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Abstract

Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between
diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a
systematic and non-cohort dependent manner. By extracting phenotype information from the free-text in such records we
demonstrate that we can extend the information contained in the structured record data, and use it for producing fine-
grained patient stratification and disease co-occurrence statistics. The approach uses a dictionary based on the International
Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records
from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently can be mapped to
systems biology frameworks.
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Introduction

With the consolidation of EPR systems in modern healthcare,

massive amounts of clinical data and phenotype data are gradually

becoming available for researchers [1,2,3,4,5,6]. Alone, or

integrated with existing biomedical resources, these EPR systems

constitute a rich resource for many types of data driven knowledge

discovery as we demonstrate in this paper. In the coming years, as

these data are also coupled to the expected explosion in personal

genomic data, the translational meeting of ‘bench and bedside’ is

expected to push scientific advancements in personalized medicine

[4,7,8,9,10].

EPR systems document patient morbidity, treatment and care

over time. They comprise different types of structured and

unstructured data, ranging from coded diagnoses, ordinary

physiological measures, biobank data, laboratory test results over

medication prescriptions, and treatment plans, to free text notes

such as admission notes, discharge notes and nursing notes

[11,12].

We focus here on the assigned structured diagnosis codes and

the free text notes. In our Danish setting, assigned codes are coded

in the EPR according to the International Classification of Disease

version 10 (ICD10), and are ultimately reported to the discharge

registries for reimbursement. This process has known (but poorly

quantified) biases since codes result in different reimbursement

sums [13,14]. Assigned codes will also typically pertain strictly to

the current hospitalization and the morbidity deemed strictly

relevant to it. These bias and completeness issues are also

documented in insurance claims data with ICD9 [15]. In contrast

free text notes should not have this bias, and contain much

additional information, but in an inherently unstructured form

(refs). In this paper we demonstrate how text- and data mining

techniques can be used to extract clinical information hidden in

text to augment coded data. The result is a much more complete

phenotypic description of patients, than what could be obtained

from just structured data and registries.

There is an increasing focus on the research potential of both

structured and textual data collected in EPR systems and

registries. Examples of this work is classical database knowledge

discovery and association mining [16,17,18], identifying and

classifying specific medical cases or conditions in an EPR

[19,20,21,22], patient safety and automated surveillance of

adverse events, contraindications and epidemics [23,24,25],

comorbidity and disease networks [26,27,28], autocoding of

clinical text [29,30,31,32], medication information extraction

[33,34] and identifying suitable individuals for clinical trials

[35,36]. Also see review by Meystre et, al [37]. Some of this work

deals strictly with structured data, while some use text mining

techniques to extract information from text. Much of the latter

work builds on existing Natural Language Processing (NLP) text
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mining tools designed for recognizing clinical terms and findings

and mapping them to controlled vocabularies such as the United

Medical Language System (UMLS). Some of these tools are

MedLee, MetaMap, cTakes and HITEx ([29,38,39,40]). For

Danish text, unfortunately no such EPR Information Extraction

tools exist. To extract data from the text for our analysis, we

therefore constructed our own text mining module compatible

with Danish classification resources and easily adapted to any

language with a translation of ICD10. Our comparatively simple

approach significantly enriches structured EPR data, and allows a

higher resolution analysis than otherwise possible.

Independently of the research assisted by the information

presented in the patient records, several approaches have been

developed to discover novel disease associations, either based on

shared disease causing genes or on overlapping pathways

[26,41,42]. Known disorder–gene associations from available

resources like OMIM have been used to establish links between

diseases, thus creating a network of disorders [26]. Common to

many of these approaches is the extensive use of protein-protein

interactions from large-scale proteomic studies. Linking disease-

gene information with the growing data present in EPR systems

will allow for a better understanding of disease etiology and

phenotype-genotype associations. The PheWAS work at Vander-

built University. [43,44] is a recent illustration of this.

Here we describe a strategy for exploring EPR data from a

patient cohort in the context of subsequent systems biology

analysis. By mining the free-text parts of the EPR from a

psychiatric hospital we are able to augment the disease

information assigned in structured formats as ICD10 codes, and

thus obtain a much richer phenotype profile of each patient.

Treating these profiles as phenotype vectors [41] in the controlled

vocabulary space of the ICD10 disease classification, we

demonstrate how they can be used to investigate disease

comorbidity and patient stratification, paving the way for

discovery of the underlying molecular level disease etiology in

the form of overlapping genes and pathways. A longer-term

perspective is to also include genetic profiles of the individuals in

these data integration schemes, but this is not explored in the

present paper.

