7,14,22,33,34,35]. As we report

later, the choice C = 25 is not arbitrary and was made since it gives

the best predictions of protein abundance levels.

Ribosomes arrive at the first site with initiation rate l but are

only able to bind if this site is not occupied by another ribosome.

The initiation rate is a function of physical features such as the

number of available free ribosomes [7,36,37], the folding energy of

the 59UTRs [6,20], the folding energy at the beginning of the

coding sequence [6,20,38,39] and the base pairing potential

between the 59UTR and the ribosomal rRNA [40]. As some of

these features and their combined effect are unknown and out of

the scope of this paper, we assume a global initiation rate or infer

the initiation rate from the coding sequences (as we show in the

section ‘Optimality of the translation machinery’). We do so for

the sake of simplicity and in order to avoid over-fitting of data.

A ribosome that occupies the i{th site moves, with rate li, to

the consecutive site provided the latter is not occupied by another

ribosome. Transition rates are determined by the codon

composition of each site and the tRNA pool of the organism.

Briefly, taking into account the affinity between tRNA species and

codons, the translation rate of a codon is proportional to the

abundance of the tRNA species that recognize it (Figure 1, see

more details in the Methods section).

Denoting the probability that the i{th site is occupied at time t
by pi(t), it follows that the rate of ribosome flow into/out of the

system is given by: l 1{p1(t)½ � and lnpn(t) respectively. The rate of

ribosome ‘flow’ from site i to site iz1 is given by:

lipi(t) 1{piz1(t)½ � (see the Methods section). As we discuss in

details (see the Methods section and Figure 1D), the RFM and the

full TASEP model, give similar predictions, yet the RFM runs

markedly faster.

In this paper we focus on the steady state solution of the

equations presented in Figure 1C and specifically in the rate of

protein production at steady state. Steady state is a widely used

assumption in cases like these (see, for example, [7,32,33]) and is

hence a good starting point for a large scale study as the one

conducted here. In addition, a pioneering analysis that took into

account mRNA degradation and was not based on the steady state

assumption, was unable to improve the predictive power of the

model with respect to existing data (Methods). We note however,

that this line of investigation is far from being exhausted and that it

should be revisited once degradation rates of mRNA molecules

and proteins become available (this data is currently lacking for the

vast majority of genomes and heterologous genes).

We denote the steady state site occupation probabilities by

fp1,:::,png and the steady state ribosome flow through the system

by R. The latter denotes the number of ribosomes passing through

a given site per unit time and we note that this rate is nothing but

the steady state rate of protein production.

Basic Properties of the Ribosome Flow Model
One advantage of the RFM is its amenability to both analytical

and numerical analysis. In particular one can study ribosome

density profiles and protein production rates from the equilibrium

dynamics of the translation process. The Methods section

Author Summary

Gene translation is a central process in all living organisms.
However, this process is still enigmatic, and contradicting
conclusions regarding the essential parameters that
determine translation rates appear in different studies.
We introduce a new approach for modeling the process of
translation elongation. Taking into account the stochastic
nature of the translation process and the excluded volume
interactions between ribosomes, our model is aimed at
capturing the effect of codon order and composition on
translation rates. We demonstrate that in comparison to
commonly used approaches, our approach gives more
accurate predictions of translation rates, protein abun-
dance levels and ribosome densities across many species.
Using our model, we address the need for a better
understanding of the inner workings of the translation
process. To this end, we analyze large scale genomic
measurements made in several organisms. Our analysis
unravels several central and previously uncharacterized
aspects of the translation process. For example, we show
that in all organisms that were analyzed (from bacteria to
Human), ribosome allocation is optimized to give maximal
translation rate in minimal cost. In addition, we provide the
first direct estimate for the effect of codon order on
protein abundance, showing that in E. coli and S. cerevisiae
it can solely account for more than 20% of the variation in
this quantity.

The Ribosome Flow Model
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describes how to solve the model analytically under steady state

conditions; in this section we discuss some of the basic properties of

the solution.

The behavior of the model under very low and very high

initiation rates. A central debate in the field is about the rate

limiting stage of gene translation: i.e. is it the initiation stage or the

elongation stage (see, for example, [6]). Analysis of our model

demonstrates that, in principle, both cases are possible.

As can be seen in Figure 2A, at very low initiation rates,

lvvminfl1,:::,lng, the initiation rate, l, is the rate limiting step

of the translation process (i.e. it is the bottleneck and the

translation rate is determined by it). Thus, the translation rate is

approximately given by l. On the other hand, at high initiation

rates, lwwminfl1,:::,lng, the rate limiting step is the elongation

(‘‘the flow from codon to codon’’); in this case, the rate of protein

translation converges to a constant that is determined by the set of

elongation rates flig (Figure 2A; see some more technical details

in the Methods section).

The elongation rate capacity of a coding sequence. One

important feature that was discovered by implementing our model

is the fact that each gene has a different translation elongation

capacity. This capacity is the maximal translation rate of the gene,

achievable for infinitely large l. In effect, one needs not go to

‘‘infinitely large’’ values of l since the limiting capacity is already

achieved for finite and biologically feasible values. As can be seen

in Figure 2A (for large l), the capacity is a finite number that

depends on the mRNA sequence; in addition, for each gene there

is a possibly different lC , such that for every initiation rate l above

lC , the elongation capacity is roughly equal to the maximal

elongation capacity. As expected, Figure 2B shows that the

elongation rate capacity of highly expressed genes is higher than

the capacity of lowly expressed genes (S. cerevisiae; Methods).

Predicting Translation Rates, Protein Abundance and
Ribosome Densities of Endogenous Genes

Translation rates and protein abundance. The model was

first evaluated by an analysis of three organisms for which large

scale Protein Abundance (PA) measurements are available: E. coli,

S. pombe and S. cerevisiae (Methods). It is important to note that

direct measurements of translation rates are not available.

However, as explained in the Methods section, the protein

abundance of a gene is expected to increase monotonically with its

translation rate. Thus, a good predictor of translation rate is

expected to have a high Spearman correlation with the

corresponding protein abundance. Indeed, throughout the paper

we mainly report correlation of RFM translations rates with

protein abundance (Methods). We compare the predictions of the

RFM to the predictions of other commonly used predictors.

In each case, genes were divided into groups/bins (of equal size)

according to their expression levels and the number of protein

abundance measurements (a larger number of measurements, e.g.

the data of S. cerevisiae, enables more bins); in each group the

correlation between the predictions of the model and the actual

protein abundance level was computed. The predictions of the

RFM are compared with those of the tAI, which is the current state

of the art, codon bias based, PA predictor [7,20,26,27,29,30,41].

The RFM and tAI share resemblance in the sense that they are

both based on codon adaptation to the tRNA pool. However, in

contrast to the RFM, the tAI is not sensitive to the order of codons

or to the effect caused by ribosome jamming. The tAI is also a

central component in other PA predictors that incorporate

additional genomic features such as mRNA levels and evolution-

ary rates [26]. Thus, whenever the predictions of the RFM are

better than those of the tAI, it can beneficially replace the latter as

a component within a more sophisticated predictor.

As can be seen in Figure 3, in the vast majority of organisms and

across expression levels, the RFM outperforms the tAI (and other

predictors that are based on codon bias). Specifically, in E. coli the

global correlation between PA and the predictions of the RFM is

R = 0.54 (p,10216) vs. R = 0.43 (p,10216) for the tAI (408 genes

with PA data). In addition, when subdividing into expression

levels, correlations are consistently higher in all subgroups

(Figure 3). In S. pombe results were similar: the correlation with

PA was higher for the RFM, R = 0.63 (p,10216) vs. R = 0.56

(p,10216) for the tAI (1465 genes with PA data). In addition,

correlations are higher in most of the expression level subgroups

(Figure 3).

