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Abstract

In recent times, stochastic treatments of gene regulatory processes have appeared in the literature in which a cell exposed
to a signaling molecule in its environment triggers the synthesis of a specific protein through a network of intracellular
reactions. The stochastic nature of this process leads to a distribution of protein levels in a population of cells as determined
by a Fokker-Planck equation. Often instability occurs as a consequence of two (stable) steady state protein levels, one at the
low end representing the ‘‘off’’ state, and the other at the high end representing the ‘‘on’’ state for a given concentration of
the signaling molecule within a suitable range. A consequence of such bistability has been the appearance of bimodal
distributions indicating two different populations, one in the ‘‘off’’ state and the other in the ‘‘on’’ state. The bimodal
distribution can come about from stochastic analysis of a single cell. However, the concerted action of the population
altering the extracellular concentration in the environment of individual cells and hence their behavior can only be
accomplished by an appropriate population balance model which accounts for the reciprocal effects of interaction between
the population and its environment. In this study, we show how to formulate a population balance model in which
stochastic gene expression in individual cells is incorporated. Interestingly, the simulation of the model shows that
bistability is neither sufficient nor necessary for bimodal distributions in a population. The original notion of linking
bistability with bimodal distribution from single cell stochastic model is therefore only a special consequence of a
population balance model.
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Introduction

In the study of cell populations, with vastly improved flow

cytometry, access to multivariate distribution measures of cell

populations has advanced considerably, calling for a concomitant

application of theory sensitive to population heterogeneity. In this

regard, the population balance framework of Fredrickson et al. [1]

has provided the requisite modeling machinery for the same. While

this recognition generally exists in the literature, the modeling of

gene regulatory processes has been at the single cell level based on it

being viewed as an ‘‘average’’ cell. Since gene regulatory processes

typically involve a small number of molecules, the reaction network

is stochastic in its dynamics, a feature that is included in the single

cell analysis. A further issue of importance, that of bistability, occurs

when two levels of gene expression, one high and referred to as

‘‘on,’’ and the other low and referred to as ‘‘off’’ exist for a given

concentration of the signaling molecule. This issue is very much a

part of the stochastic modeling of the single cell [2,3]. Several kinds

of stochastic models have been developed; two of them that have

been broadly used are the Stochastic Simulation Algorithm (SSA)

[4,5], and the Fokker-Planck equation or Stochastic Differential

Equations (SDE) [6–8]. The Stochastic model certainly cures the

drawback of the deterministic model which describes only the

averaged behavior on large populations without realizing the

fluctuating behaviors in different cells.

Bistability has been studied extensively through experiments,

theoretical analysis, and numerical simulations [2,3,9–11]. A

bistable system is characterized by the existence of two stable

steady states. The modes relating to two stable steady states appear

as a bimodal distribution of the population. The coexistence of

bistability and bimodal distribution has been shown in many

publications [2,3,9,12–14].

However, almost all of the modeling works on stochastic gene

regulation relate to processes at the single-cell level. The outcome of

numerous simulated trajectories of single cell behavior has been

interpreted as population behavior. A cell is assumed to act totally

independently of other cells without regard to the fact that the

signaling environment is continuously altered by the concerted

action of all members of the population. That no interaction

between other cells has been taken into consideration in these

models could indeed lead to serious bias. The drawback of the single

cell model may be overcome by applying the Population Balance

approach [15]. A detailed general framework of the application of

population balances to microbial populations was developed by

Fredrickson et al. [1]. However, the population balance model

(PBM) in the cited work and many others that followed in the

literature are based on deterministic behavior of the particulate

entities. Ramkrishna [15] shows how the PBM can accommodate

random particulate behavior described by stochastic differential

equations. In this study, we demonstrate formulating a stochastic
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gene regulation incorporating PBM, which is capable of tracing

time evolution of the behavior of the entire cell population. A system

of pheromone-induced conjugative plasmid transfer [16] contrib-

uting to the dissemination of antibiotic resistance and the virulence

of Enterococcus faecalis infections [17,18] has been simulated in this

study as an example of the critical difference between stochastic

gene regulation incorporating PBM and single-cell stochastic model.

It is our objective in this paper to formulate population balance

models with stochastic gene expression in single cells. Further, we

explore circumstances under which bimodal distributions are

observed in protein distributions; in particular we investigate the

generally prevailing view in the literature that bistability and

bimodality of protein distribution occur concurrently [2,3,9,12–

14]. An exception to this view appears in the work of Karmakar

and Bose [19,20], who showed that bimodal distributions can arise

without bistability when the reaction time of the downstream gene

regulation is short relative to the time required for change of DNA

conformation. Other similar publications can also be found in

literature [21–25]. While these cited works show bimodal

distributions without bistability, it must be understood that their

conclusions are based on mechanistic differences in the behavior of

isolated single cells. In this study, we approach the issue of the

relationship between bistability and bimodality from a rational

viewpoint; i.e., to examine the nature of protein distribution from

cells with and without bistability within the framework of

population balances. Thus, circumstances will be investigated for

Figure 1A, in which bimodal distributions can arise without

bistability, and for Figure 1B, in which unimodal distributions can

arise even when bistability exists.

Methods

The single cell deterministic (average) equations of
pCF10 System

The gene regulatory network for pCF10 based conjugation

system is shown in Figure 2A. Under natural circumstances,

pCF10 deficient recipient cells release a pheromone called cCF10

into the extracellular environment, whereas pCF10 carrying donor

cells release an inhibitor molecule, iCF10 into the environment

[26]. Both iCF10 and cCF10 are transported into the donor cells

to interact with pCF10 DNA favoring off vs on state respectively.

A pair of divergent genes prgQ and prgX present on pCF10 DNA

regulates the genetic switch controlling onset of conjugation. The

transcription of prgQ gene results in the formation of QPRE; QPRE

gives rise to two kinds of RNAs known as QL RNA and Qs RNA.

In the opposite direction, the prgX encodes the PrgX repressor and

a non-coding antisense RNA called Anti-Q which may bind to

QPRE [27,28]. A QPRE bound with Anti-Q leads to shorter Qs

RNA. On the other hand, the final product of free QPRE is longer

QL RNA. Under off conditions iCF10 bound PrgX tetramer

represses prgQ; small amounts of QPRE are nearly all bound by

overwhelming Anti-Q and result in QS, which is incapable of

inducing conjugation, predominantly expressed. In the on state

iCF10 bound PrgX tetramer is replaced by cCF10 bound PrgX

dimer which relieves repression of prgQ, thus causing expression of

a longer QL transcript from prgQ gene [29]. The QL RNA

consequently results in expression of PrgB protein, an indicator for

the onset of conjugation [30].

