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Abstract

Vector-borne transmission of Chagas disease has become an urban problem in the city of Arequipa, Peru, yet the
debilitating symptoms that can occur in the chronic stage of the disease are rarely seen in hospitals in the city. The lack of
obvious clinical disease in Arequipa has led to speculation that the local strain of the etiologic agent, Trypanosoma cruzi, has
low chronic pathogenicity. The long asymptomatic period of Chagas disease leads us to an alternative hypothesis for the
absence of clinical cases in Arequipa: transmission in the city may be so recent that most infected individuals have yet to
progress to late stage disease. Here we describe a new method, epicenter regression, that allows us to infer the spatial and
temporal history of disease transmission from a snapshot of a population’s infection status. We show that in a community of
Arequipa, transmission of T. cruzi by the insect vector Triatoma infestans occurred as a series of focal micro-epidemics, the
oldest of which began only around 20 years ago. These micro-epidemics infected nearly 5% of the community before
transmission of the parasite was disrupted through insecticide application in 2004. Most extant human infections in our
study community arose over a brief period of time immediately prior to vector control. According to our findings, the
symptoms of chronic Chagas disease are expected to be absent, even if the strain is pathogenic in the chronic phase of
disease, given the long asymptomatic period of the disease and short history of intense transmission. Traducción al español
disponible en Alternative Language Text S1/A Spanish translation of this article is available in Alternative Language Text S1.
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Introduction

Chagas disease, responsible for more deaths in the Americas

than any other parasitic disease [1], has become an urban problem

in the city of Arequipa, Peru [2,3]. Nevertheless the debilitating

symptoms of chronic Chagas disease, common across southern

South America, are rarely seen in hospitals in the city (see Supp.

Info Text S1). The lack of obvious disease in hospitals and the

general population in Arequipa has led to speculation among local

physicians that the local strain of the etiologic agent, Trypanosoma

cruzi, has low chronic pathogenicity (personal observation), even

though it has caused fatal acute infections in infants [4] and animal

models[5,6].

The vast majority of the 8–10 million individuals infected with

T. cruzi [7] have the indeterminate form of Chagas disease. These

individuals exhibit no symptoms or signs of their infection, but

20% to 30% are expected to progress to cardiac or digestive forms

of chronic Chagas disease, which are difficult to treat and

potentially fatal [8–10]. Progression to clinically evident cardiac

disease is a slow process [8,10]. For vector-borne transmission,

decades may pass from the time of initial infection through contact

with the feces of an infected triatomine bug until the onset of

cardiac symptoms. Treatment with existing antitrypanosomal

drugs, benznidazole or nifurtimox, appears to slow or prevent

disease progression [9], but treatment is thought to be more

effective when administered early in the course of infection [11].

The long asymptomatic period of Chagas disease leads us to an

alternative hypothesis for the absence of clinical cases in Arequipa:

transmission in the city may be so recent that most infected

individuals have yet to progress to late stage disease. In order to

evaluate this hypothesis it is necessary to elucidate the timing of T.

cruzi infection in the population. The date of infection with T. cruzi

is rarely known for individuals with Chagas disease. No existing

assay of parasite or host factors yields reliable clues to the duration

of infection. The dynamic process of T. cruzi transmission, how-

ever, creates clear spatial and temporal patterns of infection in

insect vectors [12-14] and human hosts [15–20].

Traditionally, analyses of infectious diseases have aimed either

to describe risk factors for infection at a static moment in

transmission, using statistical methods to smooth heterogeneities in

PLoS Computational Biology | www.ploscompbiol.org 1 September 2011 | Volume 7 | Issue 9 | e1002146



exposure between individuals created by the agent’s spread [21–

22], or to model the agent’s spread through time and space,

assuming a homogenous population [23]. Recent work has taken a

more unified approach, estimating parameters of spread and local

risk factors together [24–25]. Outside of a handful notable

exceptions, especially [26-27], most unified analysis of disease

spread and local risk factors address situations in which the time

and place of the introduction of the disease agent is known. Here

we develop a regression model, ‘epicenter regression,’ to infer the

temporal and spatial spread of a disease agent for the more

common situation in which the site or sites of introduction of a

disease agent is unknown.

