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Abstract

Extensive experimental information supports the formation of ligand-specific conformations of G protein-coupled receptors
(GPCRs) as a possible molecular basis for their functional selectivity for signaling pathways. Taking advantage of the recently
published inactive and active crystal structures of GPCRs, we have implemented an all-atom computational strategy that
combines different adaptive biasing techniques to identify ligand-specific conformations along pre-determined activation
pathways. Using the prototypic GPCR b2-adrenergic receptor as a suitable test case for validation, we show that ligands
with different efficacies (either inverse agonists, neutral antagonists, or agonists) modulate the free-energy landscape of the
receptor by shifting the conformational equilibrium towards active or inactive conformations depending on their elicited
physiological response. Notably, we provide for the first time a quantitative description of the thermodynamics of the
receptor in an explicit atomistic environment, which accounts for the receptor basal activity and the stabilization of different
active-like states by differently potent agonists. Structural inspection of these metastable states reveals unique
conformations of the receptor that may have been difficult to retrieve experimentally.
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Introduction

G-protein coupled receptors (GPCRs) are versatile signaling

proteins that functionally couple a host of extracellular stimuli to

intracellular effectors, thus mediating several vital cellular

responses. The majority of marketed drugs act as agonists, inverse

agonists, or antagonists at these receptors depending on whether

they increase, reduce, or have no effect on the so-called ‘basal

activity’ that characterizes unliganded GPCRs for diffusible

ligands. Not only can a specific GPCR activate different G-

protein or arrestin isoforms [1], but a single ligand can display

different efficacy for different signaling pathways, an observation

that has been dubbed ‘‘functional selectivity’’, ‘‘agonist traffick-

ing’’, ‘‘biased agonism’’, ‘‘differential engagement’’, or ‘‘protean

agonism’’ in the literature [2–6].

At the molecular level, a simple explanation for this phenom-

enon is that ligands with varied efficacies can shift the

conformational equilibrium of a GPCR towards different

conformations of the receptor, which in turn can activate one or

another intracellular protein. Although several spectroscopy

studies (e.g., for the b2-adrenergic receptor, herein referred to as

B2AR, see [7–9]) have been instrumental in showing that ligands

with different efficacies stabilize GPCR conformational states that

are structurally and kinetically distinguishable, perhaps the most

direct evidence of ligand-induced conformational specificity comes

from the recent high-resolution crystallographic structures of

several different ligand-bound GPCRs. In the majority of cases,

these structures were obtained in the presence of an inverse

agonist, and therefore in an inactive state. Only very recently have

high-resolution crystal structures of agonist-bound GPCRs started

to appear in the literature [10–15]. However, possibly restrained

by crystallization conditions, not all these agonist-bound structures

present the features that are usually attributed to an active GPCR

conformation, most typically: the large outward movement of

transmembrane helix 6 (TM6) with respect to the center of the

receptor helical bundle, which is accompanied by the disruption of

an important salt bridge between the conserved D/E3.49-R3.50

pair and E6.30, commonly referred to as the ‘‘ionic lock’’. Residue

numbering here and throughout the text follows the Ballesteros-

Weinstein notation [16]. According to this notation, each residue

is indicated by a two-number identifier N1.N2 where N1 is the

number of the transmembrane helix, and N2 is the residue

number on that helix relative to its most conserved position, which

is designated N2 = 50. We direct the reader elsewhere (e.g.,

[17,18]) for recent reviews of all the relevant structural changes

that have been attributed by various biophysical techniques to

active forms of GPCRs.

A different extent of structural rearrangement was noted at the

binding site of high-resolution crystal structures of GPCRs

depending on the type of ligand to which they were bound. For

instance, only minor local structural changes were noted between

the high-resolution crystal structures of the B2AR in the presence

of inverse agonists such as carazolol [19], timolol [20], ICI-

118,551 [21], or a compound deriving from virtual screening [21]
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and the neutral antagonist alprenolol [21]. Slightly more

pronounced differences were noted by comparing these inverse

agonist/antagonist-bound binding pockets with those stabilized by

full agonists (i.e., either the covalently-bound ligand FAUC50 [11]

or BI-167107 [10]). Among them, the most notable differences

were the hydrogen bonding contacts that only agonists formed

with S5.42 and S5.46 on TM5. Similar interactions helped

discriminate between inverse agonist-bound crystal structures of

the b1-adrenergic receptor (B1AR) and structures obtained in the

presence of full agonists (e.g., isoprenaline or carmoterol) [13].

Notably, only one of these two hydrogen bonds involving TM5,

specifically the interaction with S5.42, was also present in

structures stabilized by the partial agonists salbutamol or

dobutamine, suggesting a distinguishable binding mode between

full and partial agonist structures [13]. Analogous to the cases of

the B1AR and B2AR, where specific residues (i.e., S5.46) are

found to bind uniquely to agonists, key residues (S7.42 and H7.43)

that bind agonists (either adenosine or NECA) but not antagonists

(ZM241385) were revealed by the very recent crystal structures of

a thermostabilized construct of the adenosine A2A receptor [15].

Unlike another recent crystal structure of this receptor stabilized

by both T4-lysozyme and the conformationally selective agonist

UK-432097 [12], these agonist-bound structures did not display

changes at the cytoplasmic side that resemble those of an active

state of a GPCR. In addition to the crystal structure of the

adenosine A2A receptor bound to UK-432097 [12], these more

marked changes at the cytoplasmic side have so far only been

observed in the high-resolution crystal structures of opsin [22,23],

Meta II rhodopsin [14], and the nanobody-stabilized B2AR [10].

Despite these recent remarkable achievements in structural

biology of GPCRs, the majority of pharmacologically relevant

ligands of these receptors do not appear to be ideally suited for the

stabilization and crystallization of these receptors, most likely

because of their low affinity, slow off-rate, and poor solubility. Not

only might this prevent the identification of physiologically

relevant conformational states of a given GPCR, but it is

considered a limiting bottleneck for the characterization of

different structures of these receptors. Molecular dynamics (MD)

simulations can help to fill this information gap by enabling an

atomic-level characterization of ligand-specific conformations that

are impossible or difficult to retrieve experimentally. Moreover,

these simulations allow extension of static structural data into

dynamic representations, thus laying the basis for a mechanistic

understanding of the selective activation of GPCR-mediated

signaling pathways.