The deterministic (average) equations based on mass-action

kinetics that represent the gene regulatory network in Figure 2A
are represented below with its associated nomenclature listed in

Table 1.

dqs

dt
~k½K1,1ozK1,2(1{o)�( K3,5 qa

1zK3,5 qa

){(K4,1zm) qs ð1Þ

dqL

dt
~k ½K1,1ozK1,2(1{o)� ( 1

1zK3,5 qa

){(K4,2zm) qL ð2Þ

dqa

dt
~k ½K1,3ozK1,4(1{o)�{k ½K1,1ozK1,2(1{o)�

(
K3,5 qa

1zK3,5 qa

){(K4,3zm) qa

ð3Þ

Figure 1. Schematic showing single cell bistability and
population bimodal distribution. For cCF10 pheromone (signaling
molecule) induced pCF10 conjugation system, concentration of PrgB
protein indicates the level of conjugation. Our model indicates that (A)
due to different plasmid copy number in culture of cells, bimodal
population distribution can arise from cells without bistability and (B)
due to interaction with each other, cells with bistability can abandon
bimodal population distribution.
doi:10.1371/journal.pcbi.1002140.g001

Author Summary

Traditionally cells in a population have been assumed to
behave identically by using deterministic mathematical
equations describing average cell behavior, thus ignoring
its inherent randomness. A single cell stochastic model has
therefore evolved in the literature to overcome this
drawback. However, this single cell perspective does not
account for interaction between the cell population and its
environment. Since stochastic behavior leads to each cell
acting differently, the cumulative impact of individual cells
on their environment and consequent influence of the
latter on each cell could constitute a behavior at variance.
Thus in nature, cells are constantly under the influence of a
highly dynamic environment which in turn is influenced by
the dynamics of the cell population. A typical single cell
stochastic model ignores such an interaction between the
population and its environment, and uses probability
distribution of a single cell to represent the entire
population, which may lead to inappropriate predictions.
In this study, we propose a population balance model
coupled with stochastic gene regulation to demonstrate
the behavior of a population in which its interactive
behavior with its environment is considered. Our simula-
tion results show that bistability is neither sufficient nor
necessary for bimodal distributions in a population.

Bistability versus Bimodal Distributions
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di

dt
~K2,6I{(K4,6zm) i ð4Þ

db

dt
~K1,7z

K1,9

1zexp½{K3,9 (qL{K1,8)�{(K4,9zm) b ð5Þ

Eq. (5), representing the mass balance of PrgB, treats the

production rate as a sigmoid function of QL [31]. A variation

considering the production rate of PrgB as a linear function of QL

is contained in the modified differential equation (6) below.

Figure 2. Schematic drawing of gene regulation and population balance model. (A) The gene reaction network of pCF10 based
conjugation system. The prgQ-prgX gene pair regulates conjugation. While pheromone cCF10 is released by recipient cells in the extracellular
environment, the inhibitor iCF10 is encoded from both QS and QL RNA, products of the prgQ gene. Both iCF10 and cCF10 compete for binding to
PrgX protein which is assumed to exist at a constant concentration in this study. In the off state, iCF10-bound PrgX tetramers repress prgQ gene
expression via formation of a DNA loop. Under these conditions, the nascent prgQ transcript Qpre interacts with the non-coding antisense RNA, Anti-
Q, to give rise to shorter QS RNA. In the on state PrgX-cCF10 dimers relieve prgQ repression to give rise to increased production of Qpre, which tends
to titrate Anti-Q, allowing production of the longer QL RNA and consequently PrgB protein. The concentration of PrgB protein indicates the level of
conjugation. (B) the DNA configuration of on state. (C) the DNA configuration of off state. (D) Schematic depicting the Population Balance Model
(PBM) with stochastic gene regulation. Grey color indicates a cell in off state and green indicates on state. Properties of the PBM include I) Uneven
distribution of plasmids to daughter cells. II) Cells with different plasmid copy number or different states act differently and influence each others. III)
A cell acts random according to stochastic intracellular gene regulation.
doi:10.1371/journal.pcbi.1002140.g002

Bistability versus Bimodal Distributions
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db

dt
~K1,5qL{(K4,9zm) b ð6Þ

The differential equation which remains is that expressing the

mass balance of intracellular pheromone concentration given by

dc

dt
~K2,8C{(K4,8zm) c ð7Þ

In Eqs. (1) to (3), o:
ir

irzK3,8 cr
, represents DNA in repressed

configuration. The above equations are based on mechanisms

already published in the literature [28,30,32–34]. The parameter

values for the simulations, adopted from those used for a similar

reaction system [35], are summarized in Table 2. RNA species QS,

QL and Anti-Q are described in Eqs.(1), (2) and(3), considering

rate of production, degradation and dilution due to growth. The

transcription rate of RNA species is modeled by a non-linear

function of iCF10, cCF10 and Anti-Q to take into consideration

effects of Transcriptional Interference and Antisense interaction,

and are discussed in greater detail elsewhere [36]. Transport of

both iCF10 and cCF10 into the donor cell is modeled as a first

order reaction (Eqs. (4) and (7)). Eq. (5) considers the production

rate of PrgB as a sigmoid function [31] with respect to QL and has

been used to simulate Figures 3B and 4. Instead of sigmoid

function, for reducing computational burden, Eq. (6) assumes that

the expression of PrgB is linear in QL and has been used to

simulate Figures 3A, Figure 5, Figure 6 and Text S1. The trends

simulated by this deterministic model are consistent with

experimental observations [17] (refer to Text S1). While the

above notation for concentration serves to remind the reader of

the reaction species to which it belongs, it is not convenient for

their compact representation in the upcoming equations of

population balance. Therefore, the intracellular concentrations

are renamed as shown in Eq.(8).

xT~ x1:qs, x2:qL, x3:qa, x4:i, x5:b, x6:c½ � ð8Þ

Note that the extracellular concentration variable C and I are

spared from inclusion in the vector x. Eq. (9) provides an explanation

of the different symbols in the foregoing differential Eqs. (1)–(7).