Results

Validation of the text mining approach
We based our study on a corpus of 5,543 patient records from

the Sct. Hans Hospital (the largest Danish psychiatric hospital)

collected in the period 1998–2008. A manually curated subset of

the records was used to assess the precision of the text mining

approach. From structured fields in the EPR, we extracted 31,662

ICD10 codes, representing 351 different level 3 codes and

corresponding to 2.7 unique codes associated to each patient on

average. In the selected text found in the EPR our text mining

approach matched 218,963 text strings to strings in a compiled

dictionary of ICD10 terms and generated term variants (see

Materials and Methods and Text S1 for additional detail). A

further 22,956 matches were disqualified by a negation module

whenever a negating word or mention of another subject (e.g.

mother, sister or friend) was found in the preceding part of the

sentence. The corresponding codes of these terms covered 554

different level 3 ICD10 codes, on average 9.5 unique codes per

patient. Combining mined and assigned codes results in 674

different ICD10 codes with 12.3 average codes per patient The

combined data was gathered in a Patient-ICD10 association

matrix, by assigning each Patient–ICD10 combination both a

binary and a TF-IDF ([45]) weighted value indicating whether or

not a given code was associated with a given patient and how

strongly. Rows thus represent the morbidity of a patient as a vector

in ICD10 space, and columns represent the prevalence of a ICD10

as a vector in patient space.

The precision of our text mining was quantitatively assessed by

manually checking all 2,724 mining hits for 48 patients (Table 1).

The validation set covered 214 full level ICD10 codes,

corresponding to 151 level 3 codes. A hit was considered correctly

assigned when it was possible to infer a direct clinical link between

the term and the patient from the record context. We defined

precision in two ways: Incidence precision of all curated hits, and

association precision, where an ICD10 code is considered correctly

associated with a patient if it h77as at least one correct incidence.

In both cases we considered how the precision was distributed

among the different chapters. We found a total incidence precision

of 87.78% and an association precision of 84.03%. False text

mining hits fall in the categories: Negations, 3.9%; false subject,

0.6%; Delusion, 0.3%; Putative, 1.5%; Polysemic, 0.3%; Infor-

mation to patient, 3.3%; Other, 2.2% (see Text S1). For the same

48 patients we also manually curated the 411 hits (373 negations

and 38 subject) disqualified by the negation module. 330 of these

were correctly disqualified giving an 80% precision of the negation

module. 122 text mining hits out of 2,724 are due to hits

categorized as negations or false subject that were not caught by

the negation module. Combining the numbers the negation

module identifies 73% of all relevant negations (330/(330+122)).

The negation module is similar to the approach of the NegEX

method [46,47]. A further breakdown of the validation is available

in Text S1.

Comorbidity
ICD10 is organized into 22 chapters according to disease areas

(see Materials and Methods). To discover the degree of

comorbidity between chapters, we constructed an ICD10 chapter

network (Figure 1). Based on which diseases belonging to a specific

chapter each patient has in the corpus, we calculated a similarity

score between the different chapters, ranging between 0 (for the

Author Summary

Text mining and information extraction can be seen as the
challenge of converting information hidden in text into
manageable data. We have used text mining to automat-
ically extract clinically relevant terms from 5543 psychiatric
patient records and map these to disease codes in the
International Classification of Disease ontology (ICD10).
Mined codes were supplemented by existing coded data.
For each patient we constructed a phenotypic profile of
associated ICD10 codes. This allowed us to cluster patients
together based on the similarity of their profiles. The result
is a patient stratification based on more complete profiles
than the primary diagnosis, which is typically used.
Similarly we investigated comorbidities by looking for
pairs of disease codes cooccuring in patients more often
than expected. Our high ranking pairs were manually
curated by a medical doctor who flagged 93 candidates as
interesting. For a number of these we were able to find
genes/proteins known to be associated with the diseases
using the OMIM database. The disease-associated proteins
allowed us to construct protein networks suspected to be
involved in each of the phenotypes. Shared proteins
between two associated diseases might provide insight to
the disease comorbidity.

EPR Based Co-Morbidity and Patient Stratification
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lowest comorbidity), to 1 (highest comorbidity), see Materials and

Methods. Codes for chapter V ‘Mental and behavioral disorders’

account for over 80% of the assigned codes given by physicians at

Sct. Hans Hospital, while codes for chapter XXI ‘Factors

influencing health status and contact with health services’ have a

frequency of around 7%. These are also the two most correlated

chapters. The strong correlation between mental disorders of

chapter V and the observational Z-diagnoses of chapter XXI is

most likely explained by a large ward in the hospital for forensic

psychiatry, where patients are frequently admitted for mental

observation following a criminal offence.