Trypanosoma cruzi is a slow-moving parasite. When it is

transmitted in an epidemic phase, the period of time during

which each individual is exposed to infection varies greatly based

on how far away he or she lives from the site of introduction of the

parasite. The heterogeneity in exposure time that results from the

slow spread of the parasite may result in observable spatial

clustering of infections. Observed spatial clustering, however, may

also arise in endemic transmission if local risk factors for infection

are concentrated in certain areas. Epicenter regression explicitly

models the duration of an individual’s exposure as a function of

the distance of their household to an (unknown) site of intro-

duction of a disease, then, given the exposure time of each

individual’s household, estimates the effect of risk factors measured

in the house on the probability of infection for each individual. We

fit models to patterns of T. cruzi infection in insect vectors and

humans hosts in the peri-urban community of Guadalupe,

Arequipa, Peru [3,15]. We use Bayesian methods and Monte

Carlo Markov Chains (MCMCs), an approach which allows us to

make inference on parameters that reflect uncertainty about

unknown factors, such as the location of cases in a dynamic

infectious process [26–28].

We consider models with a single site of introduction of T. cruzi

as well as models with multiple sites and times of introductions

leading to multiple micro-epidemics. By ‘micro-epidemic’ we

mean a focus of transmission, seeded from the same introduction

of the parasite, that is discrete and discernable from the larger

pattern of transfomission in the community. We also compare

these models to an endemic model, in which each individual is

assumed to have been exposed to the parasite since birth. Under

the endemic model clustering of infection is explained mainly by

clustering of household risk factors. Using the estimates from these

models, we calculate the expected prevalence of infection among

the population for each calendar year up to disruption of

transmission through insecticide application in 2004. We discuss

how a more precise understanding of the history of transmission

might explain the absence of late-stage Chagas disease in

Arequipa, and potentially inform clinical management of individ-

uals with indeterminate Chagas disease.

Methods

Cross-sectional community survey
We conducted cross-sectional entomologic and serologic surveys

in one recent settlement (pueblo joven), Guadalupe, on the

southwestern margin of the city of Arequipa, Peru [14]. Vector-

borne transmission of Chagas disease in Guadalupe was disrupted

through application of deltamethrin insecticide in November of

2004. Concurrent to insecticide application, vector presence and

density were determined through one person-hour timed search by

trained professionals. Live and moribund fifth instar and adult

triatomines were examined for T. cruzi consecutively for each site

until 1 positive insect was found, 10 negative insects had been

examined, or all available insects had been examined, whichever

came first [14]. In August of 2005, all residents of the community

were invited to participate in a serological survey for Chagas

disease [15]. The positions of all households in Guadalupe were

determined with a handheld global positioning system (Garmin

Corporation, Olathe, KS, USA). Sera were screened using a

commercial enzyme-linked immunosorbent assay (ELISA) kit with

an epimastigote lysate antigen (Chagatek, Biomerieux, Buenos

Aires, Argentina) following the manufacturer’s instructions.

Positive ELISAs were confirmed by an immunofluorescent

antibody assay (IFA) following standard methods; a titer of 1:32

was considered positive. Statistical analysis of data from Guada-

lupe was approved by the Institutional Review Board of the

University of Pennsylvania.

Epicenter regression model
Epicenter regression makes inference on where and when a

disease agent was introduced into a community, as well as the effect

of household-level covariates on the risk of infection given exposure.

We begin with a simple model [29] in which an individual has a

constant risk of being infected once exposed. The probability that an

individual is infected is equal to 1 minus the probability of the

individual escaping infection: 1 - e -Risk given exposure . Duration of exposure. This

equation is known as the catalytic model, because it also describes

the probability of a change in state of molecules exposed to a

constant bombardment of a catalyst [30–31].