To enable characterization of large conformational changes

within the limited timescales commonly accessible to MD

simulations, and to evaluate the extent to which ligands with

different efficacies affect the free-energy landscape of GPCRs, we

implemented a computational strategy employing a combination

of different adaptive biasing techniques. Specifically, we used well-

tempered metadynamics [24] to identify metastable states of a

GPCR along putative activation pathways between inactive and

active crystallographic states determined by adiabatic biased MD.

We tested the accuracy of this strategy in reproducing crystallo-

graphic [19,21] and/or spectroscopic [7–9] data available for the

B2AR in its interaction with either a full agonist (i.e., epinephrine),

a weak partial agonist (i.e., dopamine), a very weak partial agonist

(i.e., catechol), two inverse agonists (i.e. ICI-118,551 and

carazolol), or one neutral antagonist (i.e., alprenolol). The results

show a clear ligand-induced modulation of the free-energy

landscape of the receptor with shifts in the conformational

equilibrium towards inactive or active conformations depending

on the physiological response elicited by the simulated ligand.

Materials and Methods

System and Simulation Setup
A model of the B2AR (Figure S1) was prepared starting from

one of the available crystal structures of this receptor (PDB ID:

2RH1), removing the lysozyme insertion, and modeling the

missing intracellular loop 3 (IL3) with the Rosetta ab-initio loop

modeling protocol [25]. The intracellular loop 2 (IL2), which is

probably misfolded [26,27] in the inactive structure of the B2AR

(2RH1), but in a helical conformation in the active nanobody-

stabilized crystal (3P0G) of the receptor, was also replaced by the

lowest-energy Rosetta model with a helical fold. The resulting

receptor model was embedded into an explicit 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine (POPC)/10% cholesterol

membrane bilayer using a pre-equilibrated 868610 nm patch

hydrated with SPC/E water molecules, and the procedure

described in [28]. As found in the crystal structure [19], one

palmitoyl group was covalently attached to a C-terminal residue

(Cys 341) of the receptor before insertion in the membrane. The

system was then hydrated with SPC/E water molecules [29] and

Na+ and Cl– ions were added to ensure charge neutrality.

The resulting system of ,50,000 total atoms was equilibrated

with unbiased MD simulations for 20 nanoseconds (ns) using the

Optimized Potentials for Liquid Simulations all-atom (OPLS-AA)

force field [30] for the receptor and united-atoms Berger

parameters for the lipids [31]. The Gromacs 4.0.7 [32] package

enhanced with the Plumed plug-in [33] was used for all

simulations. Specifically, NPT simulations were carried out under

periodic boundary conditions, using the Parrinello-Rahman

algorithm [34] with a time constant of 1.0 ps and a reference

pressure of 1 bar to control pressure, and the Nose-Hoover [35]

algorithm with a time constant of 1.0 ps to maintain a constant

temperature of 300 K. Prior to production runs (summarized in

Table S1), the system was equilibrated by a series of three 0.2 ns

runs with progressively weaker restraints on the protein backbone

followed by a 3.0 ns unconstrained equilibration. We used the

standard Gromacs leap-frog [32] algorithm with a time step of

2.0 fs, LINCS algorithm [36] to preserve the bond lengths, and

SETTLE algorithm [37] to maintain the geometry of the water

Author Summary

G protein-coupled receptors (GPCRs) constitute one of the
most important classes of cellular targets owing to their
known response to a host of extracellular stimuli, and
consequent involvement in numerous vital biological
processes. Compelling evidence herein referred to as
‘functional selectivity’ shows that ligands with varied
efficacies can stabilize different GPCR conformations that
may selectively interact with different intracellular pro-
teins, and therefore induce different biological responses.
Understanding how this selectivity is achieved may lead to
the discovery of drugs with improved therapeutic proper-
ties. We propose here a computational strategy that
enables identification of the specific conformations
assumed by a GPCR when interacting with ligands that
elicit different physiological responses. Not only can these
computational models help bridge the information gap in
structural biology of GPCRs, but they can be used for
virtual screening, and possibly lead to the structure-based
rational discovery of novel ‘biased’ ligands that are capable
of selectively activating one cellular signaling pathway
over another.

Towards Ligand-Specific Conformations of GPCRs
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molecules. Lennard-Jones interactions were treated with a twin-

range cutoff of 0.9:1.4 nm and an integration time step of 2.0 fs;

the neighbor list was updated every 10 steps. Electrostatic

interactions were described using the particle-mesh Ewald method

[38], with a cutoff of 0.9 nm for real-space interactions, and a

0.12-nm grid with fourth-order B-spline interpolation for recipro-

cal-space interactions.

Adiabatic Biased MD Simulations
The starting equilibrated unliganded conformation of the B2AR

within the lipid bilayer was subjected to ten independent Adiabatic

Biased MD (ABMD) simulations [39,40] to obtain transition

pathways of the receptor from an inactive to an active

conformation, built using the coordinates of the nanobody-

stabilized crystal structure (PDB code: 3P0G). Briefly, this method

biases the system towards a given value x0 of a predefined order

parameter x(R), where R represents the coordinates of the atoms

in the system. A harmonic bias acts only when the distance of x(R)

from the target x0 is bigger than its minimum value previously

reached during the simulation (i.e. if x(R(t))- x0 . mins,t x(R(s))-

x0), according to the following equation:

V (R(t))~k(x(R(t)){x0)2 ð1Þ

The order parameter x measures the distance from the putative

activated conformation of the receptor, and is defined as the Ca
root mean square deviation (RMSD) from the active conformation

of the B2AR (all residues were included except the long flexible

IL3). In order to obtain activated final states, the simulation was

run with x0 = 0. After carrying out 10 independent ABMD runs

with an elastic constant of k = 10 kcal/(mol?nm2), the trajectories

were pooled and clustered using an average linkage agglomerative

algorithm and the same dissimilarity measure used to run ABMD.

