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Abstract

There is great interest in the dynamics of health behaviors in social networks and how they affect collective public health
outcomes, but measuring population health behaviors over time and space requires substantial resources. Here, we use
publicly available data from 101,853 users of online social media collected over a time period of almost six months to
measure the spatio-temporal sentiment towards a new vaccine. We validated our approach by identifying a strong
correlation between sentiments expressed online and CDC-estimated vaccination rates by region. Analysis of the network of
opinionated users showed that information flows more often between users who share the same sentiments - and less
often between users who do not share the same sentiments - than expected by chance alone. We also found that most
communities are dominated by either positive or negative sentiments towards the novel vaccine. Simulations of infectious
disease transmission show that if clusters of negative vaccine sentiments lead to clusters of unprotected individuals, the
likelihood of disease outbreaks is greatly increased. Online social media provide unprecedented access to data allowing for
inexpensive and efficient tools to identify target areas for intervention efforts and to evaluate their effectiveness.
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Copyright: � 2011 Salathé, Khandelwal. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MS acknowledges funding from Society in Science: the Branco Weiss fellowship. http://www.society-in-science.org/. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: salathe@psu.edu

Introduction

Outbreaks of vaccine preventable diseases are a major public

health issue. Outbreaks are more likely to occur if either overall

vaccination rates decline [1], or if communities with very low

vaccination rates increase in frequency or size [2,3]. As individual

health behaviors appear to be modulated by social networks [4,5],

there is great interest in the dynamics of health behaviors in social

networks [6]. Furthermore, measuring health behaviors - such as

vaccination - in populations over time and space is essential to

identify target areas for interventions and evaluate their effective-

ness, but it is generally labor-intensive and expensive when based

on traditional survey methodologies [7]. The rise of online social

media in the past few years has created new possibilities of

measuring health behavior. Such services are used by hundreds of

millions of people who are publicly sharing various aspects about

their daily lives, including those related to health behavior[8,9].

Using such data to gauge health behaviors in populations

represents a fundamental shift in measurement methodology

because the study population is not responding to a survey, but

rather shares data in a survey-free context, often in real time.

The power of using web data to track events in real time in the

context of public health has recently been demonstrated for

influenza surveillance [10,11], but assessing health behavior has so

far remained elusive. Here, we used publicly available short text

messages collected from an online social service (Twitter) from

August 2009 to January 2010 in the United States. During this

time, pandemic influenza A(H1N1) was spreading nationwide but

a vaccine became widely available only very late in the year. We

collected practically all publicly available text messages on Twitter

(so called ‘‘tweets’’) containing English keywords relating to

vaccination as well as location information provided by the

authors of text messages (if available). We also collected

information on who followed whom among the authors, which

allowed us to recreate a directed network of information flow. A

subset of the collected tweets was manually evaluated as expressing

a negative, positive or neutral sentiment towards influenza

A(H1N1) vaccination. We then trained a machine learning

algorithm on the manually rated tweets, and then used the

resulting classifier to automatically predict sentiments for the

remaining unrated text messages. The fully classified data set

allowed us to calculate a temporal, localized influenza A(H1N1)

vaccination sentiment score and to generate a network of

information flow which allowed us to study its properties with

respect to the distribution of sentiments. Finally, by extrapolating

the findings to empirical contact networks relevant for infectious

disease spread, we investigate the effect of non-random vaccina-

tion distributions on the likelihood of disease outbreaks.

Results

Overall, of the 477,768 collected tweets, 318,379 were classified

as relevant to the influenza A(H1N1) vaccine. Of those, 255,828

were classified as neutral, 26,667 as negative, and 35,884 as positive.
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Starting from late August 2009, we observed a steady increase in the

number of relevant tweets in the United States until early November

2009, after which the number of tweets dropped back to previous

levels. Figure 1A shows the absolute numbers of positive (n+),

negative (n-) and neutral (n0) tweets per day in the United States. The

overall influenza A(H1N1) vaccine sentiment score, measured as the

relative difference of positive and negative tweets ((n+-n-)/(n++ n- +
n0)), started at a negative value in late Summer 2009 and showed

relatively large short term fluctuations. The 14 day - moving

average turned positive in mid October (as the vaccine became

available) and remained positive for the rest of the year (Figure 1B).

