
Local Orientation and the Evolution of Foraging:
Changes in Decision Making Can Eliminate Evolutionary
Trade-offs
Daniel J. van der Post1,2,3*, Dirk Semmann1

1 Courant Research Center Evolution of Social Behaviour, Georg-August Universität Göttingen, Göttingen, Germany, 2 Institute of Artificial Intelligence, University of

Groningen, The Netherlands, 3 Behavioural Ecology and Self-Organization, University of Groningen, The Netherlands

Abstract

Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding
opportunities can generate patterns of behavior which reflect or ‘‘recognize patterns’’ in the environment beyond the
perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using
a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it
depends on local decision making. We compare two model variants which differ in the individual decision making that can
evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is
distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it
generates, plays an important role in foraging success, particularly in patchy environments where one of the main
challenges is ‘‘staying in patches’’. In the restricted model this is achieved by genetic adaptation of move and search
behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise
because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for
properties of movement to be specialized for detection of patches with more food, a larger scale information processing
not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of
pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape.
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Introduction

The evolution of behavior is to a large extent the evolution of

information processing [1–4]. On short timescales individuals

respond to local information in the environment. For instance in

foraging, a basic local information processing is that animals detect

food, turn and move to food, and eat. On the long term this

generates behavioral patterns. The latter shapes how individual

behavior relates to patterns in the environment (e.g. resource

distributions) and affects aspects of Darwinian fitness (e.g. foraging

success). At present it is poorly known how local information

processing mechanisms (e.g. cognition) determine larger scale

pattern detection and evolve [3,5–8]. Here we study the evolution

of local information processing and orientation to the environ-

ment, and its relation to environmental pattern detection.

In evolutionary theory on foraging, the focus is often on how

well individuals match (fitness relevant) patterns in the environ-

ment. In optimal search theory (OST) the main focus has been on

what kinds of random turning strategies optimize search [9–11]. A

second focus has been on the value of alternating between

intensive searching, once a food patch is found, to extensive search

when food has not been found for a while, using combinations of

correlated random walks differing in turning rates [12]. Simula-

tions show that such switching between search strategies can

enhance foraging efficiency because it concentrates search effort in

the right places (i.e. it allows patches to be ‘‘detected’’), so called

area-concentrated search. This is true for models in which

‘‘continuous’’ patchy environments are assumed [12,13], where

resource items are only locally detectable, but aggregated on a

scale that is beyond the perception of individuals, as apposed to

models in which discrete and fully detectable patches are assumed

(e.g. the marginal value theorem [14]).

Random-walk models have been used to statistically character-

ize animal movement trajectories, including bi-modal search

patterns similar to area-concentrated search [15,16]. However,

such model fitting does not necessarily reveal underlying

movement mechanisms [6,17]. Interaction with, and orientation

to, the external environment can generate similar movement

patterns as those generated by internal turning strategies [6,17,18].

Moreover, Benhamou showed that local orientation via memory

of where an individual last found a food item, can further improve

foraging efficiency relative to ‘‘random’’ area-restricted search

without such memory [19], indicating the adaptive value of

reacting to external cues. However, like the random-walk search

models, an important assumption is that food is detected and

consumed on the same range. Instead, if food can be detected

beyond the range at which it can be eaten (as is often the case), an

animal will be able to approach foraging opportunities from some
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distance via direct visual cues. This is probably one of the most

simple ways through which animals can orientate themselves

relative to food. Important is that such opportunity-based

adaptation (or responsiveness) stands in direct relation to feeding

opportunities in the environment. Therefore, on longer timescales,

behavioral patterns emerge that are ‘‘a reflection of complexity in

the environment’’ [20].

To conceptualize how interaction of individuals with the

environment can structure behavior, Hogeweg and Hesper [21]

coined the TODO principle. This envisages behavior as multi-

scale information processing [22,23] (see Figure 1): (i) TODO:

individuals behaviorally adapt to local opportunities by ‘‘doing

what there is to do’’, and (ii) Pattern formation and detection:

behavioral patterns self-organize on larger spatio-temporal scales

through the continual feedback between behavior and local

environmental contexts (This use of the term ‘‘information

processing’’ differs from that in behavioral ecology where it

generally refers only to individual-level behavioral flexibility, often

specifically in relation to energy-dependent behavioral choices). A

simplistic example of TODO is that as food density declines

individuals end up moving more and eating less, because there is

no opportunity to eat. As such, the environment is like a

‘‘behavioral template’’ to which individuals can respond, allowing

individuals to effectively ‘‘detect’’ patterns of opportunities in the

environment beyond their own perception.

In order to fit models to movement data and elucidate

underlying mechanisms, requires a thorough understanding of

how both internal and external structuring of behavior can

generate foraging patterns. This can be done using pattern

oriented modeling [24] and other multi-level modeling approaches

[25], where model fits are evaluated based on patterns on multiple

levels: small scale movement decisions, mesoscale patterns such as

trajectories and space use and more global patterns such as

population distributions. The requirement of fitting models to

multiple levels places the focus on the mechanisms that generate

the inter-relation between small-scale processes and patterns on

larger scales. A thorough understanding of how small scale

behavior interactions generate behavioral patterns through

TODO could be an important contribution to such modeling

approaches.

Essentially, TODO and the longer term behavioral patterns it

generates, come to expression (in models) when individuals

interact with the environment and need to make behavioral

decisions based on local information. In this light, Hogeweg [26]

showed that foragers with simple TODO rules could forage much

more efficiently than those with much more complicated rules.

This was because foragers with simple rules could react to local

opportunities and therefore automatically adapt to larger-scale

patterns in the environment (i.e. generalize their behavior). More

counter-intuitive and complex behavioral patterns emerge in

models with more detailed environmental structure and multiple

types of behavior. Examples include ‘‘self-structuring’’ explana-

tions for social dynamics in bumblebee colonies [27], grouping

patterns in chimpanzees [28], diet learning and cultural

inheritance in group foragers [29,30].

At present, the role of pattern recognition through TODO is

most likely underestimated in most approaches to the evolution of

foraging behavior. For instance in OST the simple orientation

mechanism of turning and moving to food is generally not

included. Moreover, behavior is usually assumed to be continuous

in that movement, search and food consumption occur in parallel

(although a trade-off between movement speed and search

accuracy is often assumed [12]). Decision-making is therefore

restricted to changes in direction. However, if movement,

scanning for food and eating are at least partially mutually

exclusive, then individuals must decide about what to do next (e.g.

search again at a certain location, or move on). Such foraging

behavior can be referred to as pause-travel [31], or intermittent

search [7]. Here we focus on local orientation towards food in such

a setting where individuals must make decisions, and study the role

of TODO in the evolution of simple foraging behavior. We ask:

how does local information processing evolve in order to

determine how individuals ‘‘do what there is to do’’? More

specifically, how does the responsiveness and orientation of

individuals to feeding opportunities in the environment evolve in

light of the larger spatio-temporal pattern recognition that this

generates?

