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Abstract

We experimentally investigated the synchronized patterns of three people during sports activities and found that the
activity corresponded to spatiotemporal patterns in rings of coupled biological oscillators derived from symmetric Hopf
bifurcation theory, which is based on group theory. This theory can provide catalogs of possible generic spatiotemporal
patterns irrespective of their internal models. Instead, they are simply based on the geometrical symmetries of the systems.
We predicted the synchronization patterns of rings of three coupled oscillators as trajectories on the phase plane. The
interactions among three people during a 3 vs. 1 ball possession task were plotted on the phase plane. We then
demonstrated that two patterns conformed to two of the three patterns predicted by the theory. One of these patterns was
a rotation pattern (R) in which phase differences between adjacent oscillators were almost 2p/3. The other was a partial anti-
phase pattern (PA) in which the two oscillators were anti-phase and the third oscillator frequency was dead. These results
suggested that symmetric Hopf bifurcation theory could be used to understand synchronization phenomena among three
people who communicate via perceptual information, not just physically connected systems such as slime molds, chemical
reactions, and animal gaits. In addition, the skill level in human synchronization may play the role of the bifurcation
parameter.
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Introduction

Synchronization has been both experimentally and theoretically

analyzed in many biological systems from micro- to macroscales

[1,2]. In particular, human synchronization has focused on

interactions between two people or among a large group [3–7].

Surprisingly, however, small groups of three to four people have

never been analyzed. We experimentally analyzed the interaction

among three people to clarify the synchronization patterns

generated by a small group.

Many studies focusing on human synchronization have used

equations for coupled nonlinear oscillators based on phase models

[6–10]. In these studies, the behavior of one person was treated as

a nonlinear oscillator, and interactions between people were

formulated as interactions among nonlinear oscillators. For

example, the behavior of two people swinging their legs while

watching each other has been studied using a model of two

coupled oscillators and two synchronization patterns in-phase and

anti-phase. It was thought that these patterns are generated by

the visual interaction between the two people [6]. This mathe-

matical model, however, requires detailed parameters such as the

natural frequency of each oscillator and coupling strength

between the oscillators. Hence to apply this model to natural phe-

nomena, we must manipulate and measure these parameters. To

avoid this methodological problem, many studies on two-person

synchronization have analyzed cyclic movements using metro-

nomes to manipulate the oscillator frequency and measured the

leg and pendulum displacement in situations unrelated to daily

life [6–10]. These methodological problems are more complex

when the model is extended from two to three coupled oscillators.

In other words, the equation of the model of three coupled

oscillators would be more complicated than that of two coupled

oscillators. Also, manipulating and measuring parameters exper-

imentally in this case would be more difficult. Although

synchronization of three frogs has been mathematically simulat-

ed[11], studies applied to models of three coupled oscillators have

not been analyzed experimentally.

However, the Kuramoto model of coupled oscillators based on

phase equations that include simple mathematical models has

described the interactions among many oscillators. This model

describes many synchronized oscillators in large groups by one

equation using the mean field approximation[12]. It does not

require the measurement of many parameters experimentally

because it can describe phenomena via one collective parameter.

Using this framework, collective clapping in concert halls has been

shown to exhibit synchronized and unsynchronized patterns

repeatedly[3,4]. In summary, models of coupled oscillators based

on phase equations are not appropriate for analyzing small groups

experimentally, because the numbers of oscillators in small groups

are too large to solve the equations and to identify the intrinsic
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dynamics. On the other hand, those numbers are too small to use

the mean field approximation that is appropriate in large groups.

However, symmetric Hopf bifurcation group theory is useful for

analyzing synchronization in a small group. Although this theory is

based on coupled oscillators, it can provide some spatiotemporal

patterns from only geometrical symmetry, even if the intrinsic

parameters in phenomena such as the frequency and coupling

strength cannot be manipulated and measured experimental-

ly[13]. For example, some gait patterns of multi-legged animals

generated by central pattern generators have been found to

correspond to patterns predicted by symmetric Hopf bifurcation

theory when certain geometrical symmetries are taken into

account [14–20]. These studies showed that the symmetry

included in natural phenomena could be understood in strict

mathematical terms. It also suggests that this framework is

appropriate for complex phenomena for which capturing the

individual elements is difficult because we can predict the

spatiotemporal patterns generated by the geometrical symmetry

using symmetry breaking before analyzing the experimental data.