In the case of S. cerevisiae the tAI performs better than the RFM

only for the most highly expressed genes. Nevertheless, it is the

RFM (and not the tAI) that yields significant correlation with

protein abundance in most of the other ranges (see Figure 3C).

This may be due to the tendency of highly expressed genes in S.

cerevisiae to be more robust to permutations of the codons’ order

(see discussion in the next section) and due to the fact that the tAI

was specifically tailored and optimized for S. cerevisiae [27].

Finally, RFM is seen to outperform the tAI also when mRNA

levels are controlled for and when the product of the predicted

translation rate with the mRNA level of the transcript is used as

the PA predictor; see Text S2 and Figures S21, S22, S23, S24, and

S25.
The effect of codon order on translation rates. All

common measures of translation rate/translation efficiency/

codon bias (see, for example, [27,28]) predict that PA increases

with the relative incidence of ‘fast’ codons along the transcript.

Recently, it has been suggested that codon order (in addition to

content) may regulate gene translation via the effect of ribosome

jamming [7,22,23]. For example, slower codons at the end of the

mRNA, may render the transcript prone to more ‘traffic jams’ and

thus decrease the translation rate. Previous studies have attempted

to estimate the effect of codon bias in the case were synonymous

codons are randomly permuted and the final protein product does

not change [6,21]. Nevertheless, common measures of translation

rate are not sensitive to codon order and so a direct estimation

regarding the effect of the latter on the translation rate is still

lacking.

In this section, we aim at isolating the effect of codon order on

the translation rate. In other words we would like to answer the

following question: is there a difference between the translation

rates of two mRNA transcripts that are characterized by identical

codon content but different codon order. To this end, we applied

our model on random permutations of native mRNA transcripts.

Figure 1. Basic properties of the Ribosome Flow Model (RFM). A. The TASEP model: each codon has an exponentially distributed translation
time; ribosomes have volume and can block each other. B. The RFM has two free parameters: the initiation rate l and the number of codons C at each
‘site’ (proportional to the size of the ribosome). Each site has a corresponding transition rate li that is estimated based on the co-adaptation between
the codons of the site and the tRNA pool of the organism (Methods). The output of the model consists of the steady state occupancy probabilities of
ribosomes at each site and the steady state translation rates, or ribosome flow through the system. C. The set of differential equations that describe
the RFM, denoted as equation (1). D. RFM vs. TASEP: the correlation between translation rates predicted by the two models is close to perfect
(r = 0.963, p,10216) while the running time of the TASEP is orders of magnitude longer (usually several days vs. minutes).
doi:10.1371/journal.pcbi.1002127.g001

The Ribosome Flow Model
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This was done for each gene separately, in order to compute the

standard deviation in the predicted PA for the set of randomly

permuted transcripts. Results are given in percentages (i.e.

normalized by the original PA; see the exact details in the

Methods section). We named this measure DPCO (dependence of

protein abundance on codon order). We emphasize again that

DPCO analysis cannot be performed using common measures of

translation rate/translation efficiency since these are only sensitive

to the codon content which was left unchanged by the permutation

process.

A DPCO index of 20%, for example, means that we can quite

easily get a 20% change in the gene’s PA just by changing the

order of its codons, and probably get a 40% change in PA by

optimizing the latter with respect to codon order. Codon

permutations may change the resultant protein; nevertheless, the

DPCO gives a large scale estimation of the distinct effect of codon

order on protein production rates and protein abundance.

Analysis of several organisms revealed that the DPCO of

endogenous genes is surprisingly high. The mean DPCO is

16.35% in E. coli (stdev is 8.43%: in 10% of the genes the DPCO

Figure 2. The effect of the initiation rate on the translation rate and elongation rate capacity. A. The figure depicts ten typical profiles of
translation rate vs. the initiation rate l (blue) in S. cerevisiae genes; the mean genomic profile is shown in red. As can be seen, for very small l values all
genes have similar translation rate (mainly determined by l and not by the codon-bias), whereas for larger l translation rates differ among genes and
asymptotically converge to the elongation rate capacity. B. The predicted translation rate for highly (top 25%, Blue line) and lowly (lowest 25%, Red
line) expressed genes.
doi:10.1371/journal.pcbi.1002127.g002

The Ribosome Flow Model
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is more than 28%); the mean DPCO is 13.7% in S. pombe (stdev of is

4.6%: in 10% of the genes the DPCO is more than 19.25%); the

mean DPCO is 17.7% in S. cerevisiae (stdev 7.92%: in 10% of the

genes the DPCO is more than 27.46%). These results highlight the

importance of incorporating codon order into models of

translation rates as they support the hypothesis that one can

profoundly affect the translation rate just by reordering the codons

in the transcript.

In the previous section we found that the tAI performs well

mainly for highly expressed genes; it is possible that this result is

partially related to the fact that translation efficiency is less affected

by codon order in these genes. We found a significant negative

correlation (S. cerevisiae: r = 20.31, p,10216; E. coli: r = 20.22,

p = 9.4 1026) between DPCO and protein abundance of genes

(Figure 3D), demonstrating that in these organisms protein

abundance of highly expressed genes (whose expression was

predicted relatively well by the tAI) is less dependent on codon

order than it is in lowly expressed genes. Thus, the result reported

in this section support the usage of models such as the RFM for

predicting the translation rate of endogenous genes that are lowly

expressed (see also Text S3 and Figures S26 and S27).

It is important to note that the predictions reported in this

section should be confronted with experimental measurement

when these become available. However, in light of the fact that

controlled design of ‘wet experiments’, that would allow the

validation of the predictions presented above, is far from being

trivial (e.g. changing the order of codons may influence other

features of the coding sequence), the estimations reported here are

particularly interesting.

Coarse graining and genomic ribosomal density

profiles. Figure 4A depicts the correlation between translation

rate predictions of our model and protein abundance in S. cerevisiae

for different values of the coarse graining parameter C (C in

Figure 1). Interestingly, the optimal correlation is obtained for sites

of size 25–35 codons (and is supported by jackknifing test;

Methods). This value is similar to length scales associated with the

ribosome such as its footprint on the mRNA sequence

[7,14,33,34,35] (between 11 and 18 codons), the number of

amino acids associated with the exit channel of the ribosome and

its length [42,43,44,45] (between 30 and 71 codons), and the

length of the ‘ramp’ at the beginning of genes corresponding to the

optimization of ribosome allocation [7,44] (around 50 codons);

Figure 3. Prediction of protein abundance of endogenous genes by the tAI [27] and by the ribosome flow model (RFM). We compare
the RFM to the tAI (insensitive to codon order), the RFM also outperformed other predictors, such as the Bottleneck and the Mean Speed (see
definitions in the Methods section; see Figure S1). The predictions were obtained for groups of genes with different levels of protein abundance in
different organisms; in each organism all bins are of equal size; organisms with a larger number of measurements enable more bins. A. Predicting
protein abundance of E. coli endogenous genes. B. Predicting protein abundance for S. pombe endogenous genes C. Predicting protein abundance
for S. cerevisiae endogenous genes [16]. D. Sensitivity to codon order vs. protein abundance in S. cerevisiae.
doi:10.1371/journal.pcbi.1002127.g003

The Ribosome Flow Model
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Figure 4. Relations between various quantities predicted by the RFM and biological measurements. A. Correlation between protein
abundance [16] [15] [66] and the translation rate for various values of the coarse graining parameter (C in Figure 1); the best results are observed for
values which are similar to various geometrical properties of the ribosome (the dashed lines in the figure). B. Right: The RFM predicts the genomic

The Ribosome Flow Model
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similar results were obtained for other organisms as well Figures

S2, S3. This result provides further support for the validity of our

model. Specifically, this result is consistent with the assumption

that site size in our model should be of the same order of

magnitude as the ribosome size since physically this is the relevant

length scale in the analyzed biological system.