To address this question, we study the evolution of foraging

behavior in a model with individuals that have to choose amongst

alternative behavioral actions according to information they

obtain through searching. This happens in a spatial environment

with patchy and uniform patterns of feeding opportunities. To

address how local information processing (sensing and decision

making) affects information processing on larger spatio-temporal

scales (pattern recognition and genetic adaptation, see Figure 1),

we compare the evolution of decision making and properties of

behavioral actions in two model variants. In a ‘‘restricted’’ model

we limit information individuals can remember and use relative to

an ‘‘extended’’ model. The comparison across environments is

used to understand evolutionary adaptation to prevailing ecolog-

ical conditions (patchy or uniform). The comparison across models

(restricted versus extended) is used to understand how differences

in the evolutionary freedom (or constraints) for evolving decision

making affect evolution. This has similarities to artificial neural

network approaches to the evolution of behavior, where behavior

is not predefined, but emerges from neural architecture and

learning processes [32–35]. Such models have been used to show,

for instance, that risk-averse foraging can emerge as a side-effect of

an evolved reinforcement learning process [33]. In our case there

is no learning, but the ‘‘architecture’’ of decision making can

evolve such that non-predefined behavior can evolve. Therefore

Author Summary

Animals differ in how they sense and process information
obtained from the environment. An important part of this
information processing is used to find food. In terms of
foraging, local decision making determines how successful
individuals are at finding food on longer timescales. Using
an artificial-world model, we studied different kinds of
decision making to understand how local information
processing affects larger scale behavioral patterns and
their evolution. We compared a restricted decision making
(less memory) to extended decision making (more
memory). We then compared the evolution of decision
making and behavioral actions (moving and scanning for
food) in patchy and uniform environments. Our results
show that with restricted decision making individuals face
a trade-off in the patchy environment: they try to stay in
patches by not moving forward too far, but to do so they
sacrifice how fast they travel between patches. With
extended decision making this trade-off completely
disappears because decision making allows moving
forward to be avoided in patches. Instead moving forward
can be used exclusively for faster traveling between
patches and for selecting bigger patches. Our results show
how changes in local decision making can significantly
alter what evolutionary forces are faced and can eliminate
evolutionary trade-offs.

Decision Making and Evolution of Foraging
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we do not prespecify a selection function, but only define that

inter-birth intervals decrease with increased food intake, and allow

natural selection to arise from competition in a world with finite

resources. We then study how Darwinian fitness arises as an

emergent property of how micro-scale interactions generate

longer-term behavioral patterns. Thus, we study evolution as the

interplay of information processing on multiple timescales

(Figure 1), based on bioinformatic (processes) theory [22,23,36–

38].

Using this approach, we show that local information processing

and opportunity-based adaptation can play a significant role in

detecting patterns of resources in the environment, and the

evolution of foraging. In particular, we find that the differences in

decision making capabilities affect how individuals interact with

the environment (TODO), and this can alleviate evolutionary

trade-offs and allows for novel pattern recognition specializations.

Materials and Methods

Model
Our model incorporates (i) individual foragers and (ii) a 2-

dimensional environment with resource items in either a patchy or

uniform distribution, adapted from van der Post and Hogeweg

[29]. Individuals have a decision making algorithm which

determines the sequence and context dependency of the following

behavioral actions: MOVE, FOODSCAN, MOVETOFOOD

and EAT. Each of these behavioral actions has specific properties

(such as distances, angles etc). Our model is event-based, which

means that actions take time. When individuals complete an action

they choose a new one. The individual with the shortest time to

complete its action is next to choose a new action.

We study two model variants (‘‘restricted’’ and ‘‘extended’’)

which differ in the type of decision making algorithm that can

evolve. Both the parameters of the decision making algorithm and

the details of behavior are ‘‘genes’’ which change through

mutation. This generates genetic variation, which may result in

differences in foraging efficiency and rates of reproduction.

Natural selection then arises from resource competition. For a

full list of model parameters please see Table 1 and 2. Next we

discuss the model in more detail.

Environment
Our environment is 5660 by 5660 lattice, where grid points are

scaled to be 1 meter apart, giving 32,035,600 grid points

(32.035 km squared). This size was chosen to support a population

size (about 100–150 individuals). This was the minimal population

where: (i) parameters evolved, (ii) the population is self-sustaining,

and (iii) simulations are completed in a reasonable time span. It

also ensures that individuals need to move through space to find

food, survive and reproduce. Resource items were placed on grid

points. Resource items appeared at fixed, but randomly assigned

time points within a year, and remained there until eaten. If eaten

the resource item was depleted, and appeared again at its fixed

time point in the year. Days are 720 minutes (12 hours of

‘‘daylight’’) and years are 365 days (262800 minutes).

We implement a patchy and a uniform environment, where we

keep the total number of food items constant and only vary the

resource distribution. In the patchy environment we placed 8000

patches, each with about 2500 items depending on overlap of

randomly positioned patches. Each patch is a circle with a radius

of 20 meters. Within this circle, 2 resource items are placed at each

grid point. All resource items in a patch appear at the same time

point, and different patches appear at random fixed times in the

year. In the uniform environment resources are placed with

probability 0.535 per grid location to match the total number of

resources placed in the patchy environment (17150000 items). In

the uniform environment, resource items appear at randomly

assigned fixed times throughout the year.

Decision making
The restricted and extended model differ in the decision making

that can evolve. Figures 1a and b show the basic decision making

algorithms: the behavioral actions that are possible (ovals) and in

the case of FOODSCAN, the information this provides (rectan-

gles). Arrows indicate what can be done next, or what information

Figure 1. Illustration of multi-level information processing. Local information processing depends on an individual’s genotype (information
processing capabilities) and local environment context, generating TODO (behavioral adaptation to local opportunities). Pattern formation then arises
through TODO on larger spatial and temporal scales beyond the perception of individuals in relation to patterns in the environment. Selection of
pattern recognizing genotypes arises through differences in reproductive rates (Darwinian fitness) of individuals that vary in their pattern formation
and compete over food. Thus short arrows indicate information processing and the information being processed (arrow label). The long arrow
indicates how genotypes selection feeds back on information processing capabilities present in the population.
doi:10.1371/journal.pcbi.1002186.g001

Decision Making and Evolution of Foraging
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is obtained (after FOODSCAN), and an individuals last action (+
information obtained) represents its ‘‘state’’ (or memory). EAT and

MOVETOFOOD can only occur after food is detected. EAT

occurs when food is detected in range, otherwise individuals first

MOVETOFOOD (MTF) and then EAT. Without any informa-

tion about food, individuals can either MOVE or do FOODS-

CAN. As a starting condition, we set these to alternate so that

individuals always do FOODSCAN after MOVE and vice versa.

To allow decision making to evolve we define parameters

which determine the probability of moving again after MOVE

(pM ) and scanning again after FOODSCAN (pS ) (Figure 2a),

searching again after EAT (pSE ), or searching again after NO

FOOD (pSN ) (Figure 2b, see also Table 2). This is indicated by

decision points (black diamonds) after MOVE, NO FOOD and

EAT, where arrows split. For each of these probabilities, the

alternative decision has a probability of 1{p. For the restricted

model we only allow pM and pS to evolve, where pS is a general

probability to do FOODSCAN again, irrespective of whether

individuals have eaten or did not find food (Figure 2a). Thus in

the restricted model, the probability to do FOODSCAN again

after EAT or after NO FOOD, is determined by the same

parameter (pS ). For the extended model we allow pM , pSE , and

pSN to evolve (Figure 2b), where pSE , and pSN can be seen as

context dependent forms of pS . In the extended model, the

probability to do FOODSCAN again after EAT or after NO

FOOD, can therefore evolve independently. Thus, in the

restricted model individuals cannot remember and make use of

the additional information ‘‘just ate’’ or ‘‘didn’t find food’’ to

determine the probability to do FOODSCAN again, while in the

extended model they can. Moreover, in the restricted model, we

assumed individuals always MOVETOFOOD when food is out

of reach. In the extended model we allowed this probability

(pMTF ) to evolve, and it always evolved to pMTF ~1 (see section 2

in Text S1 and Figure S1).