In the spatiotemporal patterns in rings of three-, four-, and five-

oscillator systems of plasmodial slime molds that did not know the

intrinsic dynamics, all types of oscillation mode were demonstrated

from mathematical formulae by patterning of cell shapes using

microfabricated structures[21]. Chains of coupled oscillators have

also shown the spatiotemporal patterns predicted by this

theory[22]. However, hidden symmetric patterns that were not

derived from the explicit geometry of the system for chains of three

coupled oscillators were also found in the same study. Hence the

symmetric Hopf bifurcation group theory provides a list of possible

synchronized patterns generated by geometric forms, even if the

intrinsic dynamics of the complex individual oscillators cannot be

found from a conventional phase equation analysis.

In this study, we experimentally analyzed a human movement

task with geometric symmetry to clarify the synchronization

among three people using symmetric Hopf bifurcation theory. The

formation of symmetry in coupled oscillators requires that all

coupling strengths between the oscillators be identical. Therefore,

finding a task was necessary in which the interactions between

people were equal. We focused on a sports activity that could bring

out natural synchronization: 3 vs. 1 ball possession in soccer

practice[23]. This demands the cooperative behavior of passing a

ball among three attackers, while keeping the ball from one

defender (Figure 1). The three attackers in this task have to move

in a restricted area to interact with each other and pass as much as

possible. Because each pair among the three attackers could

interact and pass a ball to the other attacker, this task was regarded

as the formation of a ring of coupled oscillators. We investigated

the angle oscillations between the three attackers in a ring of three

oscillators with neighbor coupling. In addition, we regarded the

interaction strengths as equal when the skill levels of the three

attackers were equal. Hence synchronization among three people

in a 3 vs. 1 ball possession task should show the spatiotemporal

patterns predicted by symmetric Hopf bifurcation theory in a ring

of three coupled oscillators with geometric symmetry.

Materials and Methods

Predicted three synchronization patterns on the phase
plane

Symmetric Hopf bifurcation theory can create synchronization

patterns for, e.g., three-, four-, and five-oscillator systems[13].

Analysis by this theory requires only geometric symmetry, not the

intrinsic dynamics of the system or the nature of the coupling

between oscillators. That is, the theory considers a network of n

coupled identical oscillators together in ring geometry with

symmetry and identical couplings. For example, a network of

three identical oscillators is coupled together in a ‘triangle’

formation. This symmetric formation can provide two different

types of symmetry, spatial and temporal, which leads to

spatiotemporal patterns in the system. In other words, oscillation

patterns generated from a system can be provided only from a

Figure 1. The experimental task: a 3 vs. 1 ball possession task
in soccer practice for studying interactions among three
people. Three attackers (Attackers 1, 2, 3) were asked to pass a ball
as much as possible, without allowing it to be intercepted by one
defender for 90 s in a 6-m square. Angular oscillations were constructed
by the three attackers (h1 , h2 , h3).
doi:10.1371/journal.pcbi.1002181.g001

Author Summary

Synchronization is very interesting as both a natural
phenomenon and scientific topic in physical and biological
systems. Examples include the Belousov-Zhabotinsky (BZ)
reaction, the oscillation of metronomes, the flash of
fireflies, and the calling behavior of Japanese tree frogs.
The symmetric Hopf bifurcation theory, which is based on
group theory, has been proposed as a useful approach for
spatiotemporal pattern formation in coupled oscillator
systems. This theory has been applied to various types of
quadrupedal gaits in terms of symmetrically coupled
oscillators, and to rings and chains of coupled oscillators
of plasmodial slime molds. Here we report that the
spatiotemporal pattern formation in three-person cou-
pling during dynamic human movement, such as sports
activity, conforms to symmetry-breaking theory. Our
present study is salient because the spatiotemporal
synchronization patterns among three people correspond-
ed to the predicted patterns derived from symmetric Hopf
bifurcation theory, as with pattern formation in slime
molds, even though the actors were not connected
physically but informationally. Moreover, although infor-
mational coupling between two people has been shown
previously in well controlled experiments, we demonstrate
three-person coupling using perceptual information in a
real-life setting.