When including both the assigned and the mined codes from the

textual records we capture many symptomatic descriptions for

diseases. As seen on Figure 1b, more than 35% of all codes are

pertaining to chapter XVIII ‘Symptoms, signs and abnormal clinical

and laboratory findings, not elsewhere classified’, e.g. general medical

complaints, edema, back pain, and elevated blood glucose. Chapter

XIX ‘Injury, poisoning and certain other consequences of external

causes’, as well as chapter XVIII, exhibit a high correlation with

chapter V. Assigned codes are often restricted to the principal

psychiatric illness and important for billing and social purposes, not

necessarily reflecting the actual psychiatric treatment and care, nor

the somatic disorders affecting the patient. For this reason,

introducing the mined codes in the analysis allows capturing

correlations that were previously impossible to find.

In our attempt to identify pairs of interesting unexpected co-

morbidities, as well as general trends of correlation, we

investigated pairs of ICD10 code vectors in patient space (columns

in the patient-ICD10 association matrix). We used two measures

to rank the 226,801 possible pairs of the 674 ICD10 codes,

according to their co-association, compared to what would be

randomly expected. Pairs were sorted based on p-values and a cut-

off was imposed based on a comorbidity score and a false discovery

rate of 1% (see Materials and Methods). The result is a list of 802

candidate ICD10 diagnostic pairs that occur more than twice as

often as expected by random, and that are statistically significant

at a false discovery rate of 1% (Data S1).

Using the comorbidity score as a similarity measure we clustered

all 674 ICD10 codes and created a corresponding heatmap of the

comorbidity scores for the ICD10 pairs. Figure 2 shows a truncated

version of the entire heatmap, containing the scores of all the

interactions for the top ranking 100 ICD10 codes (i.e., the top 100

codes found when sorting the list of 802 candidate pairs by their

comorbidity score). The full heatmap for all 674 ICD10 codes

extracted from the corpus can be inspected in Figure S1.

Figure 2 illustrates the general ability of our approach to capture

correlations between different disorders. Several clusters of ICD10

codes relating to the same anatomical area or type of disorder can

be identified along the diagonal of the heatmap. They range from

trivial correlations (e.g., different arthritis disorders), to correla-

tions of cause and effect codes (e.g., stroke and mental/behavioral

disorders), to social and habitual correlations like drug abuse with

liver diseases and HIV. Another interesting observation on the

composition of the corpus is the lower than expected co-

occurrence between the codes of the ‘mental and behavioral

disorders’ cluster and the ‘drug abuse, liver disease, HIV’ cluster,

as indicated by the blue areas in the upper and lower corners.

These are very different groups of disorders that strongly stratify

the patient corpus, and inspection of the specific diagnoses

indicates that the correlation reflects two of the primary causes for

admittance to the Sct. Hans Hospital (i.e., two distinct clinical

departments): psychiatric disorders caused by stroke or brain

injury, and mental illness accompanied by drug abuse.

Our approach will, and should, for the most part return trivial

or already known co-morbidities. This is a result of the non-

independence of ICD10 codes. These will to a certain extent be

Table 1. Precision of text-mining associations.

Incidence precision (#mining hits) Association precision (#ICD10 codes)

Chapter Correct False Precision Correct False Precision

I 7 10 41.18% 7 6 53.85%

II 0 1 0.00% 0 1 0.00%

IV 30 4 88.24% 17 4 80.95%

V 486 20 96.05% 128 7 94.81%

VI 124 16 88.57% 46 9 83.64%

VII 19 13 59.38% 11 9 55.00%

IX 26 11 70.27% 13 5 72.22%

X 78 11 87.64% 36 4 90.00%

XI 67 12 84.81% 19 2 90.48%

XII 73 10 87.95% 29 9 76.32%

XIII 57 2 96.61% 17 2 89.47%

XIV 12 2 85.71% 6 1 85.71%

XVIII 1234 115 91.48% 252 53 82.62%

XIX 141 101 58.26% 36 8 81.82%

XX 4 0 100.00% 3 0 100.00%

XXI 33 5 86.84% 27 3 90.00%

All 2391 333 87.78% 647 123 84.03%

Precision is the number of true positives divided by the sum of true and false positives. Incidence precision distinguishes every individual mining hit as either correct or
false. In association precision each ICD10 code is counted just once per patient and is considered correct if just one of the incidences of the code with this patient is
correct. The final row contains the precision over all chapters.
doi:10.1371/journal.pcbi.1002141.t001

EPR Based Co-Morbidity and Patient Stratification
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expected to correlate according to anatomical and functional

similarity, which again is what the taxonomy of the ICD10

classification attempts to capture. This is also reflected in figure 1

where e.g. chapter V, Mental and behavioral disorders and

chapter VI, Diseases of the nervous system exhibit correlation.