In the next step, we studied how well the RFM predicts the

shape of the genomic profiles of ribosome density. To this end,

predictions of our model and other models were compared to a

genomic ribosomal density profile that was generated based on,

single nucleotide resolution, large scale measurements of ribosomal

density (Methods, [14]; Figure 4B).

Strikingly, as depicted in Figure 4B, although all models predict

that there is a decrease in ribosome density from the 59 end to the 39

end of the mRNA transcript, the gap between the real profile of

ribosomal density and the profile predicted by the RFM is

significantly smaller than the one obtained by Zhang’s model

([33] 0.26 vs. 0.3; Wilcoxon test p-value,0.0001) or from the graph

corresponding to per-codon mean genomic 1/tAI [7] (0.26 vs. 0.54;

Wilcoxon p-value,0.0001). Specifically, it seems that both the

genomic ribosome density profile and the RFM predictions are

characterized by a non exponential decay from the 59 end of the

coding sequence to the 39 end of the coding sequence and are seen

linear on a log-log graph (Figure 4B; see also Text S4). In contrast,

the tAI predicts a much slower mean genomic decrease rate

(Figure 4B). This result further supports the RFM as a model that

describes the physics of gene translation better than previously

suggested models (similar results were obtained for ribosome density

profiles obtained under starvation conditions; see Figure S4).

Optimality of the translation machinery. One basic

translation-related feature of a gene is the mean, steady state,

ribosome density on the transcript. This value can be predicted by

�pp~
1

N

XN

i~1

pi (the mean probability that a site will be occupied by a

ribosome). In the RFM, l models the effect of the number of free

ribosomes on the initiation rate. Given that there are more

ribosomes, the initiation rate would increase since the rate in

which ribosomes arrive at the 59 end of the mRNA is proportional

to the number of free ribosomes. What are the relations between

�pp, l, and the translation rate in general? And in particular, what is

the actual ‘working point’ (in the l,�pp,R parameter space) of the

translational machinery?

Figure 4C depicts the translation efficiency at different values of

l. At low l levels the translation rate and ribosome occupancy

increase monotonically with l. However, as was demonstrated

before [46], after a certain point the system reaches saturation –

increasing l does not result in a further increase of the translation

rate or the mean genomic ribosomal density.

Interestingly, the correlation between the predicted translation

rate and the measured protein abundance of yeast is maximal

exactly before the onset of saturation (Figure 4C). This fact may

suggest that the translation machinery is tuned to work in the

vicinity of this point. Thus, this may indicate that there is global

optimality of the initiation rate in S. cerevisiae (similar results were

obtained for other organism: S. pombe, E. coli, Human liver; see

Figures S5, S6, S7).

We note that the pre-saturation point is optimal from an

engineer’s point of view. The basic reasoning for this follows from

the fact that going below the pre-saturation dramatically decreases

the rate of protein production. On the other hand, going above

and beyond the pre-saturation point, would require additional

resources from the cell. This investment however, will have no

effect on the mean protein production capacity and will therefore

be in vein.

For a given initiation rate, l, faster codons (i.e. higher li or higher

tAI) should decrease the ribosomal density due to the reciprocal

relation between translation rate and ribosomal density [7,20].

Thus, under the assumption of a global initiation rate, and since highly

expressed genes have more efficient codons, we expect a negative

correlation between expression levels of genes and their ribosomal

density. However, in practice this is not the case - the correlation

between translation efficiency (tAI) and ribosomal density is

positive and significant (for example, r = 0.46; p,10216 for the

ribosomal density measurements of [10] and the mRNA

measurements of [47]). This result suggests that the initiation rate

(l) of highly expressed genes is higher than that of lowly expressed

genes. Refining our analysis, we will now revisit, and relax, the

simplifying global initiation rate assumption we have made so far.

Given a set of genes (e.g. highly expressed genes) the estimated

initiation rate l of this group is the one that gives the best

correlation between the predicted translation rates and protein

abundance. We estimated the initiation rate in highly expressed

genes (top 20%) and in lowly expressed genes (lowest 20%;

Figure 4D). Indeed the predicted initiation rate of the highly

expressed genes is higher than that of the lowly expressed genes

(0.00035 vs. 0.0002) while the resulting predicted ribosome density

is also higher for the highly expressed genes (0.42 vs. 0.36). Thus,

in practice (at the ‘working point’), our model predicts that highly

expressed genes, that are equipped by faster codons and thus

characterized by higher translation rates, are also characterized by

higher ribosomal densities as their initiation rate is higher. The

fact that in highly expressed genes ribosomal densities are higher,

suggests that in these genes, elongation rate is more rate-limiting

(relatively to lowly expressed genes). This result explains why in

highly expressed genes codon bias should be a better predictor of

translation rate (as was shown in Figure 3).

As shown in 3.2, different mRNA transcripts are characterized

by different translation elongation capacities. Here, based on the

correlation between translation rates and protein abundance, we

have just shown that, on average, the predicted l is the one for

which this capacity is almost fully achieved (i.e. 93% of the capacity

is attained in S. cerevisiae). This rule enables inference of the

initiation rates of individual genes: e.g. in S. cerevisiae, the predicted

initiation rate of a gene is the one for which 93% of its elongation

capacity is attained (in other organisms the rule is similar;

Methods).

Strikingly, the predicted initiation rate of genes significantly

correlates with their protein abundance (S. cerevisiae r = 0.29,

p,10216; S. pombe r = 0.41, p,10216; E. coli, r = 0.34, p = 8 *

10213 Figure S8, S9, S10); i.e. highly expressed genes have higher

initiation rates. In addition, the predicted initiation rate correlates

with the predicted ribosomal density (S. cerevisiae r = 0.72,

ribosomal density profile [14] better than the tAI or the model of Zhang et al. [33]; all were normalized to have the same mean. Left – the 59 region of
the genomic ribosomal density profile and the predicted genomic profile of the RFM appear linear on a log-log scale. We used a site size of 15 codons
(similar to the size of the ribosome) and a l (initiation rate) value that was independently found to optimize the correlation with protein abundance.
C. The relation between l (associated with the number of available ribosomes in the cell), genomic mean of the translation rate, and the genomic
mean of the ribosomal density. D. Initiation rate (l), translation rate, and ribosomal density for highly expressed genes (up) and lowly expressed
genes (down).
doi:10.1371/journal.pcbi.1002127.g004
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p,10216; S. pombe r = 0.6531, p,10216; E. coli, r = 0.3379,

p,10216, Figure S11, S12, S13, Methods) – i.e. highly expressed

genes are characterized by higher ribosomal density (the

correlation between predicted ribosome density and protein

abundance of genes: S. cerevisiae r = 0.19, p,10216; S. pombe

r = 0.104, p = 2.44*1024; E. coli, r = 0.32, p = 2.1 * 10211; Figure

S14, S15, S16). These results demonstrate again that the

predictions of our model are in accord with the experimental

observation that highly expressed genes have higher initiation rate

and higher ribosomal density (mentioned above) [10].