Behavioral actions
The parameters of specific behavioral actions determine how

individuals move and sense their environment (see Figure 2c).

Unless stated otherwise, we allow all these parameters to evolve:

N MOVE. Individuals step with distance dM , duration tM and

turn with angle aM about their current direction. An

individual’s speed is sM~dM=tM , where maximum speed is

limited to 360 meters per hour, in order to scale all behaviors

to the same minimal time step (10 seconds). Individuals move

Table 1. Non-evolvable parameters (the boundary conditions
for evolution).

Category Parameter / description Value Units

Timescale tMIN (minimal duration) 10 sec

day 720 min

year 365 days

Environment grid unit 1 m

field size 5.66 x 5.66 km

Resources renewal interval 1 year

density 0.535 items per m2

detection distance 2 m

detection probability 1 per sec per m2

tE (handling time) 10 sec

Er (energy) 2 units

Patches number 8000 patches

patch radius 20 m

resources per patch 2500 items

Individuals dR (individual reach) 0.9 m

tE 10 sec

maximum speed 0.1 m/sec

Em (metabolism) 1 units/min

minimal energy 0 units

EM (maximum energy) 100000 units

birth requirement EM units

birth energy costs EM=2 units

offspring energy EM=2 units

death rate 0.1 per year

maximum age 10 years

mutation rate 0.05

doi:10.1371/journal.pcbi.1002186.t001

Table 2. Evolvable parameters of individuals.

Category Parameter / description St. dev. Min Max Units

Durations tM (move duration) 0.2(2) 0.167 1.99 min

tF (food scan duration) 0.2(2) 0.167 1.99 min

Distances dM (move distance) 0:2(15) 0.0 - m

dF (food scan distance) 0:2(15) 0.0 - m

Angles aM (turning angle) 0:2(360) 0.0 360 degrees

aF (food scan angle) 0:2(360) 0.0 360 degrees

Probabilities pM (repeat move) 0:2 0.0 -

(restricted model) pS (repeat food scan) 0:2 0.0 -

(extended model) pSE (repeat food scan after eat) 0:2 0.0 -

(extended model) pSN (repeat food scan after nofood) 0:2 0.0 -

(extended model) pMTF (move to food) 0:2 0.0 -

The standard deviation of mutation is scaled (0.2(x)) relative to what was considered a reasonable range for the parameter. The maximum of durations was imposed due
to how the model was programmed, but was high enough not to affect the results.
doi:10.1371/journal.pcbi.1002186.t002
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in a continuous space and can move in any direction. In

principle individuals can occupy the same exact point, and

therefore can be in the same grid cell in the environment.

When individuals reach the edge of the environment, they

choose a random direction. Note that the turning angle can

also evolve and occurs during every MOVE event, but

randomly to the left or right. This is a simplified version of

turning angles studied elsewhere [7].

N FOODSCAN. Resource items are searched for tF seconds

within an area defined by radius dF and angle aF about an

individual’s forward heading (Figure 2c, red area). Resources

are only detectable if within 2 meters (the environmental

constraints on detection). Moreover, the probability to detect a

given resource item pDR depends on how long individuals

spend scanning per meter squared:

pDR~
tF

aF

2p
A

ð1Þ

where
aF

2p
A is the area scanned (A~p(dF )2), and where 1

second of scanning for 1 m2 gives pDR~1. The closest detected

item is chosen for consumption. If there are multiple items equally

close, a random closest item is chosen. This scanning algorithm

therefore represents the case where individuals eat the first item

they find. Note also that we assume that MOVE and

FOODSCAN cannot occur at the same time, and thus we focus

pause-travel foraging [31] or ‘‘intermittent search’’ behavior [7].

N MOVETOFOOD. Individuals move to within half of their

reach (0.45 meters) from a chosen food item, taking sM dM

seconds. Individuals may attain a new heading when turning to

move towards food. We chose an individual’s reach (dR~0:9,

nonevolvable) to be less than its maximal range for detecting

resources ( = 2 meters) because this appears reasonable for

many animals.

N EAT. Individuals spend tE~10 seconds eating a resource item

(nonevolvable).

Energy, survival and reproduction
Individuals gain energy through food (Er~2 energy units per

item) which is added to their energy store ei (with a maximum:

EM~100000). To survive, individuals must have energy (eiw0),

which means energy intake must compensate basal metabolism

(Em~1, which is subtracted from ei every minute). Because

resources become locally depleted individuals must move to eat.

We do not add explicit movement costs, but time spent moving

cannot be spent eating. Individuals reproduce when ei~EM .

Energy is then halved and the other half goes to a single offspring.

The time taken to get back to EM defines a birth interval.

Individuals with shorter birth intervals achieve greater lifetime

reproductive success. Individuals can die with a probability of 0.1

per year, and can reach a maximum age of 10 years. This adds

some stochasticity in survival and limits lifespans to 10 years.

Since resources are limited in the environment, the population

grows until the reproduction is at replacement rate (carrying

capacity).

Our model requires that the population is viable in relation to

resource availability, thus energy and life-history parameters are

chosen such that at low population sizes individuals can definitely

gain sufficient energy to reproduce. Moreover, to focus on

movement and foraging in differently patterned environments,

we set the energy required to give birth in relation to energy per

food time, and the density of food items in space, such that

individuals have to move to and forage from many food patches

and experience the full scale of environmental patterns during a

reproductive cycle (i.e. they cannot complete reproductive cycles

within a single patch). Lifespan is set to allow multiple

reproductive events per individual. We expect most parameter

combinations that satisfy these qualitative relationships (see section

1 in Text S1 for more detail), to give similar results.

Mutation
When individuals reproduce, the parameters of decision making

and behavioral actions are inherited by offspring, with a

probability of mutation of 0.05 per gene (this rate of mutation

was chosen after observing that natural selection lead to consistent

evolutionary change with increases in foraging efficiency). We

allow all action durations, distances and angles to evolve except dR

Figure 2. Illustration of decision making and behavioral actions. Decision making algorithms of (a) restricted and (b) extended models. Ovals:
behavior actions (MTF = move to food), Squares: information acquired from the environment, Diamonds: decision points. Arrows indicate the
sequence of actions, decision points, and information. Gray arrows: fixed, Black arrow: evolvable (in the restricted model this depends on pM and pS .
In the extended model pS is split into two: pSE and pSN creating an extra decision point). The shaded gray square indicates fixed behavior that occurs
in the ‘‘FOOD’’ context. (c) Visual representation of foraging: dM is the distance covered with MOVE (solid line), followed by a FOODSCAN (red) of
angle aF about forward direction (thickest arrow) over distance dF . This can detect food (blue stars) placed on a grid. If food is beyond reach dR then
the individual will MOVETOFOOD (to the closest star detected) before EAT.
doi:10.1371/journal.pcbi.1002186.g002
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and tE . The mutation ‘‘step’’ is defined by drawing the parameter

value from a normal distribution with the mother’s parameter

value as mean and standard deviation scaled to about 20% of the

range of values that is relevant for that parameter (see Table 2).

Moreover, in order to keep simulations running fast enough, we

limited the minimal action duration to Tmin~10 seconds. Most

mutations are close the mother’s parameter value, but larger

jumps are possible. This was chosen to make evolution of

parameters possible without predefining their ranges.