Three People Synchronization
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spatially symmetric formation of the system. These patterns

correspond to a different isotropy subgroup of Dn | S1. The

dihedral group Dn is the symmetry of a regular n-gon. Five

patterns are predicted from symmetric Hopf bifurcation theory for

the three coupled oscillators treated in this study (Figure 2). The

first pattern is an all in-phase pattern, in which all three oscillators

have identical waveforms and move in phase. It maintains both

spatial and temporal symmetry perfectly. The second pattern is a

rotation pattern, in which all oscillators have identical waveforms

but are phase-shifted by 2p=3. The third pattern is a partial anti-

phase pattern in which two of the oscillators have identical

waveforms but are phase-shifted by p; the third oscillator has a

different waveform and twice the frequency of the other two. The

fourth pattern is a partial in-phase pattern in which two of the

oscillators behave identically (i.e., they have the same waveform

and move in phase) and the third oscillator has a different

waveform. The fifth pattern is a different pattern in which all three

oscillators have a different waveform. This last pattern is the most

asymmetric. It results from symmetry breaking in a system of

coupled identical oscillators.

Rotation, partial in-phase, and partial anti-phase patterns were

found in three-coupled biological oscillators of slime molds[21].

We assume that three-person coupled oscillators would also exhibit

these patterns. Figure 3 shows simplified models for these three

synchronization patterns. Figures 3A, 3C, and 3F show time series

of oscillations for the angles constructed between each pair of the

three attackers, as shown in Figure 1. These three angle

oscillations are plotted as trajectories in three-dimensional (3-D)

space, as shown in Figures 3B, 3D, and 3G. Because the sum of the

three angles h1, h2, and h3 is always p, these trajectories could be

drawn on the two-dimensional (2-D) plane. Each vertex on the

phase plane represents the case in which one oscillator has angle p,

and the other two oscillators have zero degrees. The center of this

2-D phase plane (+) represents the case where all three oscillators

have p=3 equally. This phase plane can express the relationships

among three oscillators as a geometric trajectory; that is, an

attractor showing the system behavior. This allows us to compare

the predictive patterns visually with experimental data.

Figures 3A and 3B show a rotation pattern whereby all three

oscillators are synchronized with a constant phase difference of

2p=3. This pattern takes a circular trajectory, centered on the

phase plane (h1~h2~h3~p=3). The amplitudes of all oscillators

correspond to the radius of the circle (Video S1). Figures 3C-E

show a partial anti-phase pattern. In this case, two oscillators are in

anti-phase synchronization, while the other is in a half-period

oscillation. This interesting feature was reported in slime

molds[21]. In this study, we did not hypothesize the features of

a half period, and defined one oscillator as constant in the time

series (Video S2). This solution was derived from the fact that the

total of the amplitudes of all oscillators was p. The conditions of a

partial anti-phase pattern suggested by symmetric Hopf bifurca-

tion theory were that ‘two of the oscillators have identical

waveforms’ and ‘no oscillators are in-phase with each other’[13].

Therefore, the oscillator without identical waveforms to the other

two remains constant. This pattern is called the ‘death anti-phase

pattern’ in chemical oscillator systems such as the Belousov-

Zhabotinsky (BZ) reaction[24]. In Figure 3D, we show that the

constant oscillator was switching in the order of h1, h2, and h3. For

example, in phase (1), h2 and h3 were anti-phase, and h1 was

constant at p=3. The trajectory on the phase plane moved parallel

to the edge and passed the center with the corresponding

amplitude. In the case of a constant oscillator without phase

p=3, the trajectory would be parallel to the edge of the phase

plane, but shift up and down corresponding to that value. PA1 is

the case when the constant value is smaller than p=3, while PA2 is

that when the value is larger than p=3 in Figure 3E.

Figures 3F-H show a partial in-phase pattern when two

oscillators are synchronized in-phase and the other oscillates. In

this pattern, two oscillators have the same waveform and are in-

phase. For example, the case of phase (1) shows that h2 and h3 are

in-phase. The other oscillator is in anti-phase synchronization at

twice the amplitude because the total amplitude of the three

oscillators is p. In this pattern, the phase trajectory is parallel to

perpendicular on the phase plane. Moreover, all trajectories need

not pass through the center of the phase plane. PI1 and PI2 show

examples in which one of the two in-phase oscillators is larger than

p=3 and the other one is smaller than p=3 (Figure 3H).