Ligands Parameters
Bonded and van der Waals interactions for the ligands were

assigned manually choosing the appropriate OPLS-AA atom types

[30] for each atom in the molecule. Coulomb point charges were

obtained according to the RESP approach [41] from quantum

chemical calculations (i.e., geometry optimization using Gaussian

03 [42] and restricted Hartree-Fock calculations with the 6-31G*

basis set).

Ligand Docking
Ligands for which an experimental crystal structure in complex

with the B2AR is available, i.e. 2RH1 for carazolol [19], 3NY8 for

ICI-118,551 [21], and 3NYA for alprenolol [21], were positioned

in the binding pocket accordingly. The other ligands, i.e. the full

agonist epinephrine and the partial agonists dopamine and

catechol, were docked into the initial inactive model of B2AR,

using a standard Autodock 4.0 protocol [43,44]. Inferences from

agonist-bound crystal structures of B2AR [10,11] and B1AR [13]

were taken into account when selecting the most accurate initial

binding poses of these ligands for free-energy calculations.

Notably, simulations of initial conformations comprising slightly

different binding poses produced similar free-energy profiles (data

not shown).

Metadynamics
The free-energy profiles of liganded and unliganded systems

were estimated using metadynamics [45–47]. Briefly, this

technique enables an efficient reconstruction of the free-energy

as a function of a set of k predetermined order parameters, referred

to as collective variables si(R), 1#i#k. A history-dependent bias

potential is added to the force-field driving the system dynamics so

as to discourage the re-visiting of regions of the si phase space that

have already been explored. Specifically, the bias potential is

V (R,t)~
X
t0vt

wt0 P
k

i~1
exp {

½si(R(t)){si(R(t0))�2

s2
i

 !
ð2Þ

where t9 is a multiple of a deposition time t and the values of wt9

and si regulate the shape and size of the Gaussian bias

contributions. In the original metadynamics algorithm, wt9 = w is

constant, and the free-energy profile can be estimated up to

an insignificant additive time-dependent constant as W(R) =

2 limtR‘ V(R,t).

Here, we used well-tempered metadynamics [24], a variant of

the original metadynamics algorithm that enables assessment of

simulation convergence while keeping the computational effort

focused on physically relevant regions of the conformational space.

In this variant of the method, the value of wt9 depends on the bias

accumulated up to t9 according to the equation:

wt0~w exp {
V (R,t0)

kBDT

� �
ð3Þ

where DT is a constant with the dimension of a temperature, kB is

the Boltzmann constant, and w is a constant energy representing

the maximum height of the Gaussian biases. Since in the regions

where the bias is higher the exponential factor reduces the rate of

the bias update, the bias potential smoothly converges to a

constant value in time, and the underlying free-energy can be

derived by

W (R)~{ lim
t??

TzDT

DT
V (R,t) ð4Þ

where T is the temperature at which the simulation is performed.

To efficiently sample the conformational space along the

activation pathway, reference states from the clustered ABMD

runs were selected by cutting the agglomerative tree at 30 clusters,

and selecting from them n = 10 clusters homogeneously covering

the pathway. The reference states Rj (1#j#n) were numbered

assigning j = 1 to the cluster closer to the inactive state (Ca RMSD

from 2RH1 ,0.4 Å) and j = 10 to the one closer to the active state

(Ca RMSD from 3P0G ,0.3 Å). Two path collective variables

describing the position along (s) and the distance from (z) the

pathway were defined [48] as follows:

s~
1

Z

Xn

j~1

j{1

n{1
exp {cd(R,Rj)
� �

ð5Þ

z~{
1

c
ln Z ð6Þ

where d(R,Rj) is the squared Ca RMSD (excluding IL3) with

respect to the reference structure Rj, and Z = g1#j#n exp(2 c
d(R,Rj)). The simulations were performed choosing c = 1/0.25

Å-2, ss = 0.1, and sz = 1 Å2, and well-tempered metadynamics

was used with a bias factor DT = 10 T, an initial value of w =

0.4 kcal/mol, and a deposition interval t= 8 ps. Metadynamics

simulations were run for 300 ns, time at which the reconstructed

Towards Ligand-Specific Conformations of GPCRs
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free-energy difference between the metastable states converged to

0.2 kcal/mol.

Free-Energy Calculations
Since the trajectory was generated adding the metadynamics

bias, the resulting conformations cannot be used to obtain

statistical information on order parameters other than the

collective variables. However, it is possible to unbias the

distribution of any given function of the system coordinates using

the algorithm described in [49]. This so-called reweighting

technique was used to estimate the free-energy surface of the

complexes as a function of three important descriptors of receptor

activation, namely the distance between R3.50 and E6.30 (the

‘‘ionic lock’’), the rotamer of residue W6.48 (the so-called ‘‘toggle

switch’’), and the outward displacement of the intracellular

segment of TM6.

Three order parameters were defined to monitor the behavior

of these changes upon activation. For the ionic lock, we defined

dIL = ||ÆR3.50æ 2 ÆR6.30æ||, where ÆR3.50æ and ÆR6.30æ represent

the center of mass of the g-nitrogens of R3.50 and the d-oxygens

of E6.30, respectively. For the toggle switch, we monitored the first

dihedral angle xTS of the side chain of W6.48. Finally, the

movement of TM6 was measured by aligning the receptor to the

inactive crystal structure (2RH1) and calculating the distance

dTM6 = ||M 2 ÆR6.35æ|| (angled brackets indicate the centroid

of all the atoms of the residues) between the midpoint of an

imaginary line connecting residues K6.35 and Y2.41 in the

inactive structure, M = K[ÆR2.41æ + ÆR6.35æ] (located roughly at

the center of the intracellular exposed surface of the receptor), and

residue K6.35. The outward movement is described by the

difference in dTM6 values between any given conformation and the

reference inactive crystal structure, i.e. by DdTM6 = dTM6–dTM6

(2RH1).

Unbiased Simulations
Representative conformational states of the metastable energy

basins identified by metadynamics were selected and their

structural stability analyzed. Specifically, standard, unbiased,

NPT molecular dynamics simulations of these conformational

states were initiated by randomizing new initial starting velocities

with the Maxwell distributions at 300 K, and were run for ,50 ns

using the same simulation parameters described above.