Initial conditions
We cannot predict what parameter settings are viable and take a

‘‘zero’’ state (all parameters zero) as initial condition. To make

sure the population does not die out initially, we use a birth

algorithm in which the non-viable population is maintained at a

minimum of 10 individuals, and let it evolve to a viable state.

During this time, if the population drops below this minimum then

an individual is chosen to reproduce according to a probability

(pR) relative to its energy (ei):

pR~
eiX

ei

ð2Þ

Energy costs of reproduction and energy of offspring as the

same as before. Once the population grows above 10 individuals

and becomes viable, this algorithm is not used anymore. At this

point the population grows to carrying capacity and becomes

stable.

Simulations and analysis
For our study we used the following types of simulations:

1. Evolutionary simulations. We ran 10 large-scale evolu-

tionary simulations for 1000 years, starting from the ‘‘zero’’

initial conditions and with mutation on genes. We do this for

both the restricted and extended model in both patchy and

uniform environments. We analyze evolutionary simulations by

conducting ancestor traces, backtracing lineages from the final

population to the beginning of the evolutionary simulations.

Through this method we reveal lineages that survive to the end

of the simulation (see section 2 in Text S1 and Figure S1). Thus

we obtain lineages representing the evolution of parameters in

our model. We take parameters of ancestors between year 800

and 900 to represent ‘‘evolved genotypes’’ (those at year 1000

include recent mutants, which possibly have not been under

selection for long enough). These simulations provided our core

results, which were used as inputs into the two types of

simulations described below.

2. Ecological simulations. To study evolved genotypes, we

compare them in detail in shorter non-evolutionary simulations

(no reproduction, death or mutation). Because competition

arises in our model through resource depletion, we compare

different evolved genotypes together in the same simulations to

determine how they forage relative to each other. For speed reasons

we use a smaller field (4000 by 4000 m) with a fixed population

of 65 individuals and study foraging behavior. We run the

simulation until we have 100 samples of a year of foraging for

each evolved genotype. For this size field, 65 individuals is the

carrying capacity scaled relative to the full field (125

individuals) and we therefore study behavior at the same

resource density as in the evolutionary simulations (roughly

0.01–0.05 items per m2 due to depletion).

3. Characterizing the adaptive landscape. Evolutionary

pressures in our multi-dimensional evolutionary space (8

parameters) could be quite complex, depending on how the

different parameters inter-relate. Moreover these inter-rela-

tionships could change with the change in decision making and

environment. To study this we conducted simulations where

we varied 2 given parameters across individuals, while keeping

other parameters on evolved values (no reproduction, death or

mutation), for each evolved genotype in its respective

environment. We could not run separate simulations for each

parameter combination because in our case fitness differences

between individuals only come to expression through resource

depletion. Moreover, when conducting this analysis we

introduce many individuals that forage poorly, thus affecting

foraging competition and reducing resource depletion. We

therefore raise the population until resource depletion

approaches that normal for evolving populations (as stated

above). Thus we obtain a local characterization of the adaptive

landscape about the evolved genotypes allowing inter-relations

between parameters to be revealed.

Results

What evolves?
We find that in both models the population evolves to

environment specific attractors. We refer to these evolved states

as ‘‘specialists’’: uniform specialists in the uniform environment,

and patch specialists in the patchy environment. These four

specialists differ from each other and these differences depend on

the following parameters: (i) probabilities to SEARCH again (pS ,

pSE , pSN ), (ii) probability to MOVE again (pM ), (iii) MOVE

distance (dM ), (iv) turning angle (aM ), and (v) FOODSCAN angle

(aF ) (see Figure 3). For ease of reference we name the specialists

and summarize their distinguishing features as follows (illustrated

in Figure 4). Parameter values shown are means of ancestor traces

between year 800 and 900 (see also Table S1):

N R-Patchy (restricted model patchy): has some repeated food

scanning (pS~0:251, Figure 3a), the shortest move distance

(dM~0:99, Figure 3c), and the largest food scan angle

(aF ~356:51 degrees, Figure 3d).

N R-Uni (restricted model uniform): has no repeated search

(pS~0:0, Figure 3a) and has the second shortest move distance

(dM~1:567, Figure 3c).

N Ext-Patchy (extended model patch): always repeats food scan

after finding food (pSEw1:0), and never repeats food scan after

not finding food (pSN~0:001, Figure 3a, blue and orange

respectively), is the only specialist to repeat MOVE

(pM~0:209, Figure 3b, blue) and turn while moving

(aM~2:76 degree, Figure 3b, orange), and has the longest

move distance (dM~4:681, Figure 3c).

N Ext-Uni (extended model uniform): has the same food search

probabilities as Ext-Patchy (Figure 3a), but does not evolve

repeated MOVE or turning (Figure 3b, blue and orange

respectively). It moves 1.35 times further than R-Uni

(Figure 3c; this difference is significant: Wilcoxon rank sum

test, W~505472, pv0:0001. For Ext-Uni: mean~2:125;

sd~0:099; n~718. For R-Uni: mean~1:567; sd~0:156;

n~704).

Further analysis revealed that variation of both probability to

repeat move (pM ) and turning angles (aM ) did not impact food

intake significantly. For both parameters we found that evolved
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values result from evolutionary drift because of a very flat adaptive

landscape (for more detail see Text S1 section 2 and Figure S1 and

Text S1 section 4 and Figure S3 and S4). Moreover, other

parameters did not differ between specialists: durations evolved to

minimal values (see section 2 in Text S1 and Figure S1) and food

scan range (dS ) converged to between 2–2.5 meters (see sections 2

and 3 in Text S1 and Figure S2). From here on we focus on those

parameters that generated differences in foraging efficiency

between the specialists, namely: pS , pSE , pNF , aS and dM . We

use the means of evolved parameter values to characterize each

specialist (see Table S1 for a complete list of average evolved

parameter values).

Behavioural implications: decision making and actions
The values of the evolved decision making parameters mean

that in the extended model decision making evolves to: always do
FOODSCAN after EAT, always MOVE after NO FOOD
(pSEw~1:0 and pSN~0:0, Figure 4c and d). This generates a

clear differentiation of behavior in food and non-food contexts

(Figure 4c and d, blue and yellow loops respectively). Thus in a

food context individuals continue to do FOODSCAN until they

no longer find food (blue loop). This generates efficient

FOODSCAN - EAT - FOODSCAN - EAT sequences and allows

systematic depletion of resources at a given location. During this

time any movement is via MOVETOFOOD when food is out of

range, always towards food. Only when no more food is found do

individuals MOVE. Thus in a ‘‘no food’’ context, individuals

switch behavior and no longer repeat FOODSCAN (yellow loop).

In the restricted model only the patch specialist (R-Patchy) has a

certain degree of repeated scanning for food (pS~0:251,

Figure 4a). However this happens equally after EAT and NO

FOOD, because differentiating behavior relative to FOOD and

NOFOOD is not possible. This specialist therefore can only to a

certain extent avoid MOVE in the presence of food, and is more

limited in generating time efficient FOODSCAN-EAT sequences

and to only MOVETOFOOD when food is beyond REACH. In

contrast the uniform specialist (R-Uni) of the restricted model

never repeats FOODSCAN (Figure 4b). It only searches once

per location and generates MOVE - FOODSCAN - EAT or

MOVE - FOODSCAN - MOVETOFOOD - EAT sequences.