One could attempt to reduce this type of dependency, by imposing

filters for intra chapter pairs, or in other ways use the taxonomy as

a filter or weighing scheme [48]. However since the candidate list

resulting from the described pipeline was manageable for manual

curation, we choose to not impose further filtering with the risk of

losing interesting comorbidities. Trivial pairs occur for example

between two codes for essentially the same disease (e.g., E11 ‘Non-

insulin-dependent diabetes mellitus’ and R73 ‘Elevated blood

glucose level’), between trivial disease-symptom pairs (e.g., N30

‘Cystitis’ and R30 ‘Pain associated with micturition’), or between

pairs of well-established correlations (e.g., E51 ‘Thiamine

deficiency’ and H55 ‘Nystagmus and other irregular eye

movements’). To discriminate potentially interesting, novel

candidate co-morbidities from the many trivial ones, an

experienced medical doctor manually inspected the candidate list

of 802 pairs and flagged 93 surprising co-morbidities A list of all

code pairs as well as flagged pairs can be seen in Supplementary

Data S1.

Disease correlations may or may not have genetic causes. To

identify a possible molecular basis for the flagged pairs, we

extracted genes implicated in those particular diseases when a

good mapping from ICD10 to OMIM was possible (see Materials

and Methods). We then created a protein-protein interaction

network by determining the first order interactions of those genes

in refined experimental proteomics data (see Materials and

Methods). For each disease pair, we searched for shared first

order interactions connecting the two networks. Despite the

difficulty of mapping the different terminologies and genes with

this approach [27], the analysis revealed several connected

proteins which are novel in relation to the diseases used to

generate the networks. For example, we narrowed down an

interesting case story between Alopecia (i.e., hair loss, ICD10 L65)

and Migraine (ICD10 G43). We found that THRA, thyroid

hormone receptor, not previously associated with any of the two

diseases, is a shared interaction partner of Protein Hairless (HR, a

putative single zinc finger transcription factor protein) involved in

alopecia [49], and the Estrogen Receptor 1 (ESR1) associated with

migraine [50], with a p-value of 1.1761023 (Materials and

Methods). This may suggest that these two diseases share a similar

molecular mechanism of action. A network view of these proteins

and their interaction partners can be seen on Supplementary

Figure S2. Migraine and alopecia were associated to 210 and 38

patients respectively, with 12 cooccurences (comorbidity score of

1.92, p-value of 2.0761026). To confirm these associations, which

primarily came from text mining, we checked the surrounding

textual contexts of all the mining associations to check their

validity. For the 12 overlaps a medical doctors looked for

confirmation in the full EPR record. In the case of migraine, in

some cases a more correct clinical description would have been

‘headache’, and for alopecia some cases covered fear of or delusion

of hair loss. The corrected contingency numbers were 168

(migraine), 26 (alopecia), 9 (both), and results in a comorbidity

score of 0.4 and a p-value of 2.8161026. Of the remaining 9

patients with migraine and alopecia, six are women aged 21–63

and three are men aged between 47 and 54.

The observed comorbidity may reflect different side effects from

medication [51,52,53]; most prominently seen with SSRIs

(Selective Serotonin Reuptake Inhibitors for treatment of depres-

sion) that have been associated with cutaneous reactions, including

alopecia, and migraine [54]. Also, frequently prescribed oral

contraceptives are associated with migraines [55]. In fact,

inspection of the nine comorbidity cases revealed that three

Figure 1. Disease chapter networks. ICD10 Chapters are shown as
nodes; links represent correlations. Link weight represents correlation
strength between two chapters; node area represents the proportion of
codes from that chapter in the entire corpus. (A) Network based on the
assigned codes for each patient. Most frequent chapter is chapter V
‘Mental and behavioral disorders’ with a frequency of 81%. The
strongest correlation is between chapters V and XXI with a cosine
similarity score of 0.45. Chapters IX, ‘Diseases of the circulatory system’
and IV ‘Endocrine, nutritional and metabolic diseases’ have a score of
0.3. (B) Full network containing both the assigned and mined codes for
all patients. Chapters V and XVIII have a frequency of 24% and 35%
respectively, and have a score of 0.92. After mining, ‘Diseases of the
respiratory system’ - chapter X, and ‘Injury, poisoning and certain other
consequences of external causes’ - chapter XIX, now have a cosine
similarity score of 0.6 and 0.78, respectively.
doi:10.1371/journal.pcbi.1002141.g001