Results

We calculated the free-energy profile of the B2AR in an explicit

POPC/10% cholesterol membrane bilayer along an activation

pathway connecting two recently determined inactive [19] and

active [10] crystallographic states of the receptor. Specifically, the

receptor was studied in its unliganded form as well as in complex

with the full agonist epinephrine, the weak partial agonist

dopamine, the very partial agonist catechol, the inverse agonist

ICI-118-551, the inverse agonist carazolol, or the neutral

antagonist alprenolol. All free-energy values at the active and

inactive states, and the barriers between them, are summarized in

Table 1.

Unliganded Receptor
An activation pathway from the inactive to the active B2AR

crystal structures (PDB codes 2RH1 and 3P0G, respectively) was

obtained by ABMD following the protocol described in the

Materials and Methods section. This pathway was used to define

the s and z collective variables (see the Materials and Methods

section for corresponding equations) that were employed for the

metadynamics simulations. Panel A of Figure 1 illustrates the free-

energy ?G of the unliganded receptor as a function of the position s

along the activation pathway following integration of the

dependence on z. Specifically, s = 0.0 and s = 1.0 indicate the

inactive and fully activated extreme conformations of the pathway,

respectively. This free-energy profile shows two minima, one at

s,0.2 that is close to the inactive state and the other at s,0.6 that

is shifted towards the active state. The two states are separated by

a barrier of ,2.5 kcal/mol, but they have a similar overall stability

(DG,kBT), and are therefore equally populated at equilibrium.

Inspection of the entire two-dimensional free-energy profile

DG(s,z) reported in the supplementary material (see panel A of

Figure S2) shows that these states correspond to conformations

along the activation pathway with values of z close to 0. Visual

inspection of a representative structure of the s,0.2 energy basin

confirms that the corresponding transmembrane bundle is very

close to the inactive B2AR crystal structure (Ca RMSD excluding

IL3 ,0.6 Å), as substantiated by the very small outward

movement of TM6 (DdTM6 , 0.4 Å) with respect to the inactive

crystal (see panel B of Figure S2). In contrast, a representative

structure of the second energy basin at s,0.6 (RMSD ,1.6 Å and

,1.1 Å from the inactive and active crystal structures, respective-

ly) displays a more pronounced outward movement of TM6

(DdTM6 ,2.5 Å in Figure S2).

Figure 1B shows the free-energy of the unliganded B2AR as a

function of order parameters that monitor molecular switches

which have traditionally been reported as descriptors of GPCR

activation. Specifically, these molecular switches are: 1) the ionic

lock between TM3 and TM6, herein monitored using the distance

dIL between R3.50 and E6.30 and 2) the W6.48 rotamer toggle

switch, herein monitored using the first dihedral angle xTS of the

residue side chain. Whilst the latter has not been observed in

recent activated crystal structures of GPCRs, compelling spectro-

scopic data exist supporting a rotamer change of the W6.48 side

chain upon activation [50]. Two different energy basins can be

identified in the plot of Figure 1B: a more stable one, labeled a, in

which both molecular switches are in their inactive conformation

(dIL,3 Å and xTS,163u), and a second basin, labeled c, where

both switches are in their activated conformation (dIL,12 Å and

xTS,55u). The two basins are separated by a barrier of

,3.0 kcal/mol. A transition state at xTS,65u and dIL,5 Å

Table 1. Relative free2energy values (in kcal/mol) of the
inactive, intermediate, and active states of the unliganded
and liganded B2AR, together with the height of the barriers
separating them.

Inactive
(s,0.2) TS1

Intermediate
(s,0.6) TS2

Active
(s,0.9)

Unliganded 0.0* 3.0 0.0 2 2

Alprenolol 0.0* 3.3 1.0 2 2

Carazolol 0.0* 5.9 4.0 2 2

ICI-118,551 0.0* 5.2 3.8 2 2

Epinephrine 1.0 4.1 1.8 6.0 0.0*

Catechol 1.0 2.2 0.0* 2 2

Dopamine 1.5 4.2 0.0* 2 2

TS1 represents the transition state between the inactive and the intermediate
states, while TS2 represents the transition state between the intermediate state
and the active one. The most stable state for each system is indicated with a
star.
doi:10.1371/journal.pcbi.1002193.t001

Towards Ligand-Specific Conformations of GPCRs
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(labeled b on the free-energy map) suggests a preferential rotamer

toggle switch prior disruption of the ionic lock.

Receptor Bound to a Neutral Antagonist
The neutral antagonist alprenolol, consisting of an ‘‘aromatic

head’’ (a 2-allyl-pheniloxyl moiety) and an ‘‘aliphatic tail’’ (oxy-

propanol-amine) (see chemical structure in Figure 2A), was docked

in accordance to the binding mode assumed by the ligand in the

crystal structure of the corresponding ligand-bound receptor [21].

The results of the simulations for the alprenolol-bound receptor

are illustrated in panels A-C of Figure 2. As shown in Figure 2A,

the overall shape of the free-energy profile of the alprenolol-bound

B2AR as a function of the position (s) along the activation pathway

is qualitatively similar to the profile obtained for the unliganded

receptor, and reported in Figure 1A. A similarity is also noted

between the two-dimensional energy surfaces of the alprenolol-

bound (Figure S3A) and the unliganded B2AR (Figure S2A). In

spite of these qualitative similarities, the inactive state at s,0.2 is

more stable (,1 kcal/mol) than the intermediate state at s,0.6 for

the alprenolol-bound receptor compared to the unliganded one.

Given the relatively higher stability of the alprenolol-bound

receptor conformation with no significant outward movement of

TM6 (DdTM6 ,0.4 Å at s,0.2 in Figure S3B), these results

suggest an energy profile that is more suitable for a very weak

inverse agonist rather than a neutral antagonist. Notably, data are

available in the literature in support of an inverse agonist [51,52]

(or even a partial agonist [53]) role for alprenolol.