Figure 3. Evolved foraging parameters in restricted and extended model in patchy and uniform environments. (a) probability to scan
for food again: pS (restricted model), pSE and pNF (extended model, left and right respectively), (b) probability to move again (pM ) and turning angle
(aM ) (left and right respectively), (c) move distance (dM ), (d) food scan angle (aS). Box plots show data from year 800 to 900 from 10 ancestor traces in
each case. Box plots show, median, upper and lower quartile, and whiskers show max and minimum values.
doi:10.1371/journal.pcbi.1002186.g003

Decision Making and Evolution of Foraging

PLoS Computational Biology | www.ploscompbiol.org 7 October 2011 | Volume 7 | Issue 10 | e1002186



For behavioral actions the most obvious difference between the

specialists is that between the patch specialists of the different models

(illustrated in Figure 4a and c). R-Patchy’s maximum FOODSCAN

angle in combination with its short move distance leads to a behavioral

pattern with a large overlap in areas searched after each MOVE. In

contrast, Ext-Patchy’s smaller FOODSCAN angle with long move

distance generates a pattern with long distances in which it does not

scan, followed by food directed movement when food is detected. The

difference between the uniform specialists is more subtle (Figure 4b and

d). The shorter MOVE of R-Uni leads to considerable overlap in areas

scanned after each MOVE. Ext-Uni’s longer MOVE leads to hardly

any overlap in areas scanned after each MOVE.

Ecological implications: behavioral patterns and foraging
efficiency

To qualitatively reveal larger-scale behavioral patterns, we

visualize the movement trajectories of all evolved specialists in

both environments using ecological simulations (Figure 5) . Most

striking is that it is difficult to distinguish between the specialists in

the same environment, because they all adapt flexibly to both

environments, whether they evolved there or not. This is because

all specialists are responsive to opportunities in the environment,

and have the same basic TODO (‘‘do what there is to do’’): move

when there is no food, turn and move to food when out or reach,

and stop to eat. In the uniform environment this generates

random-walk-like patterns reflecting the random encounters with

food. In the patchy environment TODO generates a bi-modal

pattern of straight movements between patches and frequent

turning and remaining localized for some time within patches.

Thus irrespective of genetic adaptations, through (automatic)

opportunity-based adaptation all specialists are able to generalize

their behavior to an environment in which they did not evolve.

The large-scale behavioral patterns of individuals reflect

patterns of feeding opportunities in the environment (patchy or

Figure 4. Evolved decision making and behavioral actions. For each specialist we show the decision making algorithm (left) and an
illustration of foraging behavior (right). Decision making: in the extended model (c and d) a decision making evolves which clearly differentiates
behavior in FOOD and NON-FOOD contexts. This is illustrated with the yellow loop (‘‘always MOVE after NO FOOD’’) and the blue loop (‘‘always
SEARCH after EAT (FOOD)’’). Switching between loops occurs when food is detected or not. In contrast in the restricted model (a and b), some
repeated SEARCH only evolves in the patchy environment (a: arrow from EAT and NO FOOD to SEARCH), but organizing behavior into separate loops
is not possible. Repeated search does not evolve in the uniform environment (b). Shapes and arrows as in Figure 2. Behavioral actions: most
striking is the full circular search (shaded areas), short MOVE distance (solid lines) and large overlap of search areas of R-Patchy (a), in contrast to the
long MOVE distance, smaller search angle and smaller overlap in search in Ext-Patchy (c). More subtle is the shorter move distance and larger overlap
in search areas of R-Uni (b) compared to Ext-Uni (d). Other details: gray and red = previous and latest SEARCH, dashed lines = MOVETOFOOD, blue
stars = EAT, dashed lines with arrow = heading, inner circles/pie sections = REACH (gray is previous, yellow is present).
doi:10.1371/journal.pcbi.1002186.g004
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uniform). The more accurate this reflection, the better individuals

‘‘detect’’ resource patterns, and this affects their foraging success.

An individual’s genotype determines how it responds to opportu-

nities in the environment, and we find that the genetic adaptations

of specialists increase their foraging success relative to the

environment they evolved in (Figure 6). Overall, differences in

food intake rates of evolved specialists, as measured in ecological

simulations, are as follows:

N Uniform environment:

Ext�UniwR�UniwwR�Patchyw~Ext�Patchy (Figure 6a).

N Patchy environment:

Ext�PatchywExt�UniwwR�PatchywR�Uni (Figure 6b).

where w represents a minor difference, and ww a large

difference.

In both environments, specialists from the extended model are

the most successful foragers. Interestingly, Ext-Uni is not only the

best forager in the uniform environment, but the second best in

the patchy environment. In the uniform environment, Ext-Uni

has about 9% greater food intake than R-Uni (this difference is

significant: Wilcoxon rank sum test, W~9000, pv0:0001. For

Ext-Uni: mean~104618:9; sd~5669:2; n~100. For R-Uni:

mean~94945:8; sd~5061:2; n~100). In the patchy environ-

ment, Ext-Uni has on average about 11% lower food intake than

Ext-Patchy (this difference is significant: Wilcoxon rank sum test,

W~9245, pv0:0001. For Ext-Uni: mean~115248:1; sd~
7035:8; n~100. For R-Patchy: mean~129825:9; sd~7422:4;

n~100). However, Ext-Uni has nearly 2 times greater food

intake than R-Patchy, even though it did not evolve in the patchy

environment (unlike R-Patchy). In contrast, Ext-Patchy is the

least successful forager in the uniform environment, although

average food intake is only about 3% lower than R-Patchy (but

Figure 5. Movement trajectories generated by TODO. Both uniform (white) and patch (black) specialists adapt flexibly to both environments
(left and right). This is true for the restricted (top) and extended (bottom) model. The basic TODO is MOVE when there is no food, turning to
MOVETOFOOD and stopping to EAT. This generates ‘‘random walks’’ in the uniform environment and bi-modal between- and within-patch
movement in the patchy environment. These movement patterns reflect opportunities for feeding in the environment. Within-patch behavior
(indicated by arrows) is shown for both restricted (top) and extended (bottom) models in more detail in the smaller figures on the left. Dark green:
background. Yellow: resources. Field size is 1 by 1 km.
doi:10.1371/journal.pcbi.1002186.g005
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this difference is significant: Wilcoxon rank sum test, W~3632,

p~0:00083. For Ext-Patchy: mean~70360:0; sd~3588:0;

n~100. For R-Patchy: mean~72778:6; sd~5459:5; n~100).

Overall, differences in the patchy environment are greater (2 fold

versus a 1.5 fold maximum difference in the uniform environ-

ment), indicating more room for specialization. To understand

these results we look in detail at how changes in decision making

and behavioral actions affect food intake.

Adaptive landscapes and evolutionary attractors
The difference in decision making capabilities of the two models

has a profound effect on the evolutionary landscape. This is most

clear in the patchy environment, where the enhanced information

use in the extended model allows a trade-off on within- and

between-patch behavior to be eliminated. Therefore, while we find

that evolved parameters in both patch specialists reflect a tendency

to maximize food intake by (i) trying to stay in patches, and (ii)

minimizing inter-patch travel, how this is achieved depends on

how the underlying decision making capabilities shape the

evolutionary landscape.

This is most clearly illustrated with a local adaptive landscape

characterization around the evolutionary attractors relative to the

probability to search again (pS and pSE ) and move distance (dM ).