We expand this framework into a biologically plausible model

by allowing ‘risk given exposure’ and ‘duration of exposure’ to

vary among individuals depending on observed covariates, and

estimate the effect of the covariates from the observed data. We

estimate the risk of exposed individual, i, due to the covariates

measured in their household, j, using a traditional method to

estimate risk, a log-linear model: Riski = eaz
P

bX i . Here, Xi

represents a vector of covariates measured in each individual, and

the b parameter describes how those covariates increase or

decrease the log of the risk to each individual living in the exposed

household. We assume that the effect of each covariate is constant,

and varies neither year-to-year nor location-to-location. The

intercept term, a, denotes the baseline risk of exposed individuals

when all covariates are zero. We examined covariates previously

shown to be associated with T. cruzi infection in children in the

community. These included the presence of animals, almost

Author Summary

Chagas disease has become an urban problem in the city
of Arequipa, Peru, yet there are very few people exhibiting
severe symptoms of the disease. Severe symptoms often
do not appear until decades after infection. To determine
why so few people were exhibiting severe symptoms, we
used a new method, epicenter regression, to trace the
history of Chagas disease transmission in a community of
Arequipa, Peru. Our findings suggest that transmission in
Arequipa occurred through a series of small epidemics, the
oldest of which began only around 20 years ago. These
micro-epidemics infected nearly 5% of the community
before the insect that carries Chagas disease, Triatoma
infestans, was eliminated by insecticide application. Most
human infections in the study community arose over a
brief period of time immediately prior to the insecticide
application. According to our findings, the severe symp-
toms of Chagas disease are expected to be absent from
the community because of the short duration of infection
with the parasite, even among older individuals with
Chagas disease.

Micro-Epidemics of Chagas Disease
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exclusively dogs and cats, sleeping in the domestic area of the

household and the number of vectors in the domestic portion of

the household during timed entomologic search [15].

For each individual we estimated the period of time over which

he or she had been exposed to T. cruzi as the lesser of two more-

readily observable or estimable correlates of exposure: the

individual’s age, and the duration of exposure of their household.

We assume the time of exposure of a household is a function of

three unobserved parameters: T, the length of time since the

introduction of T. cruzi in the community; d, the distance of the

household from the household into which the parasite was first

introduced, and, r, the rate of spread of the parasite. In the present

analysis, we assume that a household becomes exposed at a time

proportional to its distance from the site of introduction of the

parasite. This assumption is a common simplification of

mathematical analysis of invasive organisms based on diffusion

equations, which concludes that, when individuals are assumed to

move according to random walks, the wave front of the population

will advance at a constant rate away from the site of introduction

[23]. The time after the introduction until the parasite reaches the

household, during which the residents of the household are not

exposed, is: djk/r, and the total duration of exposure is T- djk/r,

where djk is the distance of household j from the location of

introduction k. The probability of infection of individual i under

the model is: 1{e{(eaz
P

bX i ).(T{djk=r) for all individuals born before

their household was exposed to vectors carrying the parasite; and:

1{e{(e
az

P
bX i ).agei for all individuals born after their household was

exposed to vectors carrying the parasite.

A steep hilltop separated households in the study area. We

calculated the distance between the households going around this

hilltop. As in the related proportional hazards model [32], time of

exposure in epicenter regression must be limited to positive

values. In the above model if d/r is greater than T, then time of

exposure is set to zero, and the probability of infection is equal to

zero. We used data on the presence of T. cruzi in insects to further

refine our estimates of parameters T, d and r. For parameter

regimes in which the model predicted no exposure for households

in which we had observed T. cruzi in vectors, we set the likelihood

to zero.

Multiple introductions
We expanded our epicenter regression framework to consider

the possibility that T. cruzi was introduced into Guadalupe on

multiple occasions. Each introduction would occur in a different

household, k, at a different time, Tk. We calculate the duration

of exposure of individuals in household j due to introduction

into household k as: Tk – (djk/r). We assume that once

transmission is established in a household it remains established.

We also assume that the introduction of additional parasites into

a household in which transmission is already established does

not incrementally increase the risk of infection among those

living in the house. The duration of exposure of each individual

is therefore the maximum of their exposure to each introduc-

tion, or their age if their household was exposed prior to their

birth. The probability of infection of each individual is

otherwise as calculated above.

Endemic model
For comparison purposes, we fit an endemic model, in which we

assume that each individual’s time of exposure was equivalent to

their age. The infection probability of individual i living in

household j under the endemic model is: 1{e{(e
az

P
bX i ).agei .

Incorporation of prior knowledge
Bayesian analysis of epicenter regression begins with what is

known about the epidemic before testing people in the community,

the ‘‘priors’’ of the model [33]. A key assumption of the model is that

the parasite was introduced into a household and is spreading from

the site of introduction. Before observing the data we have no

information about into which household (or households) the parasite

was first introduced, and therefore set a uniform prior distribution

on the probability that each household was a site of introduction.