Analysis of heterologous gene expression. As was

demonstrated in section ‘Predicting translation rates, protein

abundance and ribosome densities of endogenous genes’, the RFM

is considerably better (than current state of the art predictors) at

predicting the PA of lowly expressed genes with coding sequences

that differ from the optimal design. This is usually the case when a

gene from one organism (e.g. Human) is expressed in a different

organism (e.g. E. coli; see for example, [5,6,21,48]), a procedure

known as heterologous gene expression. Heterologous gene

expression allows the use of mRNA ‘libraries’ that are composed

of different variants of the same heterologous gene. In this method of

expression, control for various properties is already ‘built in’. In

particular, the amino acids composition of the translated protein

remains unchanged.

In this section, we use our model to analyzing two cases of

heterologous gene expression, demonstrating that the RFM

markedly outperforms the tAI (and other alternative predictors).

In what follows, we emphasize the differences between endoge-

nous and heterologous genes. As we demonstrate, the gap between

the predictions of our model and those of the tAI is higher for

heterologous genes. This property of the RFM, demonstrates the

potential biotechnological applications of our approach - predict-

ing the protein abundance of heterologous gene expression.

We analyzed the data of Welch et al. [21], a large library of

genes encoding DNA polymerase of Bacillus phage pi29 proteins,

results are shown in Figure 5. All the genes encode the same amino

acid sequence but each of them has a different codon composition.

Although it was reported that there is no correlation between codon-

bias or folding energy and protein abundance in this dataset

[20,21], we found a significant correlation between the predictions

of the RFM and protein abundance (r = 0.5, p = 0.004).

Correlation is significant only for very low initiation rates,

suggesting that initiation (or other variable, as was suggested in

[21]) is rate limiting in the translation of these genes. In contrast to

what was observed for endogenous genes (Figure 4), the point with

maximal correlation between the prediction of the model and PA

is not the pre-saturation point. This result demonstrates that the

coupling between translation rate and initiation rate is an

evolutionarily selected trait, and is hence not observed in heterologous

coding sequences.

We continued with an analysis of the data by Burgess-Brown

et al. [48], who optimized the codons of 31 human genes in order

to express them in E. coli [48]. In this study, the protein abundance

of 18 genes improved, that of one gene decreased, and the other 12

did not change in a detectable way. The Spearman correlation

between the direction of the change in PA and the predicted fold

change (i.e. the ratio between the translation rate before and after

the optimization) of the RFM was 0.45 (empirical p-value = 0.019)

while the correlation with the fold change according to the tAI was

only 0.34 (empirical p-value = 0.077; Methods). This result

demonstrates once more that the RFM is a particularly useful

tool for the analysis of heterologous gene expression (see also Text

S5).

Condition-specific translation rates in S. cerev-

isiae. When the yeast S. cerevisiae is grown on glucose-based

media, it first utilizes the available glucose, growing by

fermentation. When most of the glucose has been consumed it

undergoes a metabolic change, called diauxic shift, in which its

metabolism shifts to respiration. This is accompanied by wide

changes in gene expression and tRNA abundance [7,49]. In [7] we

focused on the similarities between the tRNA pools in different

stages of the diauxic shift (for example, the Spearman correlation

between the tRNA abundance at time 0 and the tRNA abundance

after 9 hours is 0.9, p-value 6*10215 ; i.e. 0.81 of the variance in

the tRNA pool at time 9 hours can be explained by the tRNA pool

at time 0 hours). In the current study we analyze the dissimilarities

between the tRNA pools during different stages of the diauxic

shift. Changes in the tRNA pool due to the diauxic shift lead to

changes in the translation rate of different codons. The total effect

of these changes is related, among other factors, to the order of

codons along the mRNA transcript and therefore cannot be

inferred completely by the tAI.

Here, we use our model to analyze the dynamics of genomic

translation rates during the diauxic shift in S. cerevisiae (using data

from [7]). In each stage of the diauxic shift, we computed the

expected translation time (ti) of each codon based on the available

Figure 5. Analysis of the data of Welch et al. [21] by the RFM model. A. The translation rate and the correlation with protein abundance as a
function of l. B. A dot plot - predictions of the RFM vs. protein abundance.
doi:10.1371/journal.pcbi.1002127.g005
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Figure 6. Translation rate and ribosome density during the diauxic shift in S. cerevisiae. A. The mean genomic translation rate as a function
of the initiation rate (l) for five time points; the dotted lines correspond to the working point just before saturation (93% of the maximal production
rate, mentioned in sub-section 4). B. The mean genomic ribosomal density as a function of the initiation rate (l) for five time points. The dotted lines
correspond to the initiation rates at the working points. C. The correlation between the mRNA levels of genes in different human tissues vs. (a) the
RFM predictions and (b) the tAI predictions. Inset: the improvement in correlation in % when using the RFM instead of the tAI.
doi:10.1371/journal.pcbi.1002127.g006
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tRNA pool at that stage [7]. These times where then used in

conjugation with the RFM in order to compute the mean genomic

translation rate and ribosomal densities for different values of the

initiation rate l.

As the new growth conditions are less optimal for the yeast

we expect a global reduction in the rate of translation. The

mean genomic profile of the translation rate and ribosomal

density of all S. cerevisiae genes at five time points (0, 4.5, 6, 7.5

and 9 hours after the beginning of the experiment) during the

diauxic shift, is presented in Figure 6A–B. As can be seen, all

these profiles are similar to the ones reported earlier -

displaying saturation of the translation rate and the ribosomal

density for large l.

As expected, both the predicted translation rate and the

predicted number of available free ribosomes (or equivalently the

initiation rate l) decrease during this process (Figure 6A).

Interestingly, although the mean codon efficiency remains

essentially unchanged during the process (a minor decreased of

0.16% in the mean genomic expected time for translating a

codon), the mean production rate does decreases due to changes in

the initiation rate (number of free ribosomes; see details in

Figure 6A) and effects related to the flow of ribosomes and the

order of codons. In contrast, the mean predicted ribosomal density

does not decrease as l decreases (see details in Figure 6B). Thus,

while the total effect under these conditions is also related to

changes in mRNA levels, initiation/elongation factors and more

(see [49]), our model predicts that part of the global response can

be attributed to changes in the composition of the tRNA pool.

Such an analysis cannot be performed by simple measures such

as tAI.

In the next step, we checked how well the predicted change in

translation rate of genes during the Diauxic shift correlates with

the change in their mRNA levels. We compared the change in the

predicted translation rate of genes whose mRNA levels exhibited

extreme fold change (fold changes .1.8 and ,1/1.8) and found

that the ranked fold changes of the translation rate of the genes in

these groups was also significantly different (mean fold change

1.035 vs. mean fold change 0.9991; p = 2.47*1025). Ranking the

changes in the tAI led to opposite result – a decrease in the

translation rate of genes whose mRNA level increased and vice

versa (mean fold change 0.9923 vs. mean fold change 1.0103),

demonstrating again the superiority of our model. This result

demonstrates that (1) in S. cerevisiae, condition-specific changes in

the translation rate of genes are in accordance with the changes in

their transcription levels; and (2) the RFM, by considering refined

features such as the order of codons and initiation rates is

specifically sensitive to the adaptation of an organism to a

dynamically changing environment.

Translation efficiency in human. Finally, comparison of

the predictions of the RFM to tissue specific mRNA levels (that are

known to correlate with protein abundance and ribosomal

densities [10,14,26]) in human demonstrated that it outperforms

the tAI in this organism as well (Figure 6C, Text S6). Specifically,

the gap between the RFM and the tAI is particularly large in germ

line and immune cell types. Thus, specifically in these tissues, the

RFM should be helpful in analyzing mutations (see, for example

[41]) or SNPs (see, for example, [2,50,51]) that cause diseases due

to problems in gene translation.