For vaccination sentiments measured online to be meaningful,

they need to be compared to empirical data for validation. A

positive correlation between the influenza A(H1N1) vaccination

sentiment score and estimated vaccination coverage would be

relevant to public health efforts because it would allow for the

identification of target areas for communication interventions. To

test for such a correlation, we used estimated influenza A(H1N1)

vaccination rates up to January 2010 as provided by the CDC

[12]. These estimates are based on results from the Behavioral

Risk Factor Surveillance System (BRFSS) and the National 2009

H1N1 Flu Survey (NHFS). We found a very strong correlation on

the level of HHS regions (weighted r = 0.78, p = 0.017; regions as

defined by the US Department of Health & Human Services)

using the estimated vaccination coverages for all persons older

than 6 months (Figure 1C), and a strong correlation at the level of

state (weighted r = 0.52, p = 0.0046). All reported correlation

values are Pearson product-moment correlation coefficients

because the variables considered for analysis are normally

distributed (Shapiro-Wilk test and Anderson-Darling test), weight-

ed by the total number of tweets (n+ + n- + n0) per region.

Using data on who followed whom among users in the dataset

allows us to generate a directed network of information flow whose

structure (with respect to the distribution of opinions on

vaccination) can provide insight into how sentiments are

distributed (see Methods). In order to investigate if users

preferentially seek information from other users who share their

opinion, we measured assortative mixing of users with a

qualitatively similar opinion on vaccination (homophily) by

calculating the assortativity coefficient r which is defined [13] as

r~

P
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Figure 1. (A) Total number of negative (red), positive (green), and neutral (blue) tweets relating to influenza A(H1N1) vaccination
during the Fall wave of the 2009 pandemic. (B) Daily (gray) and 14 day moving average (blue) sentiment score during the same time. (C)
Correlation between estimated vaccination rates for individuals older than 6 months, and sentiment score per HHS region (black dots) and states
(gray dots). Numbers represent the ten regions as defined by the US Department of Human Health & Services. Lines shows best fit of linear regression
(blue for regions, red for states).
doi:10.1371/journal.pcbi.1002199.g001

Author Summary

Sentiments about vaccination can strongly affect individ-
ual vaccination decisions. Measuring such sentiments - and
how they are distributed in a population - is typically a
difficult and resource-intensive endeavor. We use publicly
available data from Twitter, a popular online social media
service, to measure the evolution and distribution of
sentiments towards the novel influenza A(H1N1) vaccine
during the second half of 2009, i.e. the fall wave of the
H1N1 (swine flu) pandemic. We find that projected
vaccination rates based on sentiments expressed on
Twitter are in very good agreement with vaccination rates
estimated by the CDC with traditional phone surveys.
Looking at the online social network, we find that both
negative and positive opinions are clustered, and that an
equivalent level of clustering of vaccinations in a
population would strongly increase disease outbreak risks.

Assessing Vaccination Sentiments with Online Media
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and eij is the fraction of edges in the network that connect a node of

type i to one of type j (in the direction of i to j). A positive value of r

(with maximum value 1) is found in a network where nodes are

predominantly connected to nodes of the same type. A value of

r = 0 would indicate a randomly mixed network, and a negative

value # -1 would indicate a disassortative network where nodes of

one type are predominantly connected to nodes of the other type

(for the technical reasons why the minimum value of r is not always

-1 see ref. [13]).