Figure 2B shows a representative conformation of the lowest

energy basin identified for the alprenolol-bound receptor. In this

conformation, and similar to the corresponding crystal structure

[21], the alprenolol charged moiety in its aliphatic tail forms

interactions with polar residues D3.32 and N7.39, while the ligand

aromatic head interacts with residues V3.33, V3.36, F6.51, N6.55,

Y5.38, and S5.42, which define a cleft formed by TM3, TM5 and

TM6. Figure 2C shows that the energetically most stable

alprenolol-bound inactive state is characterized by inactive

molecular switches (xTS,160u and dIL,5 Å). This state, labeled

a in Figure 2C, is separated by an energy barrier of ,3 kcal/mol

from the second most stable energetic minimum at xTS,50u and

dIL,12 Å (c in Figure 2C), with a transition state (b in Figure 2C)

at xTS,85u and dIL,5 Å. Thus, the presence of alprenolol in the

binding pocket does not appear to disrupt the free-energy profile

Figure 1. Free-energy of the unliganded receptor. (A) Free-energy as a function of the position (s) along the activation pathway. Note that the
curve has been shifted so that the lowest energy minima (indicated by stars) correspond to a reference free-energy value. (B) Free-energy as a
function of ionic lock distance (dIL) and the toggle switch dihedral (xTS) molecular switches for the unliganded receptor; contour lines are reported
every kBT.
doi:10.1371/journal.pcbi.1002193.g001

Figure 2. Simulation results for B2AR bound to the neutral antagonist alprenolol. (A) Free-energy profile as a function of the position (s)
along the activation pathway. Note that the curve has been shifted so that the minimum (indicated by a star) corresponds to a reference free-energy
value. (B) Binding mode of alprenolol. Relevant residues interacting with the ligand (any atom within a 3 Å distance cutoff) are indicated in stick
representations. Helices TM5, TM6 and TM7 are shown in orange, blue and light blue respectively. Helix TM3 is shown in purple transparent
representation whereas TM4 has been removed for clarity. (C) Free-energy as a function of ionic lock distance (dIL) and the toggle switch dihedral
(xTS) molecular switches.
doi:10.1371/journal.pcbi.1002193.g002
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seen in the unliganded receptor, further confirming a possible

rotamer toggle switch of the W6.48 residue prior breaking of the

ionic lock. The stability of alprenolol in a representative state of

the ligand-receptor complex extracted from the most stable energy

basin at s,0.2 was confirmed by carrying out ,50 ns unbiased

MD simulations. The evolution of the ligand and the protein

RMSD during these simulations is reported in Figure S4.

Receptor Bound to Inverse Agonists
We assessed the effect of two different B2AR inverse agonists,

namely ICI-118,551 and carazolol, on the free-energy landscape

of the receptor during transition from inactive to activated

experimental states. Carazolol and ICI-118,551 share important

structural features with alprenolol, e.g., they both have an

‘‘aliphatic tail’’ (oxy-propanol-amine for carazolol and oxy-

butanol-amine for ICI-118,551) and an ‘‘aromatic head’’. The

results of the simulations for the carazolol-bound and the ICI-

118,551-bound receptor are illustrated in panels A-C and D-F of

Figure 3, respectively.

In the presence of either carazolol or ICI-118,551, the B2AR

free-energy profiles (Figure 3A and 3D, respectively) show a single

lowest-energy basin at s,0.18 close to the inactive state of the

receptor. These much more stable energy basins are also present

in the two-dimensional energy surfaces of the carazolol-bound

(Figure S5A) and the ICI-118,551-bound (Figure S5C) B2AR, and

comprise inactive conformations as further illustrated by the lower

energy values for states characterized by the absence of outward

movement of TM6 (DdTM6 , 0.4 Å in Figures S5B and S5D).

Representative conformations extracted from the lowest energy

basins of either the carazolol-bound (Figure 3B) or the ICI-

118,551-bound (Figure 3E) receptors show that the energy-

optimized binding poses of these ligands are very similar to their

positions in the corresponding crystal structures [19,21]. Similar to

the binding mode of alprenolol, the charged moieties contained in

the aliphatic tails of these ligands interact with polar residues

D3.32, and N7.39, while their aromatic heads are oriented toward

TM3, TM5, and TM6, thus directly interacting with residues in

these helices (see Figures 3B and 3E). To assess the stability of the

ligands in these representative conformations, we performed

standard, unbiased MD simulations. As shown in Figures S6A-

D, which report the time evolutions of the RMSD of the protein,

as well as those of the heavy atoms of carazolol and ICI-118,551,

after superposition of the receptor Ca atoms, the receptor

conformations are stable and the binding modes of the ligands

are conserved over a simulation time of ,50 ns.

The intermediate state at s,0.6 that was significantly populated

in the unliganded and neutral antagonist-bound receptor is much

less stable at DG,4.0 kcal/mol in the case of the carazolol-bound

or ICI-118,551-bound receptors (see Figures 3A and 3D,

respectively). However, these are still metastable states, as judged

by the presence of shallow minima at s,0.6 in both the free-

energy profiles, and are separated from the inactive states by

multiple barriers. In terms of modulation of the toggle switch and

the ionic lock, the free-energy as a function of xTS and dIL

Figure 3. Simulation results for B2AR bound to the inverse agonists carazolol and ICI-118,551. (A and D) Free-energy profiles as a
function of the position (s) along the activation pathway for carazolol and ICI-118,551, respectively. Note that the curves have been shifted so that the
minima (indicated by stars) correspond to reference free-energy values. (B and E) Binding modes of carazolol and ICI-118,551, respectively. Relevant
residues interacting with the ligands (any atom within a 3 Å distance cutoff) are indicated in stick representations. Helices TM5, TM6 and TM7 are
shown in orange, blue and light blue respectively. Helix TM3 is shown in purple transparent representation whereas TM4 has been removed for
clarity. (C and F) Free-energies as a function of ionic lock distance (dIL) and the toggle switch dihedral (xTS) molecular switches for the carazolol- and
ICI-118,551-bound B2AR, respectively.
doi:10.1371/journal.pcbi.1002193.g003
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(Figures 3C and 3F for the carazolol-bound and ICI-118,551-

bound complexes, respectively) features only one minimum in the

inactive region of these molecular switches (xTS,160u and

dIL,3 Å).