In addition, we computed the correlation between the

prediction of the RFM and protein abundance in Human cell lines

for which PA data exists [52]. The correlation between the

predictions of the RFM and protein abundance was 0.47 (p-

value,10216) vs. a correlation of only 0.28 (p-value,10216)

between the tAI and protein abundance.

Discussion

We described a novel analysis of large scale genomic data by a

predictor/model that is based on the physical and dynamical

nature of gene translation. Given the copy numbers of the tRNA

genes in the host genome, our model, the RFM, is based only on

codon-bias; It can hence be applied when only the coding sequence

of a gene is available and without additional data or information.

Despite its relative simplicity, we show that our model predicts

features such as protein abundance in endogenous and heterol-

ogous genes better than alternative (‘non-physical’) approaches.

We demonstrate that the gap between the performance of the

RFM and alternative predictors is especially large in the case of

heterologous genes; thus, it should be very helpful in the common

challenge of predicting the protein abundance of potential

heterologous proteins before expressing them in the desired host

(see, for example, [5,6,7,21,53,54,55,56]). In addition, we have

demonstrated that our approach can be used for accurately

inferring various variables that cannot be inferred by the common

predictors used nowadays.

From a Systems Biology point of view, by using our model we

were able to demonstrate the global optimality of the process of

gene translation [6,7,20]. We discovered that increasing the

number of available ribosomes (or the initiation rate, l) increases

the genomic translation rate and the mean ribosomal density only

up to a certain point. After this point, the system is ‘saturated’:

adding more ribosomes/increasing the initiation rate does not

result in an increase of these two variables. Quite strikingly, in all

the organisms we have analyzed, the global initiation rate is

optimized to the pre-saturation point. The fact that similar results

were not observed in artificial genes supports the conclusion that

this feature is under selection.

Optimality of the translation machinery is perhaps not so

surprising. Protein production is a central and complex process in

the cell. For example, at any given time point there are around

60,000 mRNA molecules in S. cerevisiae [36] that are translated by

187,000 (656,000) ribosomes [37]. The process of gene translation

consumes a very large amount of energy and thus the problem of

fine tuning the number of ribosomes and the translation rate

should have a significant influence on the fitness of the organisms

[6,7,20]. Specifically, increasing the translation rate of highly

expressed genes (the ‘supply’) while decreasing the number of

working ribosomes/ribosomal density (the ‘cost’) should improve

the fitness of an organism. It was already suggested that there is

selection for improving translation efficiency of highly expressed

genes relatively to lowly expressed genes (see, for example, [6,20]).

By using our model, we can actually estimate the translation cost

of highly and lowly expressed genes as the ratio between the

translation rate and the average number of ribosomes working on

the transcript. The number of proteins produced per unit time, per

ribosome, for highly expressed genes (top 20%) is 0.000162/

0.42 = 0.000386 (in arbitrary units). This number is 10% higher

than that of the lowly expressed genes (lower 20%; 0.000125/

0.36 = 0.000347). Again, this result demonstrates ‘optimality’: as

highly expressed genes produce more mRNA molecules, decreas-

ing the cost of translation should result in a much larger effect on

the fitness of the organism.

Finally, the goal of this study was to model the process of

translation elongation, emphasizing the effect of codon order. In

the future, in order to decrease the gap between the predictions of

our models and measurements of protein abundance, we intend to

develop a more comprehensive model of this process. While

promising strides in this direction were already made [57,58], may

features of the translation process are yet to be accounted for.

The Ribosome Flow Model
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Unfortunately, large-scale biological measurements of translation

rates, initiation rates, tRNA levels, mRNA/protein degradation rates and

many other quantities that are related to the process of gene

translation are currently unavailable. Large scale measurements

that are available (e.g. protein abundance) are related to the

modeled process (Methods), but are indirect. This fact hinders the

implementation and validation (as opposed to formulation) of

more sophisticated models. In addition, it is important to note that

the ability to predict measurements of protein abundance may also

be hindered due to bias and noise in the current pool of existing

data (see, for example, [17,59]). As new data accumulates, the

implementation of more comprehensive models will become

possible and our understanding of the translation process will

deepen further.

Methods

The TASEP Model for Translation Elongation
In the TASEP an mRNA transcript with N codons is modeled

as a chain of sites, each of which is labeled by the index i, where

i~1:::N. The first and last codons, i~1, i~N, are associated with

the start and stop codons, respectively. At any time, t, attached to

the mRNA are M(t) ribosomes. Being a large complex of

molecules, each ribosome will cover l codons. A codon may be

covered by no more than a single ribosome. To locate a ribosome,

we arbitrarily assume that the codon being translated is the one in

the ‘middle’ of the ribosome. For example, if the first, (l+1)/2

codons are not covered, a ribosome can bind to the first codon on

the mRNA strand, and then it is said to be ‘‘on codon i~1’’. A

complete specification of the configuration of the mRNA strand is

given by the codon occupation numbers: ni~1 if codon i is being

translated and ni~0 otherwise. Note that when ni~1 the (l21)/2

codons before and after codon i are covered by the ribosome that

is on site i. Since these codons are not the ones being translated,

the codon occupations numbers for them are equal to zero.

We will now specify the dynamics of the TASEP model. A free

ribosome will attach to codon i~1 with rate l, provided that the first

(lz1)=2 codons on the mRNA are empty. An attached ribosome

located at codon i will move to the next codon iz1 with rate li,

provided codon iz(lz1)=2 is not covered by another ribosome. In

case iz(lz1)=2wN (ribosome is bulging out of the mRNA strand)

an attached ribosome will move to the next codon with rate li.

In order to simulate this dynamics, we assume that the time

between initiation attempts is distributed exponentially with rate l.

Similarly the time between jump attempts from site i to site iz1 is

assumed to be exponentially distributed with rate li (The

exponential distribution is of course, an approximation as the

process of translating a single codon involves more than one step

[1]). Note that in the case of i~N the jump attempt is in fact a

termination step. We define an ‘‘event’’ as an initiation, jump

attempt, or termination step. From our definition it follows that

the time between events is exponentially distributed (minimum of

exponentially distributed random variables) with rate

m(fnig)~lz
PN
i~1

nili. Note that a jump attempt from codon i

can only be made if there is a ribosome translating this codon and

hence the rate m(fnig) depends on the set of site occupation numbers.

The probability that a specific event was an initiation attempt is

given by: l=m(fnig). Similarly, the probability that a specific event

was a jump attempt (or termination event) from site i to site iz1 is

given by nili=m(fnig).
At each step of the simulation, we determine the nature of the event

and the time passed till its occurrence by these rules. The set of site

occupation numbers are then updated accordingly and the simulation

proceeds to the next event. For example if an initiation attempt was

made, we check if the first (lz1)=2 codons on the mRNA are not

covered. If so, we set n1~1, otherwise the attempt fails and n1 remains

as is. If a jump attempt from codon i to codon iz1 was made, we

check if site iz(lz1)=2 is not covered. If so, we set ni~0 and

niz1~1, otherwise the attempt fails and ni,niz1 remain as is.

Starting with an empty mRNA strand we simulate the system

for 250,000 steps (events). The system is then simulated for an

additional 1,000,000 steps where we keep track of the total

number of terminations and the total time that have passed from

the point this phase have started. The steady state rate of protein

production was determined by dividing the number of termination

events by the total time that has passed. The number of steps in

the first and second stages was determined after observing that

increasing the number of steps fourfold had a negligible effect on

the predicted protein production rate.