Participants
In total 48 subjects (16 females and 32 males; 19–21 years old)

provided written informed consent prior to the experiment and

were included in the study. Procedures were approved by the

Internal Review Board at the Research Center of Health, Fitness,

and Sport at Nagoya University and conformed to the principles

expressed in the Declaration of Helsinki. A group of 16 high-level

players, 16 mid-level players, and 16 low-level players participated

in the experiment. The high- and mid-level groups were male

soccer players from a university team that was at the national level

in Japan. The high-level players were in the starting lineups for the

top team, while the mid-level players were not. The low-level

group consisted of female futsal players who had not played

football or soccer before they entered the university.

Procedure
Each group was divided into four subgroups of four players and

played a 3 vs. 1 ball possession task for 90 s in each trial, with four

trials per subgroup. The number of trials in each subgroup was

equal, such that all participants played once defensively. We asked

the three attackers to keep possession from the defender and pass

Figure 2. Five predicted patterns of a ring of three coupled
oscillators from symmetric Hopf bifurcation theory. The number
in the circle indicates the number of the waveforms. The double circle
shows that the corresponding oscillator has double frequency.
Relationships between two oscillators are indicated by = : in-phase,
?: 2p

3
phase shift, <: anti-phase.

doi:10.1371/journal.pcbi.1002181.g002

Three People Synchronization
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the ball to other attackers as much as possible within a 6-m square,

and the defender to make interceptions whenever possible (Video

S3). The mean number of continuous passes for each group was

tested by one-way ANOVA. A significant difference was observed,

with 13.8862.75, 8.7662.55, and 4.8961.49 for the ‘high-,’ ‘mid-,’

and ‘low-’ level groups, respectively (F (2,45)~16:587, p,0.001).

Multiple comparisons using Tukey’s post hoc test suggested that all

pairs between the two groups had significant differences: high-

middle: p,0.01, high-low: p,0.001, and middle-low: p,0.05.

Because the higher-level groups could connect more passes than

the lower-level ones, significant differences among the three groups

were observed in their ball possession skills.

The experiment was recorded with a video camera (Sony HDR-

XR550V) operating at 30 frames per second, which was placed

high-up so that the whole area in the experiment could be

recorded. The direct linear transformation (DLT) method for 2-D

reconstruction from images was used to retrieve position data in 2-

D coordinates for the attackers. The coordinates of the players

were captured from the centers of their heads. To apply the DLT

method, twelve control points were positioned at 1.5-m intervals

around a 6-m square. These control points were recorded as the

centers of the experimenter’s heads when they were upright with

almost the same height as the participants. The mean errors in

reconstructing the control points were 2.3 and 4.6 cm in the high-

and mid-level groups, and 1.3 and 2.1 cm in the low-level groups,

for the X- and Y-axes, respectively.

Data analysis
The coordinates of the three points representing the attackers in

the 2-D image were digitized in 30 Hz. These data were

Figure 3. Three synchronized patterns in a 3 vs. 1 ball possession task as rings of three coupled oscillators predicted by symmetric
Hopf bifurcation theory. (A, C, F) Time series of angles. (B, D, G, E, H) Trajectories on the phase plane. (B), (D), and (G) show the phase plane of time
series in (A), (C), and (F), respectively. (+) in the phase plane shows that all three oscillators would have p=3 equally. (A, B) A rotation pattern (R) in
which all three oscillators are synchronized while keeping the phase difference 2p=3 . (C-E) A partial anti-phase pattern (PA) in which two oscillators
are synchronized in anti-phase and another is constant. PA1 shows the case in which the constant value is smaller than p=3 and the value of PA2 is
larger than that of p=3. (F-H) A partial in-phase pattern (PI) in which two oscillators are synchronized in-phase and another is in anti-phase
synchronization. PI1 and PI2 show the cases in which one of the two in-phase oscillators is larger than p=3 and the other one is smaller than p=3
and vise versa.
doi:10.1371/journal.pcbi.1002181.g003

Three People Synchronization
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reconstructed in 2-D using Frame-DIAS (DKH). High-frequency

noise was reduced using a second-order Butterworth digital filter,

with 1.0 and 0.5 Hz used for the X- and Y-axes, respectively. The

time series data of the three angles were calculated from the

triangle that was constructed from the three attackers’ coordinates.