We set non-informative prior distrifbutions (Gaussian with a mean

of zero and a standard deviation of 103) on the effect of household-

level covariates (the bs). The community of Guadalupe was 40 years

old at the time of data collection. We therefore set a uniform prior,

bounded at 1 and 40 years, on the time since introduction of the

parasite, for each introduction, Tk.

Providing an explicit prior on the speed of spread of the

pathogen allows us to better tailor our analysis to the particulars of

T. cruzi transmission by T. infestans. We based our prior on the

speed of spread of the wavefront of T. cruzi on longitudinal data

from Villa la Joya, a community similar to Guadalupe in terms of

household density, history, and animal husbandry practices. In

Villa la Joya we surveyed 30% of households in January of 2008,

uncovering 6 sites of T. cruzi infection among triatomine bugs. We

conducted an exhaustive survey in conjunction with insecticide

application by the ministry of health, following the methodology

used in Guadalupe, in November and December of 2008. We

identified forty-four additional foci of T. cruzi in vectors, in well-

defined clusters around pre-existing sites of parasite presence,

during the exhaustive survey. Assuming that the parasite had

spread from the center of each cluster, it would have traveled

approximately 18 meters over the course of 10–12 month interval

between the preliminary and exhaustive surveys in order to reach

each of the 44 foci. In no case had the parasite spread farther than

58 meters from a pre-existing site. Based on these findings, we

assigned a normal distribution, with a mean of 20 meters and a

variance of 100 meters, to describe the prior probability on the

yearly speed of the spread of the parasite in Guadalupe. A spread

rate of 20 meters/year is akin to a single parasitic household

infecting on average between 6 and 7 additional households a year

when introduced into a susceptible community.

Model fitting, comparison, and prediction
We fit epicenter regression models using Bayesian methods and

Monte Carlo Markov Chains (MCMCs). We updated MCMCs

using the Metropolis and Metropolis-Hastings algorithms [33] (see

annotated code in technical appendix: Text S3, Dataset S1, Text

S4, Text S5). For the endemic model and models with 1 to 10

introductions, we ran 50 replicate MCMC chains, each of a length

of 1 million estimates. We discarded the first 100,000 and retained

every 10th estimate in the remainder of a chain to diminish

autocorrelation among the estimates. For each pair of models

compared, we estimated the Bayes factor by the average, over the

50 pairs of chains, of the ratio of harmonic means of the posterior

likelihood for the models [34]. We assured convergence of the

chains using Geweke’s test [35] as well as the Gelman-Rubin

statistic [36]. We considered models with 1 through 10 intro-

ductions of parasite into the population (see movies in supple-

mental materials: Text S2, Video S1, Video S2, Video S3, Video

S4). We estimated the prevalence for each calendar year under

alternative models by integrating the risk of infection per unit of

time over the time period that each individual was exposed.

Finally, we quantified the expected number of cases of late-stage

Chagas disease among individuals infected with T. cruzi at the time

of the study. The time between infection and development of late

Micro-Epidemics of Chagas Disease
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stage disease is note fully known, but generally estimated at

between 10 and 30 years [8]. We used three alternative models to

describe the probability of onset of late-stage disease as a function

of time: 1. A Poisson distribution centered at 20 years; 2. A

Gaussian distribution with a mean of 20 years and 95% of the

probability density between 10 and 30 years; and, 3. A uniform

distribution bounded at 10 and 30 years. For each of these we

integrated over the predicted temporal dynamics and calculated

the expected number of cases, and the probability of observing

exactly zero cases. We used a conservatively high estimate of the

proportion of individuals who will eventually develop late stage

disease, 30% [8].

Results

Models describing T. cruzi transmission as epidemic fit the data

collected in the community of Guadalupe much better than an

alternative, endemic model. The odds in favor of the epidemic

models compared to the endemic model increased more than 4

orders of magnitude after considering the observed data – i.e. the

Bayes’ factors comparing the epidemic models to the endemic model

exceeded 104 (Figure 1). A Bayes’ factor of greater than 10 is

considered ‘strong evidence’ in favor of one model over another [34].

Models describing transmission of T. cruzi as a series of focal micro-

epidemics were better supported than a model with a single epidemic

stemming from one site of introduction. In particular, a model with

four micro-epidemics had the greatest support from the observed

data; the odds in favor of this model compared to the single-epidemic

model increased 15-fold after considering the observed data (Figure 1).