The Ribosome Flow Model
Physical interpretation of the ribosome flow

model. Assume that a ribosome is C condos long and that the

mRNA strand is positioned such that translation takes place from

left to right. The ribosome flow model assumes that a ribosome

lands on the mRNA strand such that the first codon is located at

the middle of the ribosome. The ribosome now needs to translate

C codons in order to have its middle point reach codon C+1. This

way the right edge of a newly arriving ribosome can be positioned

next to the left edge of the ribosome who has just translated the

first C codons. We now coarse grain the mRNA strand into two

groups of sites (‘chucks’):

A. 1…(C+1 )/2 ,1+ (C+1 )/2…C+ (C+1 )/2 ,1+C+ (C+1 )/

2…2C+(C+1)/2,…

B. 1…C,C+1…2C,2C+1…3C,…

The flow of ribosomes from site i to site iz1 in the group A is

determined by:

1. The occupation probabilities of these sites. The higher the

occupation probability of site i (more attempts per unit time to

flow from site i to site iz1) the higher the flow to site iz1. The

higher the occupation probability of site iz1 (more chances

that a ribosome will be blocked by another ribosome residing in

site iz1 when attempting to flow from site i to site iz1) the

lower the flow emanating from site i.

2. The translation time of the C codons that belong to i{th site in

group B, the lower the time the higher the flow.

These ideas are expressed quantitatively by equation (1):

dp1(t)

dt
~l 1{p1(t)½ �{l1p1(t) 1{p2(t)½ �

dpi(t)

dt
~li{1pi{1(t) 1{pi(t)½ �{lipi(t) 1{piz1(t)½ �

dpn(t)

dt
~ln{1pn{1(t) 1{pn(t)½ �{lnpn(t):

8>>>>>><
>>>>>>:

1vivnð1Þ

Analytic solution of the ribosome flow model. In order to

proceed we recall that in steady state the occupation probabilities

are constant in time and equal to fp1,:::,png. Denoting the steady

state rate of protein production by R it follows that:

R~lnpn ð2Þ

The Ribosome Flow Model
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This rate is also equal to the steady state rate at which ribosomes

leave the mRNA strand (after translating the entire sequence). At

steady state the left hand side of equation (1) vanishes and we get:

l 1{p1½ �~l1p1 1{p2½ �~R

li{1pi{1 1{pi½ �~lipi 1{piz1½ �~R

ln{1pn{1 1{pn½ �~lnpn~R,

8><
>:

1vivn ð3Þ

where we have also used equation (2). An interesting conclusion

follows from equation (3), since for every site i: 0ƒpiƒ1
(probability is always non-negative and not larger than one) the

steady state rate of protein production is limited by slowest rate in

the system:

Rƒmin(l,l1,:::,ln) ð4Þ

Solving equation (3) for R we obtain:

1{R=l~
R=l1

1{
R=l2

1{
R=l3

1{
R=l4

1{
R=l5

P

ð5Þ

Equation (5) is the starting point for the analytical analysis of the

model as is further described below. Note that in principle

equation (5) can be solved numerically for R given the set

fl,l1,:::,lng, the unknown steady state occupation probabilities

fp1,:::,png can then be computed via equation (3). In practice

however, we have numerically solved the original set of differential

equations (equation (1); Figure 1C).

Solving equation (1) numerically. In order to obtain the set

of steady state occupation probabilities, fp1,:::,png, and the steady

state rate of protein production, R, we solve equation (1)

numerically using Matlab. Equation (1) is treated as an ordinary

differential equation for the vector ~pp(t) whose entries are the

occupation probabilities: fp1(t),:::,pn(t)g. We start from an

mRNA strand which is empty of ribosomes, ~pp(t~0)~~00. The

occupation probabilities are then found for a set of later times

using equation (1) and Matlab’s ordinary differential equation

solver. The process stops when the vector ~pp(t) converges to the

vector of steady state occupation probabilities. More accurately,

we stop the process for a time t� for which ~pp(t) is constant (up to

some prefixed numeric error threshold) for every twt�. The vector

of steady state occupation probabilities and the protein production

rate are then taken as: ~pp~~pp(t�) and R~lnpn.

Analytical analysis of low and high initiation rates. An

interesting question goes to the behavior of the model in the limits

of low/high external ribosome flux. The limit of low ribosome flux

is mathematically given by: lvvminfl1,:::,lng. In this limit the

rate of protein production may be approximated by R<l and it is

hence insensitive to codon bias. In other words, the genomic rate

of translation is equal to the rate of ribosome arrival since this is

the latter is the rate limiting step of the process. In order to derive

this result we first note that in this limit Rƒlvvminfl1,:::,lng
by use of equation (4). It follows that R=l1vv1 and we may

hence approximate by neglecting the right hand side of equation

(5). The requested result then follows as is further illustrated in

Figure 2A.

The limit of high ribosome flux is mathematically given by:

lwwmaxfl1,:::,lng. In this limit the rate of protein production

converges to a transcript specific constant R�(l1,:::,ln) that does

not depend on the ribosome flux l (Figure 2A). Under these

circumstances the rate of protein production is strongly affected by

codon composition and codon arrangement along the mRNA

molecule. In addition, the independence of R on l implies that

above a certain threshold any attempt to increase R by increasing

l is futile. Since increasing l comes with the cost of spending

valuable resources on maintain a large ribosome pool cost/benefit

considerations will set a clear physiological upper bound on l (see

also section ‘Optimality of the translation machinery’). In order to

understand the behavior of the protein production rate in this limit

we first note that lwwmaxfl1,:::,lng§minfl1,:::,lng§R by use

of equation (4). It follows that R=lvv1 and we may hence

approximate by neglecting this term in the left hand side of

equation (5). We now see that R is a solution to an equation that

does not contain the ribosome flux l as was argued above. This

result is further illustrated in Figure 2.

The TASEP Model vs. the RFM
The TASEP model mentioned above is a generalization

(elongated particles and site dependent rates) of the simple TASEP

model (see, for example, [60]). In the case of the ribosome flow

model, we make two approximations. The first is coarse graining

(dividing into chunks/sites), this approximation is quite common

and was applied to various physical and biophysical problems. The

second approximation is nothing but the mean field approxima-

tion. This means that in order to write the master equation for our

model (Figure 1C) we have implicitly neglected the fact that there

could be correlations between sites. We hence write approximate

equations for the average (over many identical mRNA systems)

occupation probabilities. Doing so, we assume that the probability

that site i is occupied/empty and that site i+1 is occupied/empty is

well approximated by the probability that site i is occupied/empty

times the probability that site i+1 is occupied/empty. Although in

general this is not always true, this approximation is also common

in the TASEP literature.

RFM with Abortions
Within the framework of the RFM, abortions were modeled by

adding an abortion probability to the model. The abortion

probability determines the percent of ribosome-ribosome collisions

that will result in abortion, i.e., in premature detachment of the

ribosome from the mRNA strand. Mathematically, abortion adds

the following term to the model: {pab
:pi(t):piz1(t) where pab is

the abortion probability. For every 1ƒivN this term is added to

the i-th and (i+1)-th rows of equation (1). This modification of the

RFM corresponds to mutual abortion, i.e. for a situation where

after an abortive collision both ribosomes will stop processing the

mRNA transcript. Scanning different values for pab, we discovered

that maximal correlations were obtain in the case of pab~0, i.e. in

the limit were abortions due to ribosome-ribosome collisions are

negligible.

mRNA Half Life – Steady State Revisited
In order to examine the steady state assumption (within the

limitations of existing data), we analyzed the RFM model without

it. Analysis was performed on the S. cerevisiae data where we

simulated the model only for a time period proportional to the half

life of the corresponding transcript [61]. In this case, steady state

was not achieved and the translation rate was taken as the mean

translation rate over the elapsing time period. This modification

however, was unable to improve the predictive power of the model

and in effect resulted in an opposite outcome.