Receptor Bound to Agonists
To study the effects of full agonists on the free-energy landscape

of B2AR, we docked epinephrine into the receptor, and performed

metadynamics calculations. Figure 4A shows the free-energy

profile of the epinephrine-bound B2AR with the lowest energy

state (s,0.9) likely to correspond to an activated conformation.

The same observation is possible by inspection of the two-

dimensional free-energy surface (Figure S7A) as well as the TM6

outward movement (DdTM6 ,5.9 Å in Figure S7B) as a function

of the position s along the activation pathway. However, a second

low-energy metastable state is present in these free-energy profiles,

close to the inactive state (s,0.2), and with a free-energy difference

of only ,1 kcal/mol with respect to the most stable activated

state.

As illustrated in Figure 4B, our proposed binding mode of

epinephrine within a fully activated B2AR (energy basin at s,0.9)

is consistent with the binding poses displayed by full agonists in the

B2AR [10] and B1AR [13] crystallographic structures. Specifi-

cally, the ligand amino group forms hydrogen bonds with D3.32

and N7.39 of B2AR, the ligand b-hydroxyl group interacts with

D3.32, and the ligand catecholamine hydroxyl groups interact

Figure 4. Simulation results for B2AR bound to the full agonist epinephrine, the very weak partial agonist catechol, and the weak
partial agonist dopamine. (A, D, and G) Free-energy profiles as a function of the position (s) along the activation pathway for epinephrine,
catechol, and dopamine, respectively. Note that the curves have been shifted so that the minima (indicated by stars) correspond to reference free-
energy values. (B, E, and H) Binding modes of epinephrine, catechol, and dopamine, respectively. Relevant residues interacting with the ligands (any
atom within a 3 Å distance cutoff) are indicated in stick representations. Helices TM5, TM6 and TM7 are shown in orange, blue and light blue
respectively. Helix TM3 is shown in purple transparent representation whereas TM4 has been removed for clarity. (C, F, and I) Free-energies as a
function of ionic lock distance (dIL) and the toggle switch dihedral (xTS) molecular switches for the epinephrine-, catechol-, and dopamine-bound
B2AR, respectively.
doi:10.1371/journal.pcbi.1002193.g004
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through hydrogen bonding with the side chains of both S5.42 and

S5.46. In this state, the B2AR helix bundle is structurally very

similar to the corresponding nanobody-activated crystal structure

of the receptor (C? RMSD from 3P0G is ,1.6 Å). The stability of

the epinephrine binding pose and the specific receptor conforma-

tion were verified by carrying out ,50 ns standard MD

simulations (see corresponding time evolutions of RMSD in

Figure S8). On the other hand, representative structures of the

energy basin at s,0.2 (data not shown) corresponded to

conformations of the helix bundle very similar to the inactive

crystal structure of B2AR (Ca RMSD from 2RH1 is ,1.0 Å).

Two energy basins (labeled a and c) were identified from the

free-energy as a function of the order parameters describing the

ionic lock and rotamer toggle switches (Figure 4C). Specifically,

the basin comprising conformations in which both the ionic lock

and rotamer toggle switches are in the ‘active’ (dIL,16 Å and

xTS,50u) positions appear to be more stable than the basin with

receptor conformations with ‘inactive’ (dIL,3 Å and xTS,160u)
molecular switches. Also in this case, the minimum free-energy

path between these two energy basins suggests activation of the

toggle switch prior breaking of the ionic lock interaction along the

path to full receptor activation.

Receptor Bound to Partial Agonists
The weak and very weak partial agonists, dopamine and

catechol, were also simulated in the context of the B2AR

activation pathway. Figures 4D and 4G illustrate the free-energy

profiles of the catechol-bound and dopamine-bound receptors,

respectively. In both cases the receptor is most stabilized in an

intermediate state (s,0.6) along the pathway to activation.

Inspection of the free-energy as a function of the position (s) along

and the distance (z) from the activation pathway (see Figures S9A

and S9C for the catechol-bound and dopamine-bound receptors,

respectively) confirms that these two ligands stabilize a state

different from the inactive or fully activated ones as judged by the

lowest energy values at z,2 in Figure S9A for catechol, and at

s,0.6, z,0.0 in Figure S9C for dopamine. This difference is also

evident from the free-energy surfaces as a function of the TM6

outward movement and the position along the activation pathway

(see Figures S9B and S9D, respectively), as well as from the

structural superpositions shown in Figure 5. Specifically, Figure 5

illustrates the structural differences between the TM regions of the

predicted inverse agonist- and partial agonist-specific conforma-

tions (Figure 5A), the inverse agonist- and full agonist-specific

conformations (Figure 5B), and the partial agonist- and full

agonist-specific conformations (Figure 5C).

Figures 4E and 4H show the binding modes of catechol and

dopamine, respectively. These binding poses were proven to be

stable during ,50 ns of unconstrained MD simulations (see

Figures S10A and S10B for the time evolution of the RMSD of

catechol and dopamine, respectively, and Figures S10C and S10D

for the time evolution of the RMSD of the corresponding protein

Ca atoms). In agreement with inferences from recent B1AR

structures co-crystallized with either full or partial agonists, these

two B2AR partial agonists formed stable hydrogen bonds (through

the catechol moiety) with the side chain of S5.42, but do not with

S5.46. In terms of the ligand-induced modulation of the molecular

switches, the catechol-bound B2AR state with a broken ionic lock

(located at xTS,50u and dIL,16 Å in Figure 4F) is relatively less

stable than the corresponding larger basin identified in the

presence of dopamine (see Figure 4I), consistent with spectroscopy

data suggesting that catechol is unable to disrupt the ionic lock [9].