Under the four-epicenter model, the parasite was first introduced

into Guadalupe about 20 years ago. When we tabulated the exposure

time and risk of infection of individuals in the population in the four-

epicenter model we found that around half of infections occurred in

the 5 years previous to disruption of transmission through insecticide

application, and 90% of infections occurred over a period of 12 years

(Figure 2). These estimates were consistent across models with 2 to 10

epicenters (Figure 2). In contrast, under the endemic model,

prevalence increased slowly over a much longer time frame.

Spatially, the first introduction in the four-epicenter model

occurred in the southwest of the community (Figure 3). A second

micro-epidemic was then seeded in the northwest of the community,

followed by a third in the southeast. Estimates on the position of the

fourth micro-epidemic varied; some centered on a household with

vectors carrying T. cruzi to the far east of Guadalupe, while others

were nearer to a household with a human case in the far north of the

community. Models with more than four introductions generally

further subdivided these micro-epidemics; such divisions decreased

the statistical support for these models.

Temporally the four-epicenter model captured the relationship

between age and prevalence observed in the data (Figure 4).

Estimates of the time of the first introduction of T. cruzi into the

community were remarkably similar across epidemic models

(19.98 years ago in the one-epicenter model, 20.31in the four-

epicenter model). The estimated effect of covariates on the risk of

Figure 1. Comparison of the fit of multi-epidemic models for
describing T. cruzi transmission in Guadalupe, Arequipa, Peru
to a single epidemic model. Shown are the mean and standard error
of the estimated Bayes’ factors for comparing each model to the 1
epicenter model. The dotted line denotes models with strong support
relative to the 1 epicenter model (Bayes’ factor .10).
doi:10.1371/journal.pcbi.1002146.g001

Figure 2. The expected percent of study participants infected
over each calendar year back to 1980. A. The expectation for
models with 2,4,6,8 and 10 epicenters; lines are shaded according to the
number of epicenters (2 epicenters-light grey, 10 epicenters = black). B.
A boxplot showing the median and credible intervals for the posterior
estimates from the best-fit four-epicenter regression model. Chagas
disease is a lifelong infection; infected individuals are assumed to
remain seropositive through their lifetimes.
doi:10.1371/journal.pcbi.1002146.g002

Micro-Epidemics of Chagas Disease
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infection given exposure were also similar, with a 1–2% increase of

risk per bug caught in the domestic area of the household and a

40–60% increase in risk among exposed individuals who allowed

animals to sleep inside the domestic area of the household at night

(Table 1). Posterior estimates on the rate of spread of T. cruzi,

however, varied greatly. In the best-fit four-epicenter model a

single exposed household would expose on average 4–5 additional

households per year in a susceptible community. By contrast, in

the one-epicenter model, the estimated rate of spread would

expose an unrealistically large number of households (on average

15 households/year in a susceptible community). The higher

estimated spread rate was counterbalanced by a lower estimated

risk of infection given exposure in the one-epicenter model

compared to the four-epicenter model.

When we combined our posterior model estimates of the timing of

infection with T. cruzi with three alternative models of the distribution

of waiting times between infection with the parasite and development

of late stage Chagas disease, we found very high probabilities of

observing less than one case of late stage disease in Guadalupe at the

time of our survey (Figure 5). Under the four-epicenter model the

probabilities of observing less than one case of late-stage disease were

0.696, 0.937, 0.967 under the Poisson, Gaussian and uniform models

respectively. Given the posterior estimates of the timing of T. cruzi

infection under the one-epicenter model, the probabilities of

observing fewer than one case were 0.797, 0.763, 0.779 under the

Poisson, Gaussian and uniform models.

Discussion

Transmission of Trypanosoma cruzi in peri-urban Arequipa occurs

in a series of spatially-focal micro-epidemics. The oldest of these

micro-epidemics in the community of Guadalupe began only

around 20 years ago. By the time vector-borne transmission of T.

cruzi was disrupted through insecticide application in 2004,

prevalence of human infection had reached 5% and was rapidly

climbing. The relatively high prevalence of infection seems to

conflict with the paucity of patients with Chagas cardiomyopathy

in local hospitals, leading some to conclude that the strain of

parasite in the region has low chronic pathogenicity. However, we

have shown that most infections in Guadalupe likely occurred over

a brief period of time prior to insecticide application. Our results

provide support for a different explanation for the lack of late-stage

Chagas disease in the city: the damage done by the vector and

parasite may be unobserved because most individuals have yet to

pass from the long asymptomatic period to symptomatic Chagas

disease.