The Ribosome Flow Model
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Zhang Model
Zhang model [33] similar to the TASEP model with the only

change that the codon translation times are deterministic.

The Relation between Translation Rate and Protein
Abundance

Here we would like to discuss the relation between translation

rates and protein concentration/abundance. In what follows we will

provide justification for the intuitive expectation that protein

abundance should stand in high positive correlation with translation

rates. Generally speaking, protein abundance levels are determined

by a balance between protein production and degradation rates.

Fixing the degradation rate, protein abundance levels will rise when

the production rate is increased. Fixing the production rate, protein

abundance levels will decrease when the degradation rate is

increased. This said, one must also bear in mind that protein

degradation rates are unavailable in most of the analyzed cases. And

so, any current real data analysis is forced to average out the effect of

protein degradation and focus on the contribution of the production

rate to the determination of protein abundance levels.

Let ci denote the concentration of protein i and let us assume that

this protein is translated from a certain mRNA transcript whose

copy numbers are denoted by mi. In general, the dynamics of this

process may be described by the following differential equation:
dci(t)

dt
~Ri

:mi{Di(ci). Here Ri and D(ci) are the translation rate

per mRNA molecule and the degradation rate of protein i
correspondingly. One possible choice for D(ci) is: Di(ci)~di

:ci(t)
where diw0 is constant. Although this is a common first order

approximation we will not base our conclusions on this particular

choice and would only require that Di(ci) is a monotonically

increasing function of the concentration ci. In general, the function

Di depends on the protein i, i.e. it can be different from protein to

protein. Here however, we will replace the protein specific function

Di with a genomic average degradation function D which will be

assumed monotonically increasing. Note that by definition, this

function does not depend on the index i.

The steady state solution of the above differential equation (with Di

replaced by D) is: D(css
i )~Ri

:mi where css
i is the steady state

concentration of the protein i. From the monotonicity of D(ci) it

follows that css
i is a monotonically increasing function of Ri

:mi.. This

fact provides justification for the use of Ri
:mi as a predictor for css

i , i.e.

one expects Ri
:mi and css

i to be positively correlated. Indeed, we have

shown that this predictor performs very well, see Text S2. We will

now show that Ri itself can also be used as a predictor for css
i , the

advantage of this predictor is that it is solely based on the coding sequence

and no additional information is required for its computation.

The set of mRNA copy numbers fmigmay generally depend on

the set of translation rates fRig, for example via the concentration

of proteins that are involved in mRNA transcription and

regulation. Fortunately, it is known that in endogenous genes

translation rates are positively correlated with mRNA levels.

Highly expressed genes are under selection to have higher mRNA

levels, higher translation rate and higher protein abundance (note

that this is not a causal relation; see, for example, [6]). Since

mRNA levels are positively correlated with translation rates, higher

values of Ri do indeed imply higher values of Ri
:mi and vice versa.

Since in hetrogenouse gene expression mRNA copy numbers are

usually independent of the mRNA variant of the protein, a similar

trend is observed in this case as well. In building a predictor which

is solely based on coding sequences, these empirical observation

provide justification for using Ri as a predictor for css
i . Indeed, as

we have demonstrated throughout the paper, this predictor out

performs other commonly used predictors.

Data
Protein abundance. Protein abundance of S. cerevisiae was

downloaded from [15,16]; protein abundance of different versions

(with different codon bias) of GFP library in E. coli were downloaded

from [6]; Protein abundance of S. pombe were downloaded from [62]

and the Protein abundance E. coli were downloaded from [17].

Profiles of Ribosme density. In S. cerevisiae were

downloaded from [14].

Folding energies. Of the E. coli GFP library was downloaded

from [6].

tRNA copy number. Of E. coli, S. cerevisiae, and S. pombe were

downloaded from [20].

tRNA levels in diauxic shift. In S. cerevisiae were downloaded

from [7].

Coding sequences. Coding sequences of S. cerevisiae, E. coli,

and S. pombe were downloaded from [20].

Tissue specific gene expression and tAI in Human. The

gene expression was downloaded from [63]; the corresponding tAI

were downloaded from [30]. Inferred tissue specific tRNA pool in

human liver (the tissue where the correlation between the

expression levels and translation rate is the highest) was

downloaded from [7,30] based on [64].

mRNA levels. mRNA levels of E. coli were downloaded from

[17]; mRNA levels of S. cerevisiae were downloaded from [47];

mRNA levels of S. pombe were downloaded from [62].

Estimating the tAI Based Values That Were Used by the
Model

Our measure was based on the tAI [27]; as describe below, we

adjusted it to our model:

Let ni be the number of tRNA isoacceptors recognizing codon i.

Let tCGNij be the copy number of the jth tRNA that recognizes the

ith codon, and let Sij be the selective constraint on the efficiency of

the codon-anticodon coupling. We define the absolute adaptiveness,

Wi, for each codon i as:

Wi~
Xni

j~1

(1{Sij)tCGNIJ

The Sij-values can be organized in a vector (S-vector) as described

in [27]; each component in this vector is related to one wobble

nucleoside-nucleoside paring: I:U, G:U, G:C, I:C, U:A, I:A, etc.

Sensitivity analysis of the tAI of codons to Sij -values in S. cerevisiae

showed that one codon (CGA) is extremely sensitive to these s-values.

Increasing/decreasing the s-values by +20.5 resulted in a change of

up to one order of magnitude (usually much less) in all other codons.

In the case of CGA, the change was up to 4000 times higher.

The tAI of this codon is relatively low and the model is sensitive

to this value. Thus, we replaced the Wi of this codon by mean tAI

of this codons over all possible changes (+20.5) of Sij -values.

From Wi we obtain pi, which is the probability that a tRNA will

be coupled to the codon

pi~
Wi

P61

j~1

tCGNj

The expected time on codon i is ti~1=pi.

The expected time on a site is the sum of times of all the codons

in the site.
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Computing the Bottleneck
The bottleneck was defined as the slowest window in a gene.

The time of a window in the sum of times corresponding to its

codons; the size of a window is 15 codons (the results were robust

to small changes in the size of the window).

Running Times
Figure S17 depicts the running time of our model as a function

of l and site. As can be seen, when the site size is larger than 10

codons, for all l the typical running time for a gene is less than

0.1 second.

Real and Predicted Ribosome Density Profiles
Measurements of ribosome densities in S. cerevisiae at a resolution

of single nucleotides were downloaded from [14]. For comparison

to the predictions of various models the profiles were aligned to the

beginning of the coding sequences (similarly to the way it was done

in [7,20]). We computed and plotted the mean densities in sites of

size 15 codons for each of the profiles (measured and predicted).

DTCO and DPCO - Estimating the Dependence of Genes
on Codon Order in Terms of Translation Rate and Protein
Abundance

To estimate the dependence of the translation rate of genes (at

their ‘working point’) on codon order, DTCO, we performed the

following steps:

1) Each mRNA transcript was randomly permuted (i.e., codons

were randomly shuffled) 10 times. A library of permuted

mRNA transcripts, associated with the original transcript,

was thus generated and translation rates were computed for

each transcript.

2) We then computed, for each gene separately, the standard

deviation (stdev) for the set of rates obtained in stage 1.

3) For each gene, the stdev was normalized by the predicted

translation rate of the gene (obtained from the un-permuted

mRNA transcript).

We call this quantity DTCO and we use it as a measure for the

dependence of the translation rate on codon order.