We consider how parameters affect yearly food intake (‘‘fitness’’),

and how this depends on inter-patch travel, patch visits time (i.e.

how much they manage to eat in a patch) and size of patches

visited (Figure 7).

The comparison between the extended model (top) and the

restricted model (bottom) reveals a significant shift in the location

of the adaptive peak (Figure 7a top and bottom, yellow zone),

which coincides with evolved parameter values (indicated by black

circles). In the restricted model we can understand the location of

the adaptive peak (and evolved parameters) in terms of a trade-off

between inter-patch travel rate, and patch visit times. As one

increases, the other declines (compare Figure 7b and c bottom

row). This is because in order to stay in patches (and find food),

individuals need short move distances and repeated food scans,

otherwise they prematurely leave the patch. However, this slows

down inter-patch travel with redundant search. The evolutionary

attractor is therefore located where interpatch-travel time and

intrapatch-travel time are such that food intake is maximized

(Figure 7a, bottom). As a result R-Patchy has the slowest inter-

patch travel of all specialists (see section 5 in Text S1 and Figure

S5). Moreover, this is also why R-Patchy has such a large food

scan angle, because this allows it to ‘‘turn back’’ when it

inadvertently leaves a patch (see section 3 in Text S1 and Figure

S2), and why it does not evolve repeated moving (see section 4 in

Text S1 and Figure S3).

In the extended model this trade-off does not arise. Here

decision making allows differentiation of behavior: food scanning

is only repeated after eating and does not occur during inter-patch

travel (no food encountered). Repeated food scanning can

therefore evolve to maximal values, which allows individuals to

move systematically from one food item to the next within patches

via MOVETOFOOD. This leads to longer patch visit times

(Figure 7c top) and enhanced patch depletion. Unlike in the

restricted model, MOVE is now used purely for inter-patch travel.

Move distance (dM ) is then freed from the trade-off between inter-

and intra-patch travel because it no longer affects patch visit times.

The enhanced decision making in the extended model therefore

eliminates the trade-off, allowing both extended model specialists

to be more efficient than R-patchy.

As a consequence of the trade-off disappearing, move distance

evolves to much longer distances (Figure 3c) because this allows

individuals to bias foraging to larger patches (Figure 7d top). (Note

that while we implement patches of a fixed size, partial depletion

of patches generates smaller patches.) In fact there are two

feedbacks which affect that individuals bias their patch visiting to

larger patches: (i) by extending patch visiting times, an individual

visits on average larger patches longer, and (ii) by reduced

scanning for food while moving during inter-patch travel (i.e. due

longer move distances) individuals are less sensitive to each food

item on their way. Thus they are more likely to find food and stop

moving when local resource densities are higher. Effectively this

Figure 6. Comparison of foraging efficiency of evolved specialists. Yearly food intake in (a) uniform and (b) patchy environments. Box plots
represent medians, upper and lower quartile and max and minimum (n = 100).
doi:10.1371/journal.pcbi.1002186.g006
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allows individuals to ‘‘select’’ larger patches. Therefore, for the

same time spent traveling, Ext-Patchy manages to find on average

larger patches and eat more than Ext-Uni (see section 5 in Text S1

and Figure S5 for more detail). Long move distances also generate

more neutrality for repeated move and turning angles, allowing

them to evolve (see section 4 in Text S1 and Figure S3 and S4).

For the uniform specialists we also find a difference between the

extended and restricted model. Both specialists tend to maximize

food intake by (i) not wasting time searching depleted areas, and (ii)

not moving too far and skipping food items on the way. However,

in the extended model food intake peaks at maximal repeated

search after finding food, while in the restricted model food intake

peaks at minimal repeated search and slightly shorter move

distances (Figure 8a, top and bottom respectively).

In both cases, local depletion of food causes that individuals who

move further during MOVE, find a greater average density of

food during their next food scan (Figure 8b). However, the further

individuals move the longer they travel between food items

(Figure 8d). By repeating food scans, travel between food items can

be reduced because several food items can be eaten at a given

location (Figure 8d, see interaction between pS and dM ). However,

for the restricted model, redundant food scanning (when no food is

found) rises quickly with repeated food scanning (Figure 8c,

bottom), because FOODSCAN also happens after not finding

food. The best option is therefore not to repeat food scanning (and

therefore not systematically deplete a given location), but not move

too far, as to not miss undepleted food items on the way. In the

extended model, repeated food scanning only occurs after eating,

and redundant food scanning is avoided, unless individuals do not

move far enough (Figure 8c, top). Here the best option is therefore

to always repeat food scans, systematically deplete a given location

and move somewhat further than in the restricted model, to avoid

a larger depleted area.

Overall Ex-Uni is more efficient than R-Uni (Figure 6a). Both

are more efficient than patch specialists in the uniform

environment (Figure 6a), because these either have too much

redundant overlap in search (R-Patchy, due to repeated search) or

skip too many resources on the way (Ext-Patchy, due to long

MOVE distance) (see section 5 in Text S1 and Figure S6 for more

detail).

Other environments
To further evaluate our results we studied evolution in an

intermediate patchy environment (twice as many patches, but half

the density of resources) and a mixed environment (half resources

uniform half patchy, only with extended model). In the

intermediate patchy environment we find that foraging parameters

evolve to be qualitatively the same as our main patchy

environment both in the extended (parameter averages are:

pM~0:101, dM~4:756, aM~5:136, aF ~309:186) and restricted

model (parameter averages are: pM~0:0001, dM~1, aM~0:06,

aF ~321:483). This indicates that the behavioral adaptations in

the patchy environment are relatively robust to this change in

patchiness although the difference in search angles is less

pronounced. It is however likely that much smaller patches would

select for smaller move distances, because in the mixed

environment we find that the extended model evolves to be most

similar to Ext-Uni (parameter averages are: pM~0:0125,

dM~2:407, aM~1:062, aF ~303:168). This makes sense given

that Ext-Patchy does much worse than Ext-Uni in the uniform

environment compared to the performance of Ext-Uni relative to

Ext-Patchy in the patchy environment (see Figure 6). Selection for

generalizability in more heterogeneous environments will there-

fore probably lead to Ext-Uni type genotypes.

Discussion

Our results show how responsiveness to opportunities in the

environment, and the behavioral pattern formation this generates

on longer timescales, can play a significant role in the evolution of

foraging behavior. This is because the behavioral pattern

formation is also a type of pattern ‘‘recognition’’, i.e. a larger-

Figure 7. Local adaptive landscape in patchy environment of (i) probability to scan for food again (pS and pSE) and (ii) move
distance (dM ). Top: extended model. Bottom: restricted model. From left to right: yearly food intake (fitness), inter-patch travel rate (inverse inter-
patch travel time), patch visit time, patch size. Values are normalized within one figure, and a gradient from dark blue to yellow, via green and red,
indicates increasing values. Each grid point is the average of 100 samples of a year of foraging. Black circles indicate average evolved parameter
values.
doi:10.1371/journal.pcbi.1002186.g007
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scale information processing. To illustrate this more explicitly we

consider foraging in the patchy environment. When an individual

hits a patch, it only detects a single food item. From that position it

can find a neighboring food item and move towards it. Through

this feedback between sensing and responding to the environment,

the individual effectively uses the spatial auto-correlation of

positions of food items as a template to move through the patch

(see Figure 5). Effectively, ‘‘by doing what there is to do’’ on a very

local scale, the individual generates a behavioral pattern that

reflects the position of the patch. Because the behavioral pattern

determines food intake, it has value in terms of rates of

reproduction. Through natural selection, information about rates

of reproduction is processed, effectively selecting behavioral

patterns that better match, or ‘‘recognize’’ patterns of feeding

opportunities in the environment. This drives changes in the

population frequencies of genotypes which define how individuals

‘‘do what there is to do’’. As such, the evolution of local

information processing occurs through information processing on

multiple timescales: (i) responses to local opportunities, (ii)

formation of behavioral patterns and (iii) natural selection based

on behavioral pattern formation (as illustrated in Figure 1).