_XX(x Yj )~

k ½K1,1ozK1,2(1{o)� ( K3,5 qa

1zK3,5 qa

){(K4,1zm) qs

k ½K1,1ozK1,2(1{o)� ( 1

1zK3,5 qa

){(K4,2zm) qL

k ½K1,3ozK1,4(1{o)�{k ½K1,1ozK1,2(1{o)�

(
K3,5 qa

1zK3,5 qa

){(K4,3zm) qa

K2,6I{(K4,6zm) i

K1,7z
K1,9

1z exp½{K3,9 (qL{K1,8)�{(K4,9zm) b

or K1,5qL{(K4,9zm) b

K2,8C{(K4,8zm) c

2
6666666666666666666664

3
7777777777777777777775

ð9Þ

Table 1. Nomenclature of pCF10 system.

Notation Name

o DNA of plasmid in loop form, repressed state of prgQ

k Plasmid copy number

r Order of DNA binding reaction, equal to 4

c Intracellular concentration of pheromone, cCF10

qs Intracellular concentration of Qs mRNA

qL Intracellular concentration of QL mRNA

qa Intracellular concentration of Anti-Q RNA

i Intracellular concentration of inhibitor, iCF10

b Concentration of PrgB membrane protein

I Extracellular concentration of inhibitor, iCF10

In Extracellular number of inhibitor, iCF10

C Extracellular concentration of pheromone, cCF10

vd Volume per donor cell

V Total volume

doi:10.1371/journal.pcbi.1002140.t001

Table 2. Values of Parameters of pCF10 system.

Reaction
constant Name Value

K1,1 transcription rate of prgQ,
DNA in loop form

0.0084 (nM/s)

K1,2 transcription rate of prgQ,
DNA in un-loop form

0.0876 (nM/s)

K1,3 transcription rate of Anti-Q,
DNA in loop form

0.0125 (nM/s)

K1,4 transcription rate of Anti-Q,
DNA in un-loop form

0.0014 (nM/s)

K1,5 generation rate of PrgB for
first order reaction

0.01 (1/s)

K1,6 generation rate of extracellular
inhibitor, iCF10

0.005 (1/s)

K1,7 basic generating rate of
membrane protein PrgB

0.00155 (nM/s)

K1,8 threshold concentration of QL 12.00 (nM)

K1,9 rate constant of generating
membrane protein PrgB

0.0031 (nM/s)

K2,6 importation rate of inhibitor, iCF10 0.001 (1/s)

K2,8 importation rate of pheromone, cCF10 2.57E-04 (1/s)

K3,5 equilibrium constant of QPRE

and Anti-Q reaction
0.0443 (1/nM)

K3,8 equilibrium constant of DNA
binding reaction

1.00E06 -

K3,9 constant of sigmoid function
for QL to PrgB

12.00 (1/nM)

K4,1 degradation rate of Qs mRNA 0.001 (1/s)

K4,2 degradation rate of QL mRNA 0.100 (1/s)

K4,3 degradation rate of Anti-Q RNA 0.0001359 (1/s)

K4,5 degradation rate of extracellular
inhibitor, iCF10

1.00E-06 (1/s)

K4,6 degradation rate of intracellular
inhibitor, iCF10

1.00E-06 (1/s)

K4,8 degradation rate of intracellular
pheromone, cCF10

1.00E-06 (1/s)

K4,9 degradation rate of PrgB protein 1.00E-06 (1/s)

m net specific growth rate of donor cells 0.0002567 (1/s)

doi:10.1371/journal.pcbi.1002140.t002

Bistability versus Bimodal Distributions
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where o~
ir

irzK3,8 cr
, Y~

C

I

� �
Further, the differential equation for the mass balance of I

remains to be identified (C is modeled as add-in with constant

concentration). Towards this end, we define In as the number of

inhibitor molecules in the extracellular space. Assuming that the

fraction of extracellular volume to total volume as constant, we

identify Eq.(10) for In as

dIn

dt
~K1,6(qszqL)vd{K

0
2,6I{K4,5In ð10Þ

where vd is the volume per cell. The first term on the right hand

side of Eq. (10) represents the number of inhibitor molecules

exiting the cell per unit time, the second their uptake rate by cells,

and the third their degradation in the extracellular volume. For

each cell, the uptake rate depends on the extracellular inhibitor

concentration, so that the total uptake rate is proportional to the

product of number of cells and the extracellular inhibitor

concentration. Note that K
0
2,6 is not a constant because the uptake

of inhibitor occurs by active transport and its rate depends on

PrgZ protein [37]. Assuming that the uptake rate is proportional to

number of the PrgZ protein and that the latter is proportional to

the volume of the cell, we rewrite K
0
2,6~K2,6vd which yields K2,6

as a reasonable constant. Next, we define Q as the volume fraction

of extracellular volume so that 1{Q would be volume fraction of

the cell, from which we have In~QvdI= 1{Qð Þ~IQVwhere V is

the total volume. Substituting this into Eq. (10), using renamed

variables, we obtain the differential equation for I as

dI

dt
~K1,6(qszqL)

(1{Q)

Q
zK2,6I

(1{Q)

Q
{(K4,5z

d ln(QV )

dt
)I ð11Þ

The last term on the right hand side can also be represented as
d ln(QV )

dt
~

d ln V

dt
~m, a dilution term resulting from assuming

that the volume fraction of cells remains constant as 0.5 so that an

increase of cell volume by growth also results in an increase of

extracellular volume to the same extent. Note that the above

assumption about the extent of the extracellular volume has no

influence on our conclusion. In this regard the reader is referred to

the toy example where volume is modeled as constant.

Population Balance Model (PBM) with deterministic
intracellular behaviors

The effort of applying PBM on analyzing cell behaviors can be

traced back to mid-twentieth century [1,38]. More recently, the

number of publications applying PBM has notably increased on

analyzing complex cellular behavior (e.g. Mantzaris [39]). Thus

the behavior of an entire culture of microorganisms can be

simulated by PBM in the form of a multivariate population

distribution. A generic formulation of PBM is presented by

Ramkrishna [15]. This formulation distinguishes a vector of

internal coordinates xT~(x1,x2,:::xd ) and a vector of external

coordinates rT~(r1,r2,r3); the former represents d different

quantities associated with the cell and the latter denotes the

position vector of the cell. Cells with the same coordinates are

viewed as indistinguishable. The dynamics associated with the

intracellular variables through cellular processes (including gene

regulation) can be described by a rate vector _XX containing the

deterministic reaction rates in terms of internal coordinates x. The

vector x includes quantities such as cell mass, various intracellular

components associated with gene expression, and so on. The

vector Y is a vector of extracellular variables influencing the

intracellular processes; which may include concentrations of

nutrient, signaling molecules, inhibitor and so on. The motion of

cells with respect to a fixed coordinate frame may be written as Eq.