Discussion

Understanding the molecular mechanisms underlying GPCR

functional selectivity is extremely important in modern drug

discovery, since it provides a unique opportunity for the

identification or rational design of ‘biased’ ligands as novel more

effective therapeutics. Epitomizing an emerging paradigm in

current drug discovery [54], native states of GPCRs can be

assumed in a dynamic equilibrium between different conforma-

tional sub-states [11,18,55], which correspond to the valleys of an

energy landscape, the barriers of which reflect the timescales of the

conformational exchange. The relative populations of these sub-

states follow statistical thermodynamics distributions and are

shifted towards specific conformations as a consequence of ligand

binding and/or other allosteric events such as those induced by

protein-protein interactions. Thus, ligands with varied efficacies

are believed to modulate the free-energy landscape of a GPCR,

Figure 5. Structural comparisons between ligand-specific B2AR conformations. Specifically, these comparisons (viewed from the
intracellular side) are between: (A) an inverse agonist (carazolol)-bound inactive state at s,0.2 (blue color) and a partial agonist (dopamine)-stabilized
intermediate conformation at s,0.6 (orange color); (B) an inverse agonist (carazolol)-bound inactive state at s,0.2 (blue color) and a full agonist
(epinephrine)-stabilized active conformation at s,0.9 (pink color); and (C) a partial agonist (dopamine)-bound intermediate conformation at s,0.6
(orange color) and a full agonist (epinephrine)-stabilized active conformation at s,0.9 (pink color). The position of the side chains of the residues
involved in the ionic locks are indicated with sticks. For clarity, IL3 has been removed.
doi:10.1371/journal.pcbi.1002193.g005
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shifting the conformational equilibrium towards active or inactive

conformations of the receptor, depending on their pharmacolog-

ical action.

A reliable characterization of the specific conformations that

inverse agonists, agonists (both full and partial), or antagonists can

stabilize in a given GPCR is highly desirable for the structure-

based discovery of novel ligands eliciting selected functional

responses. This is difficult to achieve by X-ray crystallography for

the majority of GPCRs due to their intrinsic structural instability,

and the realization that the majority of pharmacologically active

ligands are not ideal compounds for receptor stabilization that is

suitable for crystallization.

The enhanced sampling approach we describe here provides

atomic-resolution information of receptor conformations along

pre-determined activation pathways that are differentially stabi-

lized by ligands with different efficacies. Our approach also

provides a quantitative description of the thermodynamics of the

B2AR basal activity, with the unliganded receptor being able to

sample both an inactive state and an intermediate state that is

shifted towards the activated conformation. This latter state is

structurally different from the fully active state of B2AR captured

by the nanobody-stabilized crystal structure. Although it exhibits a

broken ionic lock and a cytoplasmic opening that is able to

accommodate the camelid antibody, a few clashes are produced by

the much smaller outward movement of TM6 (,2.5 Å compared

to the ,5.9 Å that can be achieved by a full agonist). Given the

small free-energy difference between the two lowest energy

minima identified for the unliganded B2AR, these two states are

almost equally populated at equilibrium, in agreement with the

high basal activity of the B2AR. Moreover, the relatively low

energy barrier between the two states is consistent with the flexible

nature of the unliganded B2AR, and the consequent difficulty in

obtaining crystals of the native receptor.

We observed a more or less pronounced perturbation of the

free-energy profile of the unliganded B2AR depending on the

ligand considered for binding. Although alprenolol has often been

described as a neutral antagonist of B2AR, its presence in the

B2AR binding pocket slightly modifies the free-energy profile of

the receptor, making the inactive state more stable in spite of the

small difference in free-energy (,kBT). This result is not

completely surprising in light of the evidence existing in the

literature for a role of alprenolol as an inverse agonist or even a

weak agonist, depending on the assay used [56,57].

Our results show that the selection of a single conformational

state is particularly effective in the case of inverse agonists. The

docking of either carazolol or ICI-118,551 in the receptor

dramatically changes the free-energy landscape of B2AR and

reduces it to a funneled profile with a single major basin

corresponding to the inactive conformation. This result is consistent

with the greater availability of crystals of B2AR in an inactive

conformation stabilized by potent inverse agonists in the binding

pocket, and with the observation that the structural features of the

inactive states of the various receptors obtained so far are similar.

The situation is different when we study the free-energy

landscape in the presence of agonists. The computational

experiment with epinephrine shows that a full agonist is capable

of stabilizing a state of B2AR presenting structural features that

have been found in the nanobody-stabilized agonist-bound crystal

structure of B2AR. However, in addition to this active state, we

obtain a relatively stable agonist-bound inactive state that is

structurally similar to the inverse agonist-bound crystal structure

of B2AR. This is not surprising, given the absence of TM6 outward

movements noted in both the B2AR crystal structure with a

covalently-bound agonist [11], and the agonist-bound B1AR crystal

structures [13]. Moreover, the relatively small difference in free-

energy between the fully active and the inactive agonist-bound

conformations is probably due to the lack of the G-protein in the

simulation setup, in line with the observation deriving from the two

recent agonist-bound B2AR crystal structures [10,11] that a ligand

alone is not sufficient to stabilize a fully active crystallographic state

of the receptor, but a G-protein mimicking nanobody is necessary to

trap this conformation. Different from the crystallographic

information, but in line with experimental evidence from

fluorescence spectroscopy [9], we find that metastable states

corresponding to fully (and partial) activated conformations of the

receptor favor the rotamer change of the W6.48 side chain.

The partial agonism elicited by dopamine and catechol shifts

the conformational equilibrium towards states that are different

from that stabilized by the full agonist, and captured in the

nanobody-stabilized crystal structure. In particular, the two

ligands affect the free-energy landscape in different ways. While

the intermediate dopamine-bound state always features a broken

ionic lock, the receptor samples conformations that have different

ionic lock states when catechol is in the binding pocket. Notably,

experimental evidence from fluorescence spectroscopy [9] also

suggested that the very weak partial agonist catechol is not able to

completely disrupt the interaction between the charged residues at

the cytoplasmic end of TM3 and TM6. Structurally, the two

conformations stabilized by catechol and dopamine are different in

the degree of separation between the extracellular ends of TM5

and TM6 and between the intercellular ends of TM3 and TM6.

Consistent with the hypothesis that global structural features of the

receptor, such as the tilt of the extracellular half of TM5, can

optimize the binding to agonists [58], we see a larger TM5 tilt in

the presence of dopamine (as well as for epinephrine) and a smaller

one in the presence of catechol. Owing to the greater ability of

catechol to stabilize a state with a formed ionic lock, the

intracellular ends of TM3 and TM6 also appear slightly closer

(by ,1 Å) together.