Our comparison of extended and restricted decision making

reveals that decision making capabilities determine the specificity

with which individuals can respond to opportunities in the

environment and the types and accuracy of pattern recognition.

Specificity is greater in the extended model, where individuals could

remember and use the information ‘‘found food here last scan’’ or

‘‘did not find food last scan’’. This allows the context-dependent

responses ‘‘always scan for food after eat’’ and ‘‘always move after

no food found’’ to evolve, and behavioral differentiation between

food and non-food contexts (Figure 4). In the restricted model this

was not possible and individuals were less able to characterize local

contexts when deciding to scan again: they only had the information

that they had scanned, but not what the outcome was. The

behavioral differentiation between food and non-food in the

extended model allows systematic depletion of resources at a given

location, and a more accurate recognition of patterns in the

environment (e.g. patches), which is why the extended use of

information evolves. Moreover, because larger-scale environmental

patterns are spatial arrangements of local opportunities, greater

specificity relative to local opportunities via TODO leads to greater

behavioral generalization across environments. As a consequence,

Ext-Uni performs better than R-Patchy in the patchy environment,

even though only the latter evolved there. This reveals that

generalization capacity, which leads to behavioral flexibility on the

large-scale, can evolve in individuals via ‘‘hard wired’’ TODO

tuned to local variation in foraging opportunities.

The differentiation of behavior in food and non-food contexts in

the extended model significantly changes the adaptive landscape

(selection pressures) and possibilities for larger scale pattern

recognition (Figure 7). In the restricted model, in order to repeat

FOODSCAN in patches, individuals also had to repeat scanning

for food when moving between patches. Moreover, MOVE could

not be avoided in patches. This lead to a trade-off on within- and

between-patch behavior (Figure 7b and c, bottom). In the

extended model, due to behavioral differentiation, MOVE is only

used in non-food contexts, and repeated scanning only occurs in a

food context. As a consequence there is no trade-off (Figure 7b and

c, top), and MOVE is dissociated from selection pressures in the

food context. Instead MOVE can become specialized for inter-

patch travel, generating a refinement in larger-scale pattern

recognition in order to detect a sub-pattern: patches with more

food. This is achieved by reducing the responsiveness to

opportunities for feeding when in the ‘‘no food’’ behavioral

pattern, and to switch to highly responsive behavior once food is

detected. In this way extensive and intensive search are generated.

Thus we observe that the ‘‘modularity’’ of behavior (the two

behavioral modes in food and non-food context generated by

TODO), provides evolution with structure in which it can

generate new specializations (the adaptation of MOVE) and new

forms of larger scale information processing (detection patches

with more food).

Figure 8. Local adaptive landscape in uniform environment of (i) probability to scan for food again (pS and pSE ) and (ii) move
distance (dM ). Top: extended model. Bottom: restricted model. From left to right: yearly food intake (fitness), inter-patch travel rate (inverse inter-
patch travel time), patch visit time, patch size. Values are normalized within one figure, and a gradient from dark blue to yellow, via green and red,
indicates increasing values. Each grid point is the average of 100 samples of a year of foraging. Black circles indicate average evolved parameter
values.
doi:10.1371/journal.pcbi.1002186.g008
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Relation to foraging theory
Much of foraging theory focuses on foraging efficiency, and uses

optimality predictions to assess the foraging behavior of animals

(e.g. optimal foraging theory [4,39], and optimal search theory [9–

11]). Foraging optima are often specified relative to constraints

(e.g. body size, morphology, mode of locomotion, information

processing abilities) [4]. However, this does not necessarily give

insight into why a species faces particular constraints, since

‘‘constraints’’ are also often evolvable. At present little is known

about how constraints arise and change in the evolution of

behavior, though presumably this has been a driving factor in the

evolution of morphology and information processing abilities (e.g.

sensing and cognition). If we assume that in our model the change

from restricted to extended decision making represents an

evolutionary innovation in information processing, our results

show how small evolutionary changes in decision making can lead

to a ‘‘release from constraints’’ on a larger scale and shift the

system to a new local optima (i.e. going from the bottom to top

landscape in Figure 7a). This reveals how the inter-relation

between local information processing and larger scale behavioral

patterns allows a small increment in memory (i.e. remembering

the outcome of a previous search event) to generate a cascade of

consequences: (i) differentiation of behavior, (ii) altering the

adaptive landscape and eliminating trade-off constraints and (iii)

allowing novel foraging specializations.

Such insights are relevant for studying the evolution of

cognition, which is likely to involve changes in constraints and

behavioral opportunities [40,41]. Moreover, in light of evolving

cognitive complexity our model provides a useful reference. For

instance, to establish the impact of elementary spatial cognition

such as ‘‘remembering where one last found food’’, it is probably

more appropriate to use TODO-based patch detection as a

baseline, rather than random-walks (as in [12]), if individuals can

orientate towards food on a local scale without memory. This is

also true in terms of model fitting to data to establish mechanisms

used by animals during movement. An interesting study by

Morales et al. [35] used a spatial grid based model to study

movement behavior in elk, assuming that individuals perfectly

know the vegetation state of 8 neighboring cells around an

individual’s location, and know with less accuracy the state of cells

1 and 2 steps further. Their results show interesting similarities to

movement patterns in real elk, and like in our study, shows how

orientation to cues in the environment structure movement

patterns. However, given the relatively coarse grained resolution

of their lattice (28.5 by 28.5 meters), their model does not allow for

smaller-scale processes via local visual cues, but assumes spatial

cognition. In principle it is possible that if food availability patterns

traverse the larger scale grid boundaries of Morales et al.’s model,

TODO-based processes could allow individuals to move from grid

cell to grid cell according to food availability without using spatial

memory. The point here is not to claim the elks couldn’t use

spatial memory, but that pattern recognition via TODO could be

underestimated. To address this requires models and data with a

greater spatial resolution.

Our results also have implications for understanding extensive

and intensive search behavior. First, we show that a bi-modal

search pattern easily self-organizes from TODO in patchy

environments in all evolved specialists whether they evolved there

or not. This bi-modal pattern is not an evolved strategy, but simply

a reflection of the environment. Bi-modal movement patterns are

therefore the default expectation in patchy environments.

Secondly, in terms of the extended model, we show how a simple

mechanism generating extensive and intensive search modes can

be created by evolution. Here there is a difference with the model

of Benhamou [12], where bi-modal search is assumed as an

adaptive strategy, and studied as a combination of random walks.

We find that the regulation of switching between extensive and

intensive search does not evolve as a specific strategy in the patchy

environment, because it also evolves in the uniform environment

(Ext-Uni also shows intensive and extensive search). Instead we

find that the specific adaptations in Ext-Patchy function to refine

the self-organized extensive and intensive search in order to

enhance a new kind of pattern detection: implicitly finding larger

patches. This latter pattern detection is not usually considered in

foraging theory, but may play an important role in foraging

success.