(13), where the vector _RR describes the velocity of the cell which

may be caused by the mixing of cells (for instance, in a planktonic

growth situation) or zero when imbedded in a biofilm without

motion.

dx

dt
~ _XX(x Yj ) ð12Þ

dr

dt
~ _RR(x,r,t) ð13Þ

where ‘‘ Yj ’’ means ‘‘given Y’’. The notation is used to recognize

the influence of extracellular variables, Y on intracellular

processes. We use n x,r,tð Þ to denote the actual number density

and denote its expectation by number density f x,r,tð Þ [40], for a

given set of internal coordinates x, position coordinates r at a

certain time t. The term density here refers to number of cells per

unit volume of space of internal coordinates, x as well as that of

external coordinates, r. The existence of this density in physical

Figure 3. The steady-state behaviors. (A) System demonstrates bistability using the parameter values as shown in Table 2. (B) The possibility of
bistability can be analytically excluded by setting the parameter value of K4,2 = K4,1 independent of other parameters. For both (A) and (B), plasmid
copy number k is equal to 5.
doi:10.1371/journal.pcbi.1002140.g003

Bistability versus Bimodal Distributions
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space must be recognized even when there is no explicit

dependence of cell numbers with position. The population balance

equation is a state-specific balance due to various processes such as

by conjugation, cell division, and so on. It may be written as

Lf (x,r,t)

Lt
z+x

: _XX(x Yj )f (x,r,t)z+r
: _RR(x,r,t)f (x,r,t)~h(x,r,t) ð14Þ

The function h x,r,tð Þ in Eq. (14) represents the net (number) rate

of production of cells of state x at a particular location r and time

t. Note in particular that h, although represented as a simple

function of its arguments, acquires its dependence on them

through being a functional of the number density f x,r,tð Þ. Eq. (14) is

coupled with a conservation equation written for Y, for which we

define _YY xð Þ as the rate at which a cell of state x ‘‘consumes’’ or

‘‘contributes’’ to the extracellular variables in Y. The extracellular

reaction rate is described by c(Y). Noting that Y r,tð Þ is a function

Figure 4. Bimodal distribution results from no bistability. The
parameters used in this simulation are shown in Table 2 except for
K4,2 = K4,1 = 0.001 (1/s). (A) The stationary distribution responding to
different concentrations of extracellular pheromone, cCF10. As the
concentration of pheromone increases, cell population migrates from
state of low PrgB, viewed as off state, to state of high PrgB, viewed as
on state. When pheromone concentration reaches 30 nM, all cells stay
at on state. (B) The change of PrgB protein distribution for cCF10
concentration from 6 nM to 9 nM. (C) The dynamic behavior
responding to constant concentration of pheromone, cCF10. This
simulation is done with extracellular pheromone concentration
maintained at 10 nM.
doi:10.1371/journal.pcbi.1002140.g004

Figure 5. Population distribution for a system with bistability.
Both (A) and (B) use the same parameters shown in Table 2.
Extracellular pheromone concentration is maintained at 13.5 nM for
both simulations. Only noise term of protein and peptides are taken
into consideration [48,49]. Thirty thousand cells are used. (A) Outcome
from single cell stochastic model described in Eq.(30). Due to
stochasticity, bimodal distribution comes from initial unimodal distri-
bution. Single cell stochastic model ignores the interaction between
cells. Extracellular inhibitor is used only by the donor cell secreting it.
(B) Outcome from PBM described in Eq.(29). The extracellular inhibitor
is utilized by the whole population. The simulation outcome shows that
the population effect leads to unimodal distribution.
doi:10.1371/journal.pcbi.1002140.g005

Bistability versus Bimodal Distributions
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of position and time, the conservation equation for Y is described

in Eq. (15) where NY is the total flux of the various components in

Y including convective as well as diffusive transport.

LY

Lt
z+:NY~{

ð
_YY xð Þf x,r,tð Þdxzc(Y) ð15Þ

The population balance model is defined by Eqs. (14) and (15),

properly supplemented by initial and boundary conditions.

PBM with stochastic intracellular behaviors
We next incorporate the intracellular stochastic behavior of

gene regulation into the population balance model described in

Eqs. (14) and (15). The formulation of population balance

equations has been presented by Ramkrishna [15] when the

internal state is a stochastic process described by the stochastic

differential equation

dx~ _XX x Yjð ÞdtzB x Yjð ÞdW tð Þ ð16Þ

where B x Yjð Þ is the term that determines the magnitude of

stochastic fluctuations (refer to Gillespie’s Chemical Langevin

equation [41]) of signal transduction reactions on the associated

intracellular variables; dW tð Þ, a vector, represents the increment

of a standard Wiener process (during the time interval dt). We

further note that the SDE are based on Ito formulation. Also, its

equivalent Fokker-Planck equation can be written as Eq.(17).

LP(x,t)

Lt
~{+x

: _XX(x Yj )P(x,t)z
1

2
+x+x : B(x Yj )B(x Yj )TP(x,t) ð17Þ

where ‘‘ : ’’ represent double dot product so +x+x : B(x Yj )B(x Yj )T

can also be written as
P

i

P
j

L
Lxi

L
Lxj

B(x Yj )B(x Yj )T .

The population balance equation with position coordinate can

be written as Eq.(18)

Lf (x,r,t)

Lt
z+x

: _XX(x Yj )f (x,r,t)z+r
: _RR(x,r,t)f (x,r,t)

~
1

2
+x+x : B(x Yj )B(x Yj )T f (x,r,t)zh(x,r,t)

ð18Þ

which is the number balance of cells of state x accounting for

stochastic changes in internal coordinates as defined by the Ito

SDE, Eq. (16). The derivation of this equation is available in

Ramkrishna [15]. Next, we consider the cells to be completely

(uniformly) mixed so that spatial coordinates may be eliminated.