EPR Based Co-Morbidity and Patient Stratification
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patients were being treated with SSRIs (with a possible link to hair

loss mentioned in the medical notes), two patients were

administered oral contraceptives and one patient was treated with

calcium antagonists and antiepileptic drugs. Removing 3 of the co-

morbid cases corresponding to the SSRI treated patients results in

a recalculated p-value of 2.961024.

The comorbidity may also have an etiological cause that relates

to schizophrenia, the primary disease of the patients. It has

previously been shown that schizophrenia is associated with celiac

disease, i.e. the highly under-diagnosed condition of gluten allergy

[56], which in turn has been linked to both alopecia, and migraine;

in fact the two latter conditions are now indications for diagnostic

work-up for celiac disease according to the recent guidelines from

the American Gastroenterological Association [57,58].

Patient stratification
In a specific hospital corpus the most important level of

stratification is generally based on the primary diagnosis, or

inclusion, which dictates treatment and care. The stratification can

be very specific and based on lab results and tests for molecular

markers, such as in the case of hormone receptor variants in breast

cancer [59]. We were interested in determining if the combined

mined and structured data could lead to a richer structure in the

patient population, spanning a wider range of phenotypes, not

typically considered when stratifying a specific corpus by assigned

codes.

In the patient-ICD10 association matrix each patient is

represented as a vector of associated ICD10 codes in the space

of all the 674 ICD10 codes. We calculated cosine similarity [41]

between the ICD10 vectors of all possible pairs of patients, and

used this as the basis for a hierarchical clustering of patients. We

used TF-IDF [45] weighted values in the association of each

ICD10 code to the vector of a patient. (see Materials and

Methods).

Figure 3 shows those 26 clusters with at least 25 members

resulting from the clustering. They are laid out according to the

patient-patient similarity and colored by group membership. The

ICD10 characteristics of each group are seen in figure 3b (see

Materials and Methods). In all but one cluster, 54, a single ICD10

code stands out as the most discriminating code. The TF-IDF

value for this code constitutes up to 18–40% of the sum of all TF-

Figure 2. Disease-disease correlations. Heatmap of the most significant 100 ICD10 codes, based on ranking the list of 802 candidate pairs by
their comorbidity scores. Chapter colors are highlighted next to the ICD10 codes. Diseases that occur often together have red color in the heatmap,
while those with lower than expected co-occurrence are colored blue. The color label shows the log2 change of comorbidity between two diseases
when compared to the expected level.
doi:10.1371/journal.pcbi.1002141.g002

EPR Based Co-Morbidity and Patient Stratification
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IDF values in the vector. Furthermore, no two clusters share the

same main code. The ICD10 characteristics of each cluster are

shown in Figure 3b. From this figure, we see that Schizophrenia

has a strong component in several clusters, primarily located in the

top left of the network. As pictured, many of these clusters are also

characterized by various codes for alcohol/drug use, indicating the

type of abuse as a good sub-stratification of schizophrenia.

Similarly, alcohol seems to be a common denominator for clusters

48–54, which are primarily characterized by depressive disorders,

anxiety disorders, and other personality disorders. What is also

interesting is that many patients fall into clusters characterized by

somatic codes like diabetes and psoriasis, which have certainly not

been the initial reason for admittance to the hospital. This is

largely attributable to data coming from text mining (see

Supplementary Data S1).

Discussion

As EPR systems become the norm in modern health care, focus

is naturally turned to exploring this treasure trove of data for

improving health care and research [60]. Extracting the data is a

first step, and as EPR systems in many countries maintain the use

of free text to complement structured data, text-mining approach-

es are necessary for extracting data usable in further analyses.

The enrichment of existing structured patient data by text

mining significantly expands phenotype profiles, both within the

specific pathology of the corpus, but especially into other disease

areas. We present one example of comorbidity between two

diseases that are very often not coded in the record by the

physician, but show up in the patient record text and are later

picked up by mining. The enrichment from mining is also visible

in our attempts to stratify patients, where potential is shown for

uncovering additional layers of the population structure. More

detailed stratification of patient cohorts could help improve

population homogeneity and signal strength in genome wide

association studies, and lead to increased power in case-control

studies [35,36].