Data during interception by the defender were excluded.

Results

The time series of the angle data for each skill level were

superimposed as trajectories on the phase plane (Figure S1). Based

on these trajectories, to capture the dominant pattern of each level,

we show color contour plots in the phase plane that represent the

time frequency of trajectories normalized by the maximum and

minimum values in each skill level, as shown in Figures 4A-C. The

dark red (blue) shows the highest (lowest) frequency of the

trajectories, and the area not painted indicates no trajectory. The

distribution of trajectories for the high-level group (Figures 4A)

shows a circular pattern based on the center of the phase plane. In

other words, all three angles are around p=3. In contrast with the

distribution for the high-skill group, the distribution for the low-

level group spread to the vertex and parallel to the edge of the

phase plane (Figure 4C). The distributions for the mid-level group

show an intermediate pattern between the high- and low-level

groups (Figure 4B). Figures 4D and 4E show a rotation (R) and

partial anti-phase pattern (PA1) from a symmetric Hopf

bifurcation theory (Figure 3). This suggests that the distribution

for the high-level group corresponds to a rotation pattern (R),

while the mid- and low-level groups correspond to a partial anti-

phase pattern in which the two oscillators are in anti-phase

synchronization and the other is constant. When the constant

angle is smaller than p=3, the distribution patterns for the mid and

low levels correspond to the predicted pattern PA1.

To examine whether the observed distribution patterns of the

trajectories corresponded to the predicted patterns, the phase

differences were calculated using the inflection points on the time

series (text S1, Figure S2, S3, S4). Based on the time series analysis,

the most frequent pattern in the high-level group was rotation

(16.6%), followed by partial anti-phase (12.7%) and partial in-

phase (6.8%). In contrast, the most frequent pattern in the low-

level group was partial anti-phase (14.5%) followed by rotation

(13.0%) and partial in-phase (9.6%). Two kinds of permutation

tests using occurrence frequencies and subgroups showed

significant differences between the two groups for the three

patterns (occurrence frequencies: p = 0.018, subgroups: p = 0.058)

(text S2). The time series of the angles during 10 s for the high and

low levels are shown in Figures 5A and 5B as typical examples.

Figures 5C and 5D show the phase differences calculated using the

peaks between two angles, while Figures 5E and 5F represent the

trajectory on the phase plane. In the high-level group, the values of

the phase differences are near 4p=3 or 2p=3. This suggests a

rotation pattern, in which the three angles are synchronized,

Figure 4. Comparison between the experimental data and predicted patterns. (A-C) Color contour plots show experimental time-
frequency trajectory plots on the phase plane. (A), (B), and (C) show the high-, mid-, and low-level groups, respectively. The color indicates the height
normalized by the maximum and minimum frequency values for each skill level. Dark red is the highest and dark blue is the lowest, while white
represents no trajectories. (D, E) Two predicted trajectories on the phase plane selected from Figure 2. (D) shows a rotation pattern (R) that is similar
to (A) for the distribution of the high-level group. (E) shows a partial anti-phase pattern (PA1) that is similar to (B) and (C) for the mid and low levels,
respectively.
doi:10.1371/journal.pcbi.1002181.g004

Three People Synchronization
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maintaining a 2p=3 phase difference but changing their order.

However, the phase differences between two angles of the low-

level group were around p (i.e., anti-phase), with the other angle

almost constant. This feature was a partial anti-phase pattern.

However, the trajectory on the phase plane did not pass the center

because the asynchronous angle was constant and smaller than

p=3. As Figure 5F shows, the trajectory moved parallel to the edge

of the phase plane during first 8 s and then changed direction to

the other edge. This means that the angles h1 and h2 synchronized

in anti-phase and the angle h3 was constant with value smaller

than p=3 during the first eight seconds. Then, angles h1 and h3

reached anti-phase synchronization and h2 became constant. The

color contour plots in Figure 4 show the time frequency of these

trajectories.