The resulting population balance equation is given by

Lf x,tð Þ
Lt

z+x
: _XX(x Yj )f x,tð Þ

~
1

2
+x+x : B(x Yj )B(x Yj )T f x,tð Þzh x,tð Þ

ð19Þ

Eq. (19) is coupled to a version of Eq. (15) in environmental

variables Y modified to account for a well-mixed system given by

dY

dt
~{

ð
E _YY x,tð Þf x,tð Þdxzc(Y) ð20Þ

where E _YY x,tð Þ is the expected rate of consumption of extracellular

variables by cells of state x. Note that _YY x,tð Þ is stochastic in view of

the single cell behavior being stochastic so that the cumulative

contribution from a large collection of cells to the environment is

deterministic given by E _YY x,tð Þ. Eqs. (19) and (20) must be

considered with initial and boundary conditions. Note that

number density function, f x,tð Þ, satisfies ‘‘natural boundary

conditions’’ (i.e., vanishing of the function and its gradient at

infinity). With this background, we are in a position to consider the

population balance model for the system of interest, viz.,

conjugation of plasmid pCF10 system.

PBM for conjugation of plasmid pCF10 system
Since the conjugative response can be influenced by the number

of copies of pCF10 plasmid, we include plasmid copy number as a

discrete internal coordinate for the cell in view of its effect on cell

dynamics as the number of plasmids in each cell becomes

important. As a result, the number density Eq. (3) is further

embellished with a discrete variable representing copy number.

We define the expected number density of cells fk x,tð Þ, with

internal state x and plasmid copy number k, where k varies

between 1 and kmax. Kinetics of gene expression is denoted as
_XXk xjYð Þ to account for the effect of plasmid copy number. Cell

division rate, denoted by m, is assumed to be a constant. A more

complicated situation of cell growth, which is not taken into

consideration in this study, including the dependence of m on

intracellular stochastic state x can be found in Tanase-Nicola’s

work [42]. However, this cited work suffers from neglecting

interaction between cells through population effects on the

environment. The random partitioning of plasmid between

daughter cells is denoted by pk jj where j is the copy number of

the dividing parent and k is that of the daughter cell. Plasmids

replication is assumed to occur instantaneously prior to cell

division. The population balance equation with stochastic

intracellular behavior for this case can be written as

Lfk x,tð Þ
Lt

z+x
: _XXk(x Yj )fk x,tð Þ~

1

2
+x+x : Bk(x Yj )Bk(x Yj )T fk x,tð Þz

{mfk x,tð Þz2
X

j

fj x,tð Þmpk jj , k~1,2, . . . ,kmax

ð21Þ

Eq. (21) represents a number balance of cells of state x with copy

Figure 6. Population distribution, started with bimodal distri-
bution, merging into a unimodal distribution due to popula-
tion effect. Bimodal distribution generated from single cell stochastic
model with extracellular pheromone concentration equal to 13.5 nM
served as initial distribution of PBM. Simulation was done with plasmid
copy number equal to 5 and parameter values listed on Table 2.
Population effect of extracellular inhibitor causes two modes to merge
into one.
doi:10.1371/journal.pcbi.1002140.g006
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number k. The first term on the left hand side represents the rate at

which such cells accumulate, the second denotes the net flux by

‘‘convective’’ transport (in internal coordinate space), while the first

term on the right hand side represents the mean fluctuation due to

random effects, the second the loss of cells by division and the last

term the gain of cells of copy number k by division of other cells.

The factor 2 accounts for doubling of the population by binary

division. The intracellular variables of parent and daughter cells are

considered to be same. The extracellular components include only

pheromone and inhibitor. We do not concern ourselves with the

resistance transfer process in this paper as our focus is only on the

expression of the protein PrgB in the donor cells. We enunciate

three further model assumptions: (i) the population density is

maintained constant in the growing population by appropriate

dilution; in other words, the system volume is allowed to expand

suitably. This assumption is only made to provide for a true steady

state in the protein level distribution. A similar assumption is also

made in the single cell analysis. (ii) constant extracellular pheromone

concentration, which implies that we need only consider the

component I for the dynamics of the vector Y, and (iii) that inhibitor

is produced and secreted directly into the environment through

intracellular reaction as described by Eq. (11).

The mass balance of extracellular inhibitor is adopted from Eq.

(20) acknowledging any copy number dependence of the rate of

consumption of extracellular variables by cells. A macroscopic

mass balance for the extracellular variables, based on assumption

of perfect mixing, is given by.

dI

dt
~
X

k

ð
E K1,6(x1zx2){K2,6I½ � vd

Q
fk x,tð Þdx{(K4,5zm)I ð22Þ

In Eq. (22), we have used the renamed concentration variables x1

and x2 in place of qs and qL respectively. It is also worth noting

that the dilution term on the second term on the right hand side

comes about from the assumption that the system volume is

allowed to expand to keep the population density constant. The

motivation for this assumption, as pointed out earlier, is the

attainment of a true steady state in the population with respect to

protein levels as in the single cell analysis. A schematic illustration

of PBM described by Eqs. (21) and (22) is shown in Figure 2B.

We restrict ourselves in this work to the case where plasmid

copy number of the daughter cells is the same as that of the parent

cell. In other words, if a cell of copy number k divides, just prior to

division, the plasmids double in number and are equally shared by

the two daughter cells. Of course more general cases are

admissible in the model framework which can account for plasmid

replication and uneven distribution among daughter cells. The

specific assumptions in this work will, however, suffice for

demonstration of population balance modeling. The even

partitioning of plasmids among daughter cells in a population of

uniform copy number distribution is described in Eq. (23).

pk jj ~djk~
0, j=k

1, j~k

�
ð23Þ

Using Eq. (23) converts the population balance Eq. (21) into Eq.

(24) shown below with k~1,2,:::,9, which yields an average copy

number of 5 close to experimental observation.