The procedure described here represents, in our opinion, a

practical non-hypothesis driven approach for extracting valuable

information from patient records for any patient corpus where

manual inspection and ICD10 association would turn into an

otherwise impossible task. Furthermore, we show how this

information can be used in researching disease comorbidity and

patient stratification and how it can be mapped to the underlying

systems biology revealing possible causes for the observed

correlations.

The results obtained from a data driven approach like this one

will obviously depend on the composition and domain of the

patient corpus and on the amount and quality of the available

data. In that sense, some of the found correlations and results will

be domain or cohort specific, and do not necessarily translate to

general population wide conclusions. In the case of patient

stratification, this is inherently true. Even in these cases however,

novel correlations can still be highly valuable and suggest

hypothesis for causality within the cohort in terms of treatments,

procedures, responses, and co-morbidities that are not necessarily

genetically founded.

Materials and Methods

Ethics statement
Patient data was analyzed anonymously and the project was

ethically approved by the Danish National Board of Health (No. J.

nr. 7-604-04-2/33/EHE).

Patient corpus
The patient population data was collected from the Sct. Hans

Mental Health Centre, in Roskilde, Denmark. All analyses were

performed on an anonymous data set. A total of 5,543 patients

were followed from 1998–2008, and their records stored in an

EPR database. 70% of the patients (4,822) are from the

Copenhagen area, 61% of these are males. The average age is

30 years. The records are a mixture of structured diagnose

assignments of ICD10 codes, ATC codes (http://www.whocc.no/

atc) for medication usage, patient care notes from nurses and

doctors, admission and personal information, etc. A corpus was

created from the relevant tables of the Sct. Hans EPR, containing

all unique text entries for each patient that were verified and

signed by a physician. To each entry we assign an entry date, the

note type, and the text. The note type identifies the type of text

entry, such as the epicrisis, discharge note, treatment note, nursing

note etc. A few non-medical notetypes such as ‘Social worker’

notes were excluded. In total, the corpus contains text for 4,765

patients with an average of 25,000 words per patient. In addition,

we extracted all ICD10 codes assigned to patients that were stored

in a structured format.

ICD10 dictionary
The dictionary used in our text mining approach is based on the

Danish translation of the Danish translation of the WHO

International Classification of Diseases (ICD10), downloaded from

the Danish National Board of Health the 2nd Nov 2009. The

ICD10 classification is a hierarchical classification of diseases and

symptoms, divided into 22 anatomical/functional chapters with

increased specification of terms in each lower level. The Danish

translation of ICD10 consists of 22,261 terms, each uniquely

matched to a code of between 3–5 characters. To increase the

scope of the dictionary, we augmented existing terms with variants

created by simple rules reflecting common semantic structures

([61,62]) in the Danish ICD10 terms. E.g. adding truncated

versions of terms containing specifiers like ‘.. forårsaget af ..’

(caused by), keeping just the preceding part. Terms containing

commas and parenthesis are treated similarly. These variant terms

are mapped to the same code as their parent. Since truncation

throws away the detailed information in the case of low-level code-

term pairs we ensure the code-term information content by

rounding all codes to level 3. In this way all terms are essentially

treated as synonyms of the more generic level 3 meaning. With

variants the final dictionary consisted of 53,452 terms. Generated

term variants were responsible for 24% of the total number of hits.

More detail about the ICD10 dictionary is available in Text S1.

Text mining
For relevant reviews on methods in text mining see e.g.

([37,63,64,65]). The compiled text for each patient was normal-

ized for orthographic variation like the dictionary, and a simple

sentence splitter was used to split the text into smaller units. For

each unit, a stepping algorithm created all possible strings of 1–10

words and looked them up in the dictionary. Exact matches were

required. The longest possible match was always chosen.

Candidates matching a blacklist of polysemic or otherwise mis-

informative terms were disqualified. Negations and false subject-

term associations were handled by disqualifying matches when the

preceding sentence contained tokens from a list of negations

(‘never’, ‘no’, etc) and subjects (‘mother’, ‘friend’, etc). Validated

performance characteristics were covered in the results section.

Further details about the text mining approach and its validation is

contained in Text S1.
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Chapter networks
For each disease we created a vector mapping its presence or

absence from a patient record. This resulted in 22 vectors for each

disease chapter. The pair-wise overlap between vectors was

quantified by calculating the cosine of the angle between

normalized vector pairs [41]. The result is a score between 0

and 1, mapping the comorbidity value of each of the chapter pairs.