Discussion

We analyzed a natural and goal-directed human movement task

with geometrical symmetry, 3 vs. 1 ball possession, by applying

symmetric Hopf bifurcation theory[13]. Five patterns were

predicted from this theory for a symmetric ring network of three

coupled oscillators. Three of these patterns were reported

previously in slime molds[21] and depicted on the phase plane

in 3-D oscillator space. We defined the following three patterns:

rotation (R), partial anti-phase (PA), and partial in-phase (PI). The

rotation pattern occurred when all three oscillators were

synchronized with the phase difference 2p=3. The partial anti-

phase pattern (PA) occurred when two oscillators were in anti-

phase synchronization and the other was constant. The partial in-

phase pattern (PI) occurred when two oscillators were in in-phase

synchronization and the other was oscillating. The differences in

these patterns were clearly described as the attractors of

trajectories on the phase plane. The attractors were circular for

R, parallel to the edge of the phase plane for PA, and

perpendicular to the edge of the phase plane for PI. Although

time series analysis revealed not only R and PA patterns but also PI

and other patterns (Table S1), this analysis was based on the

combination of relationships between two oscillators, and did not

describe the behavior among the three oscillators as a system

directly. Thus, we developed an analysis method using the phase

plane to depict the feature of synchronization among three

oscillators as attractors. When the observed angle data of the high-

, mid- and low-skill-level groups were plotted on the phase plane, it

suggested that the high- and low-skill-level groups corresponded to

R and PA1, respectively.

The two patterns R and PA have also been observed at the

microscale of a synchronized phenomenon, i.e., biological

oscillators in slime molds[21]. Although the dynamics of slime

molds and people as oscillators are obviously different, common

synchronized patterns were revealed in both the micro- and

macroscale phenomena. This strongly suggests that symmetric

Hopf bifurcation theory could provide a list of possible patterns

from the geometrical symmetry of coupled oscillators, which does

not depend on the intrinsic dynamics of oscillators.

Note that in the present study, three attackers were not

connected by a material link like the slime mold[21] or a central

pattern generator[15–20,25]. Synchronization was achieved via a

goal-oriented human movement task that required the three

attackers to keep a ball while avoiding interception by a defender.

Previous research on synchronization between two people showed

that the same principles underlie within- and between-person

interaction using only optical information[6]. Hence, we consider

that in the present study, three attackers or oscillators could also be

connected by optical or visual information. From the results, two

important findings were revealed. First, symmetric Hopf bifurca-

tion theory can explain phenomena connected by both physical

and perceptual information. Second, humans coupled by percep-

tual information can synchronize between both two and three

people.

In this respect, the experimentally observed patterns in different

skill groups show different synchronization patterns. Groups of

high- and low-skill-levels suggest rotation and partial anti-phase

patterns, respectively. In a rotation pattern (R), all three oscillators

are synchronized while the phase difference is constant at 2p=3.

This synchronization pattern requires coupling between each pair

among the three oscillators. In partial anti-phase and in-phase

patterns, two oscillators are in anti-phase and in-phase synchro-

nization, and the other one is constant (PA1) and in anti-phase

synchronization (PI), respectively. These patterns need only one

coupling among the three oscillators. Together with the informa-

tional coupling in this task, this result suggests that a high-skill-level

group is connected informationally in three ways, while a low-skill-

level group is connected in only two ways; i.e., in the high-skill-

level group every attacker was connected to two other attackers,

whereas in the low-skill-level group, every attacker was connected

to one other attacker. The difference in synchronization pattern is

likely caused by the difference in skill level. In other words, we

Figure 5. Typical examples of the high- and low-skill-level over
10 s. (A, B) Time series of three angle oscillations. The scale of angle A
was reduced so that the scale in (A) could be three times smaller than
that in (B). (*) in the time series indicates peaks. (C, B) Phase difference
between any two angles. These values were calculated from the peaks
in (A) and (B). (E, F) Trajectories on the phase plot for the above time
series.
doi:10.1371/journal.pcbi.1002181.g005

Three People Synchronization
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might be able to regard the skill level as a bifurcation parameter of

human synchronization in this movement task.