Lfk x,tð Þ
Lt

z+x
: _XXk(x Yj )fk x,tð Þ~

1

2
+x+x : Bk(x Yj )Bk(x Yj )T fk x,tð Þzmfk x,tð Þ

ð24Þ

The Bk(x Yj ) of Eq. (24) is identified below

Bk(x Yj )~
0½ �3|3 0½ �3|6

0½ �3|3 Bp

� �
3|6

" #

where Bp

� �
3|6

~

Bp,11 Bp,12 0 0 0 0

0 0 Bp,23 Bp,24 0 0

0 0 0 0 Bp,35 Bp,36

2
4

3
5

Bp,11~

ffiffiffiffiffiffiffiffiffiffiffi
K2,6I

vd

r
, Bp,12~

ffiffiffiffiffiffiffiffiffiffi
K4,6i

vd

r
, Bp,23~

K1,7z
K1,9

1zexp½{K3,9 (qL{K1,8)�

� �1=2

vd
{1=2or

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K1,5qL

vd

r

Bp,24~

ffiffiffiffiffiffiffiffiffiffiffi
K4,9b

vd

s
, Bp,35~

ffiffiffiffiffiffiffiffiffiffiffiffi
K2,8C

vd

s
, Bp,36~

ffiffiffiffiffiffiffiffiffiffiffi
K4,8c

vd

r

and the _XXk(x Yj ) is exactly the same as _XX(x Yj ) which is identified

in Eq.(9). The reason for using index k is to clearly state that PBM

account for population heterogeneity of plasmid copy number.

Note that Eq. (24) should be coupled with Eq. (22). The overall

expected number density, denoted fT x,tð Þ, can be obtained in Eq.

(25)

fT x,tð Þ~
X

k

fk x,tð Þ ð25Þ

The solution method for PBM
The difficulty involved in solving PBM with stochastic

intracellular behaviors comes from the natural boundary condition

(i.e., vanishing of the function and its gradient at infinity). To

handle this problem, we transform the population balance

equation (24) into a Fokker-Planck equation using the transfor-

mation shown in Eq. (13) to obtain Eq. (14). The integral over x
coordinates is unity because Nko represents the initial number

density of cells with copy number k.

~ffk x,tð Þ~ 1

Nko

fk x,tð Þe{mt ð26Þ

L~ff k x,tð Þ
Lt

~{+x
: _XXk(x Yj )~ff k x,tð Þz

1

2
+x+x : Bk(x Yj )Bk(x Yj )T ~ff k x,tð Þ

ð27Þ

Eq. (27) is a Fokker-Planck type differential equation whose

solution represents the probability distribution for the stochastic

process defined by the Ito SDE (refer to Eq. (16)). Thus the

sample-pathwise solution to Ito SDE will provide an alternative

route to calculate expectations of all quantities associated with the

stochastic process x, including the quantity E _YYk x,tð Þ, for

substitution into Eq. (22). We solved Ito SDE relating to Eq. (27)

by using the Euler algorithm [43]. The computation proceeds in a

stepwise manner for each discrete interval to keep abreast of

environmental variables.

Bistability versus Bimodal Distributions
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Results

We first compare the single cell model approach with that of

population balances, delineating the differences between them.

The single cell approach would use Ito SDE with variations

including extracellular variables, i.e., the inhibitor in the present

context, (as the inducer molecule concentration is assumed to be

held constant). The secretion of inhibitor to the exterior and

subsequent transport back into the cell will enter the model as a

singular experience of the cell in question. Thus the environmental

inhibitor concentration will display dynamics as a result of

interaction with the single cell. On the other hand, in the

population balance model, stochastic behavior of numerous

individual cells will provide different secretions of the inhibitor

to the environment which, because of mixing effects, would

change the environment of all cells in the population. This will

undoubtedly produce different dynamics of the system. To further

elucidate the difference between the two approaches, we note that

the environmental inhibitor I in the population balance model

changes as a result of the cumulative (expected) exchange with the

population whereas the single cell model will account only for the

(stochastic) exchange rate with the cell’s environment.

Bimodal distribution from plasmid unevenly distributing
to daughter cells

Although bistability is featured by Eqs. (1)–(10) for the range of

parameter values shown in Table 2 (Figure 3A), bistability can be

(analytically) excluded by forcing parameter K4,2, the degradation

rate of QL mRNA, equal to K4,1, the degradation rate of Qs

mRNA, regardless of the values of other parameters (Figure 3B).

The detailed derivation is shown in the Text S1.

The parameters used in this simulation are shown in Table 2,

except K4,2~K4,1~0:001 (1/s). Stochasticity is restricted to

protein alone to reduce computational time. Forty-five thousand

cells are used. The outcome is shown in Figure 4. Results of

stationary distribution responding to different pheromone con-

centration are shown in Figure 4A and 4B. At zero and low

pheromone concentration, all cells are at off mode. With

increasing pheromone concentration, the cell population gradually

migrates from mode of low PrgB, viewed as off state, to mode of

high PrgB, viewed as on state. Finally, when the pheromone

concentration exceeds 30 nM, all cells stay at on state. The

transcription rate of various RNA species is directly proportional

to the plasmid copy number. The difference between cells of

various plasmid copy numbers causes population heterogeneity

resulting in a distribution across the population. The results of

dynamic behavior are shown in Figure 4C. This simulation is done

for extracellular pheromone concentration equal to 10 nM. The

initial distribution is obtained by simulating cells with no

pheromone added. Population from initial unimodal distribution

finally develops into a bimodal distribution. Figure 4 demonstrates

that bistability is not necessary for a bimodal distribution and that

the bimodal distribution arises directly out of population

heterogeneity.

Resolving bistability versus bimodal distribution
If there is no plasmid copy number distribution, the population

balance model can then be written as:

Lf5 x,tð Þ
Lt

~{+x
: _XX5(x Yj )f5 x,tð Þz

1

2
+x+x : B5(x Yj )B5(x Yj )T f5 x,tð Þzmf5 x,tð Þ

ð28Þ

_XX5(x Yj ) and B5(x Yj ) indicate Eq. (28) describing system with

plasmid copy number equal to 5.

With the solution method described in Methods we convert the

population balance Eq. (28) into

L~ff 5 x,tð Þ
Lt

~{+x
: _XX5(x Yj )~ff 5 x,tð Þ

z
1

2
+x+x : B5(x Yj )B5(x Yj )T ~ff 5 x,tð Þ

ð29Þ

Notice that above equation should be coupled with environmental

equation of extracellular inhibitor Eq.(22).