Given the focus of optimal search theory on internally-driven

turning strategies [6,7,9,11], it is surprising that we do not find any

significant evolution of turning angles. This suggests that in some

cases externally-driven turning behavior may pre-empt any need

for internally-driven turning strategies and that opportunity-based

orientation towards food may be an under-represented aspect in

this field [6,17]. Moreover, we show how individuals can

generalize their behavior across environments via TODO, while

fixed internally-driven turning strategies are less robust because

they need to be specified to a given environment. However, our

results depend on the fact that individuals can detect food items

from beyond their reach. This may often be the case in animals,

but not always, especially if food items are very cryptic. Moreover,

given our simplistic implementation of turning behavior, and other

model assumptions (e.g. random turning at environment bound-

ary, intermittent searching), more work is needed to specifically

address the relationship between internally- and externally-driven

turning.

Conclusions
In terms of the evolution of behavior, the value of our results lie

in revealing how small changes in decision making and memory

have profound influences on multiple scales relevant for

individuals foragers. Clearly our foragers are simplistic (especially

cognitively) and therefore it is unlikely that the local optima we

find are directly relevant for a given animal species. However, we

show that TODO can be a means through which animals could

detect larger-scale environmental patterns, which should be taken

into account. Moreover we find that extensive search modes can

be used to implicitly detect larger food patches in the environment.

These findings can be useful to consider when modeling foraging

processes and its fitness consequences. Thus our results provide a

useful baseline for understanding the evolution of behavioral

flexibility and how evolutionary changes in cognition can alter

trade-off constraints and adaptive landscapes.

Supporting Information

Figure S1 Ancestor traces of evolving foraging param-
eters in restricted and extended model in patchy and
uniform environments. (a) probability to scan for food again:

pS (restricted model), pSE , (b) probability to scan for food again

after not finding food (pNF ) and probability of moving to food

(pMFT ) (both only in extended model. (c) probability to move again

(pM ), (d) food scan duration (tS ), (e) food scan range (dS ), (f) food

scan angle (aS ), (g) move duration (tM ), (h) move distance (dM ),

(i) turning angle (aM ). Each dotted line represent lineages from a

specific simulation (10 simulations for each model and environ-

ment condition).

(TIFF)

Figure S2 Local adaptive landscape in patchy environ-
ment of (i) food scan angle (aS) and (ii) food scan
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distance (dS). Top: extended model. Bottom: restricted model.

From left to right: yearly food intake (fitness), inter-patch travel

rate (inverse inter-patch travel time), patch visit time, patch size.

Values are normalized within one figure, and a gradient from dark

blue to yellow, via green and red, indicates increasing values. Each

grid point is the average of 100 samples of a year of foraging. Black

circles indicate average evolved parameter values.

(TIFF)

Figure S3 Local adaptive landscape in patchy environ-
ment of (i) turning angle (aM ) and (ii) probability to
repeat MOVE (pM ). Top: extended model. Bottom: restricted

model. From left to right: yearly food intake (fitness), inter-patch

travel rate (inverse inter-patch travel time), patch visit time, patch

size. Values are normalized within one figure, and a gradient from

dark blue to yellow, via green and red, indicates increasing values.

Each grid point is the average of 100 samples of a year of foraging.

Black circles indicate average evolved parameter values.

(TIFF)

Figure S4 Effect of turning angle (aM ) on food intake (a)
and inter-patch travel distance (b) in Ext-Patchy. Box

plots show median, upper and lower quartiles and whiskers show

maximum and minimum values (n = 100 for each box plot). Other

parameter values on evolved averages (see Table S1).

(TIFF)

Figure S5 Comparison of evolved specialists in patchy
environment. (a) Patch visit times, (b) inter-patch travel time, (c)

average patch size visited. Box plots show median, upper and

lower quartiles and whiskers show maximum and minimum values

(n = 100 for each specialist). Parameter values set to evolved

averages (see Table S1).

(TIFF)

Figure S6 Comparison of evolved specialists in uniform
environment. (a) Average density of each search event after

MOVE, (b) average distance traveled between eat events. Box

plots show median, upper and lower quartiles and whiskers show

maximum and minimum values (n = 100 for each specialist).

Parameter values set to evolved averages (see Table S1).

(TIFF)

Table S1 Evolved parameter values. The averages and

standard deviations (in brackets) of ancestors between year 800

and 900 of all 10 simulations of all settings (which is approximately

70–80 ancestors per simulation). Those parameters that differ are

shown in bold. Angles are shown in degrees, distances in meters

and durations in seconds.

(PDF)

Text S1 Additional file with supplementary information
and analysis. Contents: 1) Model specification choices; 2)

Ancestor trace overview; 3) Food scan angle and range; 4) Turning

angle and probability to repeat move; 5) Differences between

evolved specialists.

(PDF)

Acknowledgments

The authors would like to thank Mathias Franz, Laura Salazar-Jaramillo,

Nobuto Takeuchi, Katrin Fehl and Frederic Nowak for useful input. We

also thank 5 anonymous reviewers for useful criticism.

Author Contributions

Analyzed the data: DJVDP. Wrote the paper: DJVDP DS. Designed the

model: DJVDP DS.

References

1. Real L (1992) Information processing and the evolutionary ecology of cognitive

architecture. Am Nat 140: 108–145.

2. Dukas R (1998) Cognitive ecology: The evolutionary ecology of information

processing and decision making. Chicago: University of Chicago Press.

3. Healy S, Braithwaite V (2000) Congitive ecology: A field of substance? Trends

Ecol Evol 15: 22–26.

4. Danchin E, Giraldeau LA, Cezilly F (2008) Behavioural ecology. New York:
Oxford University Press.

5. Lima ST, Zollner PA (1996) Towards a behavioural ecology of ecological
landscapes. Trends Ecol Evol 11: 131–135.

6. Mueller T, Fagan WF (2008) Search and navigation in dynamic environments -
from individual behaviors to population distributions. Oikos 117: 654–664.

7. Bartumeus F, Catalan J (2009) Optimal search behaviour and classic foraging
theory. J Phys A-Math Theor 42: 434002.

8. McNamara JM, Houston AI (2009) Integrating function and mechanism.

Trends Ecol Evol 24: 670–675.

9. Zollner PA, Lima SL (1999) Search strategies for landscape-level interpatch

movements. Ecology 80: 1019–1030.

10. Bartumeus F, da Luz MGE, Viswanathan GM, Catalan J (2005) Animal search

strategies: A quantitative random-walk analysis. Ecology 86: 3078–3087.

11. Bartumeus F, Levin SA (2008) Fractal reorientation clocks: Linking animal

behavior to statistical patterns of search. Proc Natl Acad Sci U S A 105:
19072–19077.

12. Benhamou S (1992) Efficiency of area-concentrated searching behaviour in a
continous patchy environment. J Theor Biol 159: 67–81.

13. Arditi R, Dacorogna B (1988) Optimal foraging on arbitrary food distributions

and the definition of habitat patches. Am Nat 131: 837–846.

14. Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul

Biol 9: 129–136.

15. Nolet BA, Mooij WM (2002) Search paths of swans foraging on spatially

autocorrelated tubers. J Anim Ecol 71: 451–462.

16. Morales JM, Haydon DT, Frair J, Holsinger KE, Fryxell JM (2004) Extracting

more out of relo- cation data: Building movement models as mixtures of random
walks. Ecology 85: 2426–2445.

17. Benhamou S (2007) How many animals really do the Lévy walk? Ecology 88:
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