However, we should bear in mind that these results are a

dominant pattern based on the time frequency on the phase plane

at each skill level. Spontaneous switching behavior among some

synchronized patterns was observed in slime molds, in which the

behavior depended on the coupling strength controlled by the

channel width between oscillators[26]. Accordingly, if we analyze

time series within each trial in detail, we might be able to find

switching between synchronized patterns. In addition, task

constraints would affect the pattern formation of synchronization.

For example, a movable area would affect the amplitude of the

oscillations, and the relative skill level between attackers and

defender would influence the coupling strength among the

oscillators as an environmental or a bifurcation parameter in the

system. To examine different couplings, such as those where all

three oscillators have identical waveforms and move in phase, we

could manipulate these experimental variables. To better

understand the dynamics of human synchronization, we must

investigate the relationship between the patterns shown in this

study and switching behavior or various parameters.

In conclusion, we demonstrated that human synchronization

among three people can be understood as a ring of three coupled

oscillators, similar to slime molds, as based on symmetric Hopf

bifurcation theory; humans synchronize using informational, not

material, linkage; and the skill level in human movement plays the

role of the bifurcation parameter for synchronization pattern

formation. Symmetric Hopf bifurcation theory would be useful for

understanding complex/macroscale human synchronization be-

cause it provides possible patterns from only geometrical

symmetry, without requiring knowledge of the intrinsic dynamics

of the system [26]. That is, this model-independent approach [13]

may help to clarify complex human movement patterns in natural

situations related to daily life, such as sports activity. This can be

done without manipulating or measuring detailed parameters such

as the natural frequency of each oscillator or the coupling strength

between oscillators. We will be able to extend this approach to

larger systems, such as 4 versus 2 and 5 versus 3 games, based on

four or five coupled oscillators. Moreover, ball games, such as

handball, football, or hockey, including geometrical symmetry

might be studied via this approach, because these games have

strict rule constraints, such as the number of players or the area of

playing fields. However, we need to examine in detail the

collective variables describing the system behavior. To provide

stronger evidence of the applications of symmetric Hopf

bifurcation theory, we must analyze more small groups, such as

those of four or five people, and compare them with the predictive

patterns in the theory. Finally, a dynamic system perspective,

including symmetric Hopf bifurcation theory, may be able to

bridge the gap between theory and practice[27,28] to design a

coaching philosophy and a practical training regimen[29].

Supporting Information

Figure S1 Examples of time series of three groups for
90 s in one trial. (A, B, and C) Time series of three angle

oscillations for high-, mid-, and low-level groups, respectively. The

bars at the bottom of the time series show the duration of ball

possession, and the blanks between time series indicate excluded

data due to defender interception. (D, E and F) Trajectories on

phase plane for each time series corresponding to A, B, and C.

(PDF)

Figure S2 Schematic classification diagram of the phase
difference between two oscillators. (A) in-phase, (B) anti-

phase, (C) 2=3p, (D) ‘death’ pattern of the phase difference we

defined.

(EPS)

Figure S3 Examples of classification of synchronized
patterns among three oscillators. Black lines indicate the

time series of angle, and (+) shows the inflection point of those

lines. The color bars around each time series of angle show the

different synchronized patterns among the three oscillators, R, PA,

and PA’, which were calculated by the reference interval between

inflection points (a peak and a valley) of each time series of that

angle. These patterns (R,PA,PA’) are shown by red, blue, and

green bars, respectively. The bars shown on top of the three time

series were finally defined as the synchronized pattern among the

three oscillators.

(EPS)

Figure S4 Examples of time series of high- and low-level
groups and switching patterns. (A) Time series of three angle

oscillations for high-level group. (B) Time series of three angle

oscillations for low-level group.

(EPS)

Table S1 Observed duration of each pattern for high- and low-

level groups.

(PDF)

Text S1 Time series data analysis.

(PDF)

Text S2 Permutation test.

(PDF)

Video S1 Animated clip showing the pattern of movement of

players on the field, and the time series of three angles for each of

the ideal rotation (R) oscillatory modes.

(AVI)

Video S2 Animated clip showing the pattern of movement of

players on the field, and the time series of three angles for each of

the ideal partial anti-phase (PA) oscillatory modes.

(AVI)

Video S3 Real movie showing an example of the pattern of

movements of high-level players on the field.

(WMV)
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