The single cell stochastic model may be written as

LP(xie,t)

Lt
~{+xie

: _XXie(xie)P(xie,t)

z
1

2
+xie

+xie
: Bie(xie)Bie(xie)T P(xie,t)

ð30Þ

Where index ie indicates both intracellular and extracellular

variables are involved. For reasons that have already been

elucidated earlier, Eqs. (29) and (30) are not the same. In Eq.

(29), the vector x is different from the vector xie in Eq. (30) because

the latter also includes the extracellular inhibitor as a stochastic

variable.

The outcome of the simulation is shown in Figures 5A and 5B.

While the outcome of Eq.(30) shows a bimodal distribution that of

Eq.(29) shows a unimodal distribution, thus indicating the strong

impact of the population on the behavior of individual cells.

In order to exclude the possibility that Figure 5B was a result of

insufficient simulation time to develop into a bimodal distribution,

a simulation was conducted with PBM using initial distribution as

a bimodal distribution calculated from the single cell Fokker-

Planck equation. The simulation outcome, Figure 6, shows a result

consistent with Figure 5B. A bimodal distribution under the

influence of the population effect finally merges into one mode.

Toy example
The purpose of this example, shown in Figure 7, is to elucidate

the key elements of the more complicated model of the pCF10

System. To simplify the discussion, we use symbols to denote not

only the molecular species but their concentrations. The precursor

of the signal molecule, denoted as Xso, needs membrane protein,

mp, to mature into intracellular signal molecule, xs. Two kinds of

gene, xp gene and xi gene, encode product and inhibitor,

respectively. As the signal molecule dominates, the transcription

rate of xp gene is high and that of xi gene is low. On the other

hand, inhibitor favors xi gene instead of xp gene by consuming

signal molecule. Further, defining the intracellular concentration

of inhibitor as xin, the concentration of product as xp, the

extracellular concentration of inhibitor as Xex, and letting v be the

volume per cell, we formulate the mass balance equations for the

single cell as

dxs

dt
~KssXsomp{(Kdszu)xs ð31Þ

dxp

dt
~KGpGpa{(Kdpzu)xp ð32Þ

dxin

dt
~KiI Xex{(Kdizu)xin ð33Þ

Bistability versus Bimodal Distributions
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dXex

dt
~NvKGI GIa{NvKiI Xex ð34Þ

where Gpa and GIa describe how DNA configurations change

generation rate and are defined as

Gpa~
Kon=off

p

1
when

xinvxs

xsƒxin

(
,

GIa~
K

on=off
I

1
when

xinvxs

xsƒxin

(

and the values of parameters are identified in Table 3. Note that

Kon=off
p is greater than one because the signal molecule favors the

transcription of xp gene and K
on=off
I is less than one as the signal

molecule prevents the transcription of xi gene. Eqs. (32) and (34),

together with Gpa and GIa as defined above, imply that binding of

intracellular inhibitor to signal molecule is an irreversible reaction

with suitably large rates so that only the signal molecule or

inhibitor dominates the system. The toy example is composed of

seven reactions with the system at constant volume and the volume

of cells negligible compared to that of the system. For intracellular

variables, KssXsomp describes the generation rate of intracellular

signal molecule with mp which is assumed to be controlled by a

certain gene and maintained constant in each cell; KGpGpa is the

generation rate of product where KGp is a basic rate multiplied by

a ‘‘configuration factor’’, Gpa; KiI Xex describes the uptake rate of

inhibitor where Xex is the extracellular inhibitor concentration;

Kdsxs, Kdpxp and Kdixin are degradation terms and u is cell growth

rate. For extracellular inhibitor, the generation term includes a

basic transcription rate, KGI , multiplied by a ‘‘configuration

factor’’, GIa. Because extracellular inhibitor is the accumulated

result from all the cells, Eq.(34) further accounts for number

density, N. Note that although steady state exists for deterministic

equation, there is no true steady state for stochastic model or

stochastic gene regulation incorporating PBM. However, the effect

from the increment of N is small enough to consider the system as

in pseudo steady state (refer to Figure 8 and 9).

The PBM with stochastic intracellular behaviors of this system is

shown in Eq. (35) with environmental equation, Eq. (36).

Following the method introduced in the section ‘‘The solution

method for PBM’’, Eq.(35) can be transferred into Eq. (37).

Lft xt,tð Þ
Lt

~{+xt
: _XXt(xt Ytj )ft xt,tð Þ

z
1

2
+xt+xt : Bt(xt Ytj )Bt(xt Ytj )T ft xt,tð Þzuft xt,tð Þ

ð35Þ

dXex

dt
~

ð
(KGI GIa{KiI Xex) v ft xt,tð Þdxt ð36Þ

L~fft xt,tð Þ
Lt

~{+xt
:_XXt(xt Ytj )~fft xt,tð Þ

z
1

2
+xt+xt : Bt(xt Ytj )Bt(xt Ytj )T ~fft xt,tð Þ

ð37Þ

Figure 7. Reaction network for gene regulation in toy example.
After uptake by membrane protein, the precursor of signal molecule
matures into signal molecule. When signal molecule binds to DNA, it
favors the expression of xp gene encoding product and represses the
transcription of xi gene which encodes the inhibitor. The binding
reaction of inhibitor to signal molecule is fast and irreversible so either
signal molecule or inhibitor dominates.
doi:10.1371/journal.pcbi.1002140.g007

Table 3. Parameters of toy example.

Reaction
Constant Name Value

Kss generation rate constant of
intracellular signal molecule

1 (1/arb.u.
min)

Kds degradation rate constant of
intracellular signal molecule

0.994 (1/min)

KGp generation rate constant of product 50 (arb.u./
volume
min)

Kdp degradation rate constant of
intracellular signal molecule

0.994 (1/min)

KiI uptake rate of inhibitor 1 (1/min)

Kdi degradation rate constant of
intracellular signal molecule

0.994 (1/min)

KGI generation rate constant of
extracellular inhibitor

80 (arb.u./
volume
min)

mp membrane protein 6 (arb.u.)

u net specific growth rate of cells 0.006 (1/min)

v volume per cell 1E-15 (volume)

K
on=off
I

‘‘configuration factor’’ of xi gene 0.5 -

Kon=off
p

‘‘configuration factor’’ of xp gene 2.4 -

doi:10.1371/journal.pcbi.1002140.t003
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where ~fft xt,tð Þ~ 1
No

ft xt,tð Þe{ut and No is the initial number

density of cells. Each of the terms in Eq. (37) are identified below

xT
t ~½ xs xp xin �

_XXt(xt Yj t)~

KssXsomp{(Kdszu)xs

KGpGpa{(Kdpzu)xp

KiI Xex{(Kdizu)xin

2
64

3
75 where Yt~

Xso

Xex

� �

Bt(xt Ytj )~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KssXsomp

v

q ffiffiffiffiffiffiffiffiffiffi
Kdsxs

v

q
0 0 0 0

0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KGpGpa

v

q ffiffiffiffiffiffiffiffiffiffi
Kdpxp

v

q
0 0

0 0 0 0

ffiffiffiffiffiffiffiffiffiffiffiffi
KiI Xex

v

q ffiffiffiffiffiffiffiffiffiffiffi
Kdixin

v

q

2
666664

3
777775

With the parameter values shown in Table 3, the deterministic Eq.