Our findings do not disprove the hypothesis that the parasites

circulating in Arequipa are less pathogenic than other strains.

Previous studies suggest that T. cruzi strains in Arequipa are of

limited genetic diversity, possibly due to a founder effect [37–38]—a

finding, which if true, would be consistent with the results presented

here. We have typed fifteen isolates of T. cruzi from Arequipa

following methods described in [39]. The majority of strains, though

not all, are T. cruzi type I, including isolates from communities

neighboring Guadalupe [Vitaliano Cama, personal communication]. It is

absolutely possible that the particular strains of T. cruzi I that

predominate in Arequipa cause less chronic pathology. However,

we emphasize that, based on the results from our models, the lack of

late-stage Chagas cardiomyopathy in peri-urban Arequipa cannot

be taken as evidence of a weaker parasite, and that in the absence of

such evidence, preparations should be made for an increasing

burden of clinical disease in the region over the coming years.

Clinically, our findings may contribute to a re-evaluation of

treatment guidelines for indeterminate Chagas disease that is

currently underway [40–41]. Drug treatment is generally thought to

be more effective early in the course of T. cruzi infection [11].

Currently many countries, Peru included, do not routinely offer

treatment to patients over 15 years of age [1]. One justification for

this policy is based on the assumption that age is a good surrogate

for exposure to the parasite, and a reasonable surrogate of duration

of infection among cases. That is, in the absence of evidence to the

contrary, older individuals are assumed to have been carrying the

parasite for many years, and therefore to be less likely to benefit

from drug treatment. This assumption may be correct when

transmission follows an endemic pattern. However, when transmis-

sion occurs in an epidemic, or multiple micro-epidemics, the

assumption is incorrect. In peri-urban Arequipa and other epidemic

situations, age alone is not a valid surrogate for exposure. Temporal

and spatial information taken together give a better picture of how

long an individual has been exposed to T. cruzi.

Geographically, our finding that T. cruzi was first introduced in

the southwest of Guadalupe makes sense. Guadalupe is a peninsula,

surrounded on three sides by fields that provide no habitat to

triatomine vectors, while the southwest of the community borders a

large hillside of similar settlements with documented Chagas disease

transmission [3]. Once T. cruzi was introduced into the southwest of

Guadalupe it is clear that it did not spread house to house through a

simple diffusion process. Instead the parasite was transported to

other sites in the community, and there seeded new micro-

epidemics of transmission. We can only guess at the mechanism of

transport of the parasite. Animals, especially guinea pigs, are

Figure 3. Estimated geographic position of introductions of
Trypanosoma cruzi into the community of Guadalupe, Arequipa,
Peru. The probability that each household was the first (hexagons),
second (triangles), third (squares) or fourth (pentagons) site of
introduction under the four-epicenter model is shown. Larger shapes
correspond to higher probabilities. Households with cases of human
disease are shown as red circles, and those with vectors carrying T. cruzi
are shown in grey circles. The following steps were taken to protect
patient anonymity in making this map: The geographic position of
human cases has been slightly and randomly perturbed; the positions
of some uninfected households have been altered; and certain regions
of the map have been rotated a random angle around their centroid.
doi:10.1371/journal.pcbi.1002146.g003

Micro-Epidemics of Chagas Disease
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commonly gifted or traded both within and between communities;

infected guinea pigs could have sparked new micro-epidemics in

Guadalupe. Infected insects can also fly to establish new foci of

transmission; while the chance that any one insect establishes

transmission is very small [42], given a large number of dispersing

insects, establishment might occur occasionally. Individual-level

data on human migration histories might allow us to study whether

any infected individual was likely to have brought the parasite to

Guadalupe from elsewhere [43]. Our finding of a very recent history

of infections was robust to the precise number of micro-epidemics,

and it is unlikely to be affected if these micro-epidemics were

initiated through one mechanism rather than another.