We also calculated the frequency of each chapter in relation to the

total number of chapter assignments. In Figure 1, the roman

numerals represent the different ICD10 chapter numbers: I,

Certain infectious and parasitic diseases; II, Neoplasms; III,

Diseases of the blood and blood-forming organs and certain

disorders involving the immune mechanism; IV, Endocrine,

nutritional and metabolic diseases; V, Mental and behavioral

disorders; VI, Diseases of the nervous system; VII, Diseases of the

eye and adnexa; VIII, Diseases of the ear and mastoid process; IX,

Diseases of the circulatory system; X, Diseases of the respiratory

system; XI, Diseases of the digestive system; XII, Diseases of the

skin and subcutaneous tissue; XIII, Diseases of the musculoskeletal

system and connective tissue; XIV, Diseases of the genitourinary

system; XV, Pregnancy, childbirth and the puerperium; XVI,

Certain conditions originating in the perinatal period; XVII,

Congenital malformations, deformations and chromosomal ab-

normalities; XVIII, Symptoms, signs and abnormal clinical and

laboratory findings, not elsewhere classified; XIX, Injury,

poisoning and certain other consequences of external causes;

XX, External causes of morbidity and mortality; XXI, Factors

influencing health status and contact with health services; XXII,

Codes for special purposes.

Comorbidity ranking
For the purpose of exploring comorbidity between ICD10 codes

we used two measures to rank the 226,801 possible ((674*674-

674)/2) pairs of different codes, according to how often they come

together in patients, compared to what would be randomly

expected assuming no a-priori correlations. The two measures

represent our desire to ensure statistical significance, while

focusing on pairs with a noticeably increased co-association.

First, for each pair of ICD10 codes A and B, the patient corpus

is divided and counted in the four categories: A & B, A NOT B, B

NOT A and NOT A NOT B, according to their association to A

and B. Using this, p-values are calculated using Fishers exact test,

and the pairs are sorted accordingly. We then filtered this list by

imposing a cut-off value of 1.0 of a comorbidity score between

diseases A and B defined as:

csAB~ln2
Obsz1

Exptz1

� �
, Expt~

nA
:nB

ntot

Where Obs is the observed number of ICD10 co-associations, and

Expt is the expected number. Expected overlaps are calculated

based on the prevalence of each disease in the actual corpus (nA

and nB). To make the tendency to favor pairs of low prevalence

ICD10 codes less pronounced, a pseudo-count of 1 is added to

nominator and denominator. Since we take log2 of this ratio, a

cut-off value of 1.0 means we restrict our focus to pairs with a

higher than two fold (approximately) over co-association. This

comorbidity measure is very similar to the one used by Hidalgo

et al. [66].

Finally we used a Benjamini-Hockberg false discovery rate

method [67] on the ranked list to correct for multiple testing. The

p-values for all pairs are multiplied by the total number of pairs

(226,801) and divided by the rank of the pair in the sorted list. A

cut-off is then imposed where the corrected p-value drops below

0.01. The result is a selection of 802 potentially interesting

candidate pairs, with a false discovery rate of 1 percent, from the

total of 226,801 pairs.

Creating gene lists from ICD10 codes
There is no direct mapping between ICD10 codes and the

OMIM [68] record entries. Furthermore, the disease names used

by ICD10 and OMIM are not identical, so there was a need to

map OMIM disease names into ICD10 codes. Work has been

done mapping the online database and ICD9 codes, a previous

version of the ICD [27]. We used the ICD10 to ICD9 General

Equivalence Mapping available online from CMS (http://www.

cms.gov/ICD10/) to map the ICD codes to their previous version.

With the mappings in place, OMIM was parsed for phenotypic

descriptions of defects in genes, as described in Lage et al., 2007

[41]. From the OMIM records, the clinical synopsis field was

extracted for retrieving phenotypic descriptions regarding a

certain disease. Additional information was retrieved from the

morbid map tables, a map of disorders included in OMIM that have

the syndrome name, chromosomal localization, and name of the

disease causing gene. A manual curation step by a medical doctor

ensured that each ICD10 code to be included in the analysis was

assigned the correct OMIM entries.