In summary, we have designed a strategy using a combination

of different adaptive biasing techniques that enables characteriza-

tion of reliable ligand-specific conformations as demonstrated here

in the case of B2AR. The strategy is completely general and may

be of practical use for the structure-based design of ‘biased’ ligands

that selectively activate signaling pathways, and may therefore

exhibit improved therapeutic properties.

Supporting Information

Figure S1 Ribbon representation of the B2AR illustrat-
ing the secondary structure motifs and the residues used
to monitor activation. Residues involved in the ‘‘ionic lock’’

(R3.50 and E6.30) and the ‘‘toggle switch’’ (W6.48) are indicated

with sticks. The midpoint between residue Y2.41 and E6.30 is

indicated with a purple dot and the approximate location of the

binding pocket with a red sphere. Transmembrane helices are

colored (TM1 in red, TM2 in orange, TM3 in purple, TM4 in

brown, TM5 in yellow, TM6 in transparent blue, and TM7 in

light blue).

(TIF)

Figure S2 Additional analyses of the simulations of the
unliganded B2AR. (A) Free-energy of the unliganded B2AR as a

function of the position along (s) and the distance from (z) the

activation pathway. The surface has been shifted so that the lowest

energy minima correspond to reference free-energy values;

contours are spaced by 2 kcal/mol. (B) Free-energy projection as

a function of the path variable s and the displacement of TM6.

The latter is defined by the distance between the midpoint of an
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imaginary line connecting residues K6.35 and Y2.41 (roughly at

the center of the intracellular exposed surface of the receptor) and

residue K6.35.

(TIF)

Figure S3 Additional analyses of the simulations of the
B2AR bound to the neutral antagonist alprenolol. (A)

Free-energy of the as a function of the position along (s) and the

distance from (z) the activation pathway. The surface has been

shifted so that the lowest energy minima correspond to reference

free-energy values; contours are spaced by 2 kcal/mol. (B) Free-

energy projection as a function of the path variable s and the

displacement of TM6. The latter is defined by the distance

between the midpoint of an imaginary line connecting residues

K6.35 and Y2.41 (roughly at the center of the intracellular

exposed surface of the receptor) and residue K6.35.

(TIF)

Figure S4 Time evolution of the RMSD of alprenolol
and B2AR. RMSD vs. time of (A) the alprenolol heavy atoms

after alignment of the B2AR Ca atoms and (B) the B2AR Ca
atoms with respect to the initial conformation. The initial structure

was extracted from the s,0.2 and z,0.0 Å basin in figure S3.

(TIF)

Figure S5 Additional analyses of the simulations of the
B2AR bound to the inverse antagonists carazolol and
ICI-118,551. (A and C) Free-energy of carazolol- and ICI-

118,551-bound B2AR as a function of the position along (s) and

the distance from (z) the activation pathway. The surface has been

shifted so that the lowest energy minima correspond to reference

free-energy values; contours are spaced by 2 kcal/mol. (B and D)

Free-energy projection as a function of the path variable s and the

displacement of TM6 for the inverse agonists carazolol- and ICI-

118,551-bound B2AR, respectively. The latter is defined by the

distance between the midpoint of an imaginary line connecting

residues K6.35 and Y2.41 (roughly at the center of the

intracellular exposed surface of the receptor) and residue K6.35.

(TIF)

Figure S6 Time evolution of the RMSD of carazolol, ICI-
118,551, and B2AR. RMSD vs. time of the (A) carazolol and (B)

ICI-118,551 heavy atoms after alignment of the B2AR Ca atoms,

and the B2AR Ca atoms in the simulations with (C) carazolol or (D)

ICI-118,551 with respect to the initial structure. The initial structure

was extracted from the s,0.2 and z,0.0 Å basins in Figure S5.

(TIF)

Figure S7 Additional analyses of the simulations of the
B2AR bound to the full antagonist epinephrine. (A) Free-

energy of the full agonist epinephrine-bound B2AR as a function

of the position along (s) and the distance from (z) the activation

pathway. The surface has been shifted so that the lowest energy

minima correspond to reference free-energy values; contours are

spaced by 2 kcal/mol. (B) Free-energy projection as a function of

the path variable s and the displacement of TM6. The latter is

defined by the distance between the midpoint of an imaginary line

connecting residues K6.35 and Y2.41 (roughly at the center of the

intracellular exposed surface of the receptor) and residue K6.35.

(TIF)

Figure S8 Time evolution of the RMSD of epinephrine
and B2AR. RMSD vs. time of (A) the epinephrine heavy atoms

after alignment of the B2AR Ca atoms, and (B) the B2AR Ca
atoms with respect to the initial structure. The initial structure was

extracted from the s,0.9 and z,0.5 Å basins in Figure S7.

(TIF)

Figure S9 Additional analyses of the simulations of the
B2AR bound to the partial agonists catechol and dopa-
mine. (A and C) Free-energy of the partial agonists catechol- and

dopamine-bound B2AR as a function of the position along (s) and

the distance from (z) the activation pathway. The surface has been

shifted so that the lowest energy minima correspond to reference

free-energy values; contours are spaced by 2 kcal/mol. (B and D)

Free-energy projection as a function of the path variable s and the

displacement of TM6 for the partial agonists catechol- and

dopamine-bound B2AR, respectively. The latter is defined by the

distance between the midpoint of an imaginary line connecting

residues K6.35 and Y2.41 (roughly at the center of the intracellular

exposed surface of the receptor) and residue K6.35.

(TIF)

Figure S10 Time evolution of the RMSD of catechol,
dopamine, and B2AR. RMSD vs. time of the (A) catechol and

(B) dopamine heavy atoms after alignment of the B2AR Ca atoms,

and of the B2AR Ca atoms in the simulations with (C) catechol or

(D) dopamine with respect to the initial structure. The initial

structure was extracted from the s,0.6 basins in Figure S9.

(TIF)

Table S1 List of the production runs performed in this
study. Number and length of independent simulations carried out

for each system.

(DOC)
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