Generally, our approach is applicable to any situation in which

the expected observation of an organism at sampling locations at

a certain time is a function of the (unknown) site or sites of

introduction of the organism into the system. The functional

relationship between the expectation at a sampling site to the site(s)

of introduction can be a simple function of distance, as we have

used here, or can include information about the habitat between

the sampling and introduction sites. The method can be

Figure 4. The observed and predicted relationship between age and prevalence of Trypanosoma cruzi infection in Guadalupe,
Arequipa, Peru. The histogram represents the observed data; a smoothed spline, weighted by the number of observations at each age, is fit to
these data (black curve). Model estimates of the relationship between age and prevalence were calculated by determining the probability of infection
for each individual derived from the posterior predictions of the epicenter regression model with four epicenters. The spline fit to the median
posterior predictions is surrounded by a region bounded by splines fit to predictions from the 2.5% and 97.5% quantiles of the posterior (light grey,
shaded).
doi:10.1371/journal.pcbi.1002146.g004

Table 1. Posterior estimates and credible intervals for endemic, single-epidemic and four micro-epidemic models of Trypanosoma
cruzi transmission in peri-urban Arequipa.

Parameter Endemic Model Single epidemic model Four micro-epidemic model

Median [2.5%, 97.5% cri1] Median [2.5%, 97.5% cri] Median [2.5%, 97.5% cri]

Rate of Spread of the Parasite (m/year) - 29.18 [17.52–44.69]2 17.35 [8.87–32.55]3

Baseline yearly risk of infection 0.0014 [0.0009–0.0020] 0.0032 [0.0018–0.0058] 0.0042 [0.0022–0.0086]

Relative risk per domiciliary insect captured 1.018 [1.004–1.028] 1.014 [1.000–1.024] 1.014[1.000–1.025]

Relative risk in households with animals
sleeping inside

1.34 [0.66–2.56] 1.53 [0.76–2.93] 1.42 [0.70–2.72]

Years since the first introduction of the parasite - 20.31 [12.71–33.25] 19.98 [10.92– 34.65]

1Credible intervals are the 2.5th and 97.5th quantiles of the posterior samples.
2Corresponds to an average of 15.01 [5.07, 34.26] households exposed by a single infected household in a fully-susceptible population.
3Corresponds to an average of 4.950 [1.01, 18.77] households exposed by a single infected household in a fully-susceptible population.
doi:10.1371/journal.pcbi.1002146.t001
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informative when some prior information, on the advance of the

disease agent or the likely sites of introduction, is available. The

method is not likely to be informative in the absence of both.

Our application of epicenter regression to T. cruzi transmission

simplifies what is, in reality, a complex transmission cycle, and it is

limited by the cross-sectional nature of the data. Our prior

information on the speed of spread of the parasite came from

empirical observations from another part of Arequipa; neverthe-

less the inherently stochastic nature of biological dispersal brings

into question our ability to extrapolate our observations in one

community to another [44]. Measurement of the Bayes’ factor is

also limited by errors of estimation [34]. Our primary goal was to

estimate the timing of T. cruzi infections, as opposed to estimating

the precise number of introductions of the parasite in the

community. Although the four micro-epidemic model was strongly

supported over the single-epicenter model, and substantially

supported over the two-epicenter model, there was little difference

in fit among models with 3-10 micro-epidemics. Other methods,

such as reversible jump MCMC [45], might be more efficient

when the number of introductions is of primary interest [28].

Our study focused on a single peri-urban community. Since the

completion of our study we have observed similar patterns of

micro-epidemics of T. cruzi transmission in entomologic data

across the southern half of the city of Arequipa (unpublished data).

In more rural areas outside the city, T. cruzi transmission was

disrupted in the mid 1990s [46]. There are additional anecdotal

reports of a lack of late-stage disease among individuals with

Chagas disease residing outside of the city. A lack of late-stage

disease among individuals infected many decades ago might

provide evidence of lower chronic pathogenicity. In contrast, a

finding of higher prevalence of late-stage disease among such

individuals would provide direct evidence against this hypothesis.

The traditional, endemic patterns of transmission of Trypanosoma

cruzi by Triatoma infestans have been largely disrupted across

southern South America through a concerted vector control

program known as the Southern Cone Initiative [1]. Currently the

initiative is challenged by vectors and parasites returning to areas

previously under insecticide control [13,40–42], and by new foci of

transmission in and around urban centers [14,15]. The micro-

epidemics of Chagas disease transmission we observed in Arequipa

may be typical following emergence or re-emergence of the vector

and parasite, rather than an anomalous pattern. Distinguishing

between epidemic and endemic transmission will improve

understanding of the dynamic relationship between prevalence

of T. cruzi infection and the burden of clinical Chagas disease.
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