To estimate the dependence of protein abundance on the codon

order, DPCO, we performed the following steps:

1) The relation between protein abundance and translation

rates seems linear on a log-log scale (Figure S18, S19, S20);

thus, we inferred a liner regressor of the log of protein

abundance from the log of the predicted translation rate.

2) For each gene, and for each permutation, protein abundance

was estimated via the regressor in (1). The stdev of the PA

distribution associated with each gene (i.e., of the library of

permuted transcripts) was then computed.

3) For each gene, the stdev of the predicted protein abundance

was normalized by the protein abundance of the original (un-

permuted) mRNA.

Finding the ‘Working Point’ of a Gene
To compute the ‘working point’s of genes in a certain organism

we first found the l where the correlation between the mean

predicted translation rate and protein abundance [16,17,62] is

maximal. We computed the ratio (in percentages) between the

mean genomic translation rate at this point and the mean maximal

translation rate (for very large l); let Q% denote this value. (this

value was 93%, 95%, and 99% in S. cerevisiae, S. pombe, and E. coli

respectively)

The ‘working point’ of a gene in a certain organism is the l
where the translation rate of the gene is Q% of its maximal

translation rate.

Analysis of the Data of Burgess-Brown et al.
For each gene we computed the mean ratio between the

synthetic version of the gene and its native version over 41 values

of l (between 0.0002 and 0.0094). The empirical p-value for the

Spearman correlation is the probability that a random permuta-

tion of the two vectors will give higher correlation. It was

computed by performing 100 such permutation and computing

the Spearman correlation of each of them.

The Statistical Test Used for Comparing the Genomic
Ribosomal Densities Profile to the Predicted Profiles

The Wilcoxon rank test that we used is a paired non-parametric

test where we compared (1) the vector of distances between the

predictions of our model and the real data (a distance for each

point); (2) the vector of distances between the predictions of tAI

and the real data; (3) the vector of distances between the

predictions of Zhang model and the real data. We compared (1)

to (2) and (1) to (3) and checked the following statistical question:

‘‘is there improvement (in terms of the distance between predicted

and real data points) when a more sophisticated model (RFM) is

used instead of a less sophisticated one (e.g. the tAI).

Jackknifing to Evaluate the Robustness of the Inferred
Optimal Size of the Chunk

Jackknifing (see, e.g., [65]) was performed as described below.

Repeat 100 times:

1. Randomly choose 80% of the genes in S. cerevisiae.

2. Find the chunk size that gives the best correlation with protein

abundance.

Report the number of cases (0–100) that we get C = 25.

The result confidence level was 100 demonstrating a very high

confidence.

Supporting Information

Figure S1 Prediction of protein abundance by the
various codon bias based predictors and by the ribo-
some flow model (RFM) for groups of genes with
different levels of protein abundance in various organ-
isms. Prediction of protein abundance by the various codon bias

based predictors of PA and by the ribosome flow model (RFM) for

groups of genes with different levels of protein abundance in S.

cerevisiae (A.), E. coli (B.), S. pombe (C.); all bins are of equal size. The

RFM outperforms all the other predictors for lowly expressed

genes (and in most of the bins) and has significant correlation with

PA in all the bins.

(PDF)

Figure S2 Correlation between protein abundance and
the translation rate for various sizes of the translation
site unit (C in Figure 1) in E. coli.
(PDF)

Figure S3 Correlation between protein abundance and
the translation rate for various sizes of the translation
site unit (C in Figure 1) in S. pombe.
(PDF)
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Figure S4 The RFM predicts the genomic profile of
ribosome densities in starvation better than the tAI
model or the predictor of Zhang et al. All the figures were

normalized to have the same mean.

(PDF)

Figure S5 The relation between l (the number of
available ribosomes in the cell), mean of the translation
rate (number of proteins per time unit), and the mean
ribosome density in E. coli.
(PDF)

Figure S6 The relation between l (the number of
available ribosomes in the cell), mean of the translation
rate (number of proteins per time unit), and the mean
ribosome density in Human liver.
(PDF)

Figure S7 The relation between l (the number of
available ribosomes in the cell), mean of the translation
rate (number of proteins per time unit), and the mean
ribosome density in S. pombe.
(PDF)

Figure S8 Dot plot – log protein abundance vs. initia-
tion rate in S. cerevisiae.

(PDF)

Figure S9 Dot plot – log protein abundance vs. initia-
tion rate in S. pombe.
(PDF)

Figure S10 Dot plot – log protein abundance vs.
initiation rate in E. coli.
(PDF)

Figure S11 Dot plot – ribosome density vs. initiation
rate in S. pombe.

(PDF)

Figure S12 Dot plot – ribosome density vs. initiation
rate in S. cerevisiae.
(PDF)

Figure S13 Dot plot – ribosome density vs. initiation
rate in E. coli.

(PDF)

Figure S14 Dot plot – log protein abundance vs.
ribosome density in S. cerevisiae.
(PDF)

Figure S15 Dot plot – log protein abundance vs.
ribosome density in S. pombe.
(PDF)

Figure S16 Dot plot – log protein abundance vs.
ribosome density in E. coli.
(PDF)

Figure S17 Mean running time (in seconds) for com-
puting the translation rate of the RFM as a function of
and size of the site.
(PDF)

Figure S18 Dot plot – log protein abundance vs. log
predicted translation rate in S. pombe.
(PDF)

Figure S19 Dot plot – log protein abundance vs. log
predicted translation rate in E. coli.

(PDF)

Figure S20 Dot plot – log protein abundance vs. log
predicted translation rate in S. cerevisiae.

(PDF)

Figure S21 Correlation of the tAI and the RFM and with
protein abundance given mRNA levels for groups of
genes with different levels of protein in E. coli. All bins are

of equal size.

(PDF)

Figure S22 Correlation of the tAI and the RFM with
protein abundance given mRNA levels for groups of
genes with different levels of protein in S. pombe. All bins

are of equal size.

(PDF)

Figure S23 Correlation of the tAI and the RFM with
protein abundance multiplied by mRNA levels for
groups of genes with different levels of protein in S.
pombe. All bins are of equal size.

(PDF)

Figure S24 Correlation of the tAI and the RFM with
protein abundance given mRNA levels for groups of
genes with different levels of protein in S. cerevisiae. All

bins are of equal size.

(PDF)

Figure S25 Correlation of the tAI and the RFM with
protein abundance multiplies by the mRNA levels for
groups of genes with different levels of protein in S.
cerevisiae. All bins are of equal size.

(PDF)

Figure S26 Profiles of tAI of cytosolic and mitochondrial
ribosomal proteins in S. cerevisiae.

(PDF)

Figure S27 Profiles of tAI of highly expressed genes and
lowly expressed genes in S. cerevisiae. Close to the 59 end

of the genes there is a region with slower speed. This region is

more prominent in highly expressed genes.

(PDF)

Text S1 The justification for using the tAI and the RFM
as an predictor of the co-adaptation between codon bias
and tRNA pool.

(PDF)

Text S2 Endogenous genes in S. cerevisiae, S. pombe,
and E. coli: correlation of the predicted rates with
protein abundance given mRNA levels and the correla-
tion of the predicted rate multiplies by the mRNA levels
with protein abundance.

(PDF)

Text S3 The predictions of the tAI and translation
efficiency profiles of genes.

(PDF)

Text S4 The genomic rate of abortion of ribosomes has
power law decay.

(PDF)

Text S5 The initiation rates used in this study are
robust and not over-fitted.

(PDF)

Text S6 Tissue-specific translation rates in Human.

(PDF)
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