Genetic overlaps between ICD10 pairs
For each disease, a network was generated by taking the disease

causing genes extracted from OMIM and determining their first

order interactions in a human protein interaction network of

refined experimental proteomics data. This procedure is described

in detail elsewhere [41,69,70]. For determining genetic overlaps

between two ICD10 diseases, we take their networks and identify

those genes which are shared and have first order interactions with

the seed genes. After a round of automatic overlap detection, we

manually curated the results of the different steps in the pipeline,

in order to detect erroneous assignments of disease names or

genes, and reran the overlap detection in those cases. For those

pairs where overlapping protein-protein interaction networks

indicate underlying biological evidence, a final round of validation

was done by manually checking if the binary associations from text

mining of patients to the ICD10 codes were correct. Based on the

corrected data, new p-values were calculated by Fishers exact test,

and it was controlled that the p-value remained lower than the

lowest p-value of the list of 802 candidates. The candidate genes

found to overlap in the two disease networks were scored using the

enrichment of OMIM seed genes in their first order interaction

network, in a similar procedure as the one used by Lage et al.,

2010 [69]. The score assigned to a candidate was the hyper

geometric p value of observing the amount of interactions to the

OMIM set out of all the interaction partners of the candidate. Our

example of THRA has a total of seventeen interaction partners in

Figure 3. Patient cohort network. (A) Nodes represent 1,497 patients from 26 clusters. Edges are correlations between patients. Node color
denotes cluster membership. (B) Heatmap showing ICD10 composition of each cluster. Values are the fraction of the cluster ICD10 vector covered by
this code. Shown are only the 26 ICD10 codes that are most distinguishing codes for a cluster. The heatmap columns match the network clusters in a
counter clockwise direction starting at cluster 27.
doi:10.1371/journal.pcbi.1002141.g003
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the network, and two are with the input genes (HR and ESR1),

having a p-value of 1.1761023.

Patient stratification
By looking at the Patient-ICD10 matrix by rows, or patient

vectors in ICD10 space, we can stratify patients based on the

similarity of their ICD10 associations. Instead of a binary

association of a given code to a given patient, we weighted the

significance of ICD10 occurrences using the term frequency –

inverse document frequency measure (TF-IDF) [45]. TF-IDF

rewards high code frequency in the individual record, and

penalizes high prevalence across the corpus. As a patient-patient

stratification measure, we used the cosine similarity CS [41] to

calculate the cosine of the angle between all pairs of vectors. We

included only patients with at least three associated codes, and

exclude a number of trivial/symptom codes (e.g., pain, coughing,

itching). A total of 2,584 patients were found to have at least three

associated codes. We used 1-CS as a distance measure and

calculated average linkage clustering to divide patients into

clusters. Manual inspection of the clustering dendrogram led us

to cut the tree at a CS value of 0.6, which created a total of 307

clusters. 26 clusters contained 25 or more members, accounting

for a total of 1,800 patients. Taking all edges with CS greater than

0.6 between these patients, the network in Figure 3a of 1,497

patients was created. The network layout is based purely on an

edge weighted layout algorithm. In order to investigate the clinical

characteristics of each cluster, we concatenated the assigned and

mined data for all members of a cluster, and calculated a new TF-

IDF code vector for the entire cluster in ICD10 space. Figure 3b

illustrates these characteristics.

Supporting Information

Figure S1 All disease-disease correlations. Heatmap of all

674 level 3 ICD10 codes found in the corpus. Chapter colors are

highlighted next to the ICD10 codes. Diseases that occur often

together have red color in the heatmap, while those with lower

than expected co-occurrence are colored blue. The color label

shows the log2 change of comorbidity between two diseases when

compared to the expected level.

(PDF)

Figure S2 Protein interaction network. The putative single

zinc finger transcription factor protein HR involved in alopecia

and the Estrogen Receptor (ESR1) have thyroid hormone receptor

(THRA) as a shared interaction partner.

(EPS)

Dataset S1 Comorbidity candidate lists. The complete list

of 802 candidate comorbidity pairs resulting from sorting disease

pairs on p-value, truncating based on comorbidity score (ln2(ratio))

and imposing a Benjamini Hochberg false discovery rate (FDR) of

1%. Also the list containing the 93 surprising co-morbidities

flagged in manual curation by a medical doctor. Finally a table

showing how the members of the 26 clusters in figure 3 are

associated with the ICD10 code that is most distinguishing for that

cluster. Mined contains those patients where the association comes

only from mining, and assigned contains those patients where

association comes from assignment only or from both assignment

and mining. Cluster 54 contains 13 patients that are in fact not

associated to F10 at all.

(XLS)

Text S1 Supplementary text. Detailed information about

ICD10 dictionary generation and the text mining procedure and

validation. Also additional information about genetic overlaps

between ICD10 pairs.

(DOC)
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