(31)–(34) are featured with bistability and the outcome of single cell

stochastic model, Eq.(38), shows corresponding bimodal distribu-

tion, Figure 8A. However, the prediction of PBM shows unimodal

distribution, Figure 8B. The same as mentioned in pCF10 system,

such qualitative difference is raised from the interaction between

cells.

LPt xts,tð Þ
Lt

~{+xts
: _XXts(xts)Pts xts,tð Þ

z
1

2
+xts+xts : Bts(xts)Bts(xts)

T Pt xts,tð Þ
ð38Þ

Each of the terms in Eq. (38) are identified below.

xT
ts~ xs xp xin Xex½ �

_XXts(xts)~

KssXsomp{(Kdszu)xs

KGpGpa{(Kdpzu)xp

KiI Xex{(Kdizu)xin

NKGI GIa{NKiI Xex

2
6664

3
7775

Figure 8. Comparison of the outcome from population balance
model and single cell stochastic model in toy example. Thirty
thousand cells are used with constant concentration, 10 arbitrary unit/
volume, of add-in signal molecular precursor. (A) Bimodal distribution is
observed from single cell stochastic model. (B) Unimodal distribution is
observed from population balance model.
doi:10.1371/journal.pcbi.1002140.g008

Figure 9. Bimodal distribution from no bistability. Thirty five
thousand cells are used for simulation. (A) Although there is no true
steady state, the effect from the increment of N on standard deviation
of the product protein distribution is small enough to consider the
system as pseudo steady state. (B) The plot of product protein
distribution with different add-in signal molecular precursor.
doi:10.1371/journal.pcbi.1002140.g009
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Bts(xts)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KssXsomp

v

q ffiffiffiffiffiffiffiffiffiffi
Kdsxs

v

q
0 0 0 0 0

0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KGpGpa

v

q ffiffiffiffiffiffiffiffiffiffiffi
Kdpxp

v

q
0 0 0

0 0 0 0

ffiffiffiffiffiffiffiffiffiffiffiffi
KiI Xex

v

q ffiffiffiffiffiffiffiffiffiffiffi
Kdi xin

v

q
0

0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NKiI Xexv

Vt

q
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NKGI GIav

Vt

q

2
666666664

3
777777775

where Vt is the system volume.

Next we demonstrate bimodal distribution from no bistability.

Note that the bistability can be excluded by forced GIa equal to

one. In other words, when K
on=off
I ~1, there is no bistability.

Instead of mp~6, we assign mp~3,4,:::,9 for each subpopulation

and each of them starts with the same biomass concentration. The

simulation outcome is shown in Figure 9. The bimodal distribution

comes from population heterogeneity.

Discussion

In this paper, we have investigated how population effect

changes the behaviors of a culture of cells and demonstrated that

the single cell approach does not account for the effects of

population heterogeneity and is therefore at risk of producing

erroneous results. For this application, we demonstrated that

bistability is neither necessary nor sufficient for bimodal

distribution.

In incorporating stochastic effects, we have relied on a

continuous description of the intracellular variables by SDE. As

the stochasticity arises from the randomness of chemical

transformations of a small number of reacting molecules, the

variables are essentially discrete. The SSA uses the chemical

Master equation which is based on discrete variables, whereas the

SDE approach has found various justifications in the literature.

For example, van Kampen [8] uses system size expansion to

obtain continuous descriptions of the stochastic variables.

Although the continuous description is known to be appropriate

for relatively larger number of molecules, publications exist in the

literature that demonstrate the usefulness of continuous descrip-

tion of discrete variables for as low as even ten particles [43].

Estimates of the expressed protein level in the system of interest

here range in the thousands in the on state and roughly in the

range 14–35 particles per cell in the off state. Arguments for these

estimates are included in the Text S1.

Hence the adoption of SDE may be regarded as appropriate for

this application. In addition, the analysis of populations involves

several cells of small variations about a given state so that

intracellular behavior averaged among them qualifies for the SDE

approach even more than in an isolated single cell.

In the section of resolving bistability versus bimodal distribution,

if cells act independently from each other, bimodal distribution

can be observed. However, cells change distribution from bimodal

to unimodal due to population effect. In general, planktonic cells

diffuse freely in the culture and such an isolated situation is hardly

reached, but for a cell immobilized by extracellular matrix, such as

biofilms [44], an isolated situation may be possible [45]. This study

simulates the response of E. faecalis donor cells, harboring plasmid

pCF10, to pheromone concentration. At low concentrations of

pheromone as found in the natural situation [46,47], for a

perfectly mixed system all cells are predicted to be at off-state as

shown in Figure 5B. However, for unmixed systems, non-

uniformity of inhibitor concentration can lead to some cells being

at the off-state, others at the on-state which together make up a

bimodal distribution for the integrated population. This provides a

possible mechanism for the observation of bimodal behaviors

under naturally occurring conditions such as biofilms involved in

dissemination of antibiotic resistance as has been shown in recent

work (Cook 2010, unpublished work). Our effort in this paper has

been to show that a cell in a population can behave in a

significantly different manner as its environment is altered by the

concerted action of other cells. A natural follow-up to this paper is

the modeling of the transfer of drug resistance accounting for the

presence of donor and recipient cells in different environments for

which population balances will indeed provide the proper

framework.

Supporting Information

Text S1 Supporting information includes the proof of how

bistability is excluded from pCF10 system, qualitative consistency

between model predictions of pCF10 system and experimental

observation, and the estimation of protein number per cell.
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