In the network of 39,284 users who had a non-zero sentiment

score (from now on referred to as the opinionated network, i.e.

containing only users who expressed predominantly either positive

or negative opinions), we find r = 0.144. In order to assess the

significance of this value, we randomized the opinions on the

network (bootstrap with replacement) 10,000 times and found the

maximum value for r among these randomized networks to be

0.0056, more than an order of magnitude lower than in the

original network (mean: -3*10-4, 95% CI: -0.0032, 0.0027). We

also calculated for each node (user) the fraction f of incoming edges

from nodes with the same qualitative sentiment, then randomized

the opinions and compared the new distribution of f to the original

distribution. For 10,000 randomized networks we found that in all

cases the mean of the original distribution (0.601) was significantly

larger than the mean of the distribution of the randomized

networks (p,10-95 for all tests using paired Wilcoxon signed rank

test, max. mean: 0.548, mean of means: 0.531, 95% CI: 0.52,

0.541). These results demonstrate that there is significantly more

information flow between users who share the same sentiments

than expected based on the distribution of sentiments.

Social networks often naturally divide into communities, i.e

groups of people who share common interests, beliefs and

opinions. In a network of opinionated users, the question of

community structure naturally arises, i.e. are there communities

within the network where positive or negative attitudes towards

the novel vaccine dominate? In order to tackle this question, we

separated the giant component of the opinionated network (34,025

users) into communities of users that are densely connected

compared to the rest of the network using the spin glass

community detection algorithm [14]. We then calculated the

proportion of users with negative attitudes p(-) and compared it to

the average in the giant component, p(-) = 0.396. With the

exception of a single community, all communities (containing at

least 1% of the users in the entire network) were significantly more

positive or negative than expected (Figure 2; Fisher’s exact test,

10-279,p,10-6), ranging from p(-) = 0.764 in the most negative

community (2,453 users) to p(-) = 0.266 in the most positive

community (2,517 users).

Non-random distributions of opinions on vaccines can have a

profound effect on the likelihood of disease outbreaks if this

distribution leads to a clustered distribution of vaccination status in

the population [2]. Communities with very low vaccination rates

are not protected by herd immunity even if the overall vaccination

rate in the population is high. To quantify this effect, we used a

recently collected high-resolution contact network relevant for

infectious disease transmission [15] to simulate the spread of

influenza A (H1N1). We performed simulations as described

previously [15] with a constant vaccination rate but varying levels

of assortativity (see Methods). Figure 2B shows that the probability

of large outbreaks is greatly increased when susceptibility to

disease is positively assorted. The probability of an outbreak that

infects .5% of the population, for example, can be increased

more than 10-fold at r.0.14 (as observed in the Twitter network)

relative to the random distribution where r ,0 (Figure 2C).

Discussion

Immunization is generally considered one of the greatest public

health achievements in human history [16]. Globally, vaccines

have dramatically reduced morbidity and mortality caused by

infectious diseases, and vaccines continue to prevent or mitigate

the spread of infectious diseases. Despite these resounding

successes, however, maintaining sufficiently high vaccination

coverages has become very challenging in recent years [1,3].

Unsubstantiated concerns over the safety of vaccines, the rise of

the internet and its effect on how fast rumors and misinformation

can spread, and a general sense of security from infectious diseases

have all contributed to a situation where individual concerns about

potential negative side effects often outweigh the benefits of

immunization [17]. We’ve shown here that in a network of almost

40,000 opinionated users of an online social media service, there

was significantly more information flow between users who shared

the same sentiments than expected if the sentiments were

randomly distributed. We also found that most communities were

dominated by either positive or negative sentiments towards the

novel vaccine. Our data do not allow us to say whether links of

information flow were created because of similar vaccination

sentiments, or whether other factors, including those that strongly

correlate with vaccination sentiments, were responsible for link

creation in the first place. Either way, however, the significantly

positive assortativity of negative and positive sentiments provide

evidence that online social media can act as an ‘‘echo chamber’’

where personal opinions that affect individual medical decisions

are predominately reaffirmed by others.

We’ve also shown that if network clusters of similar sentiments

towards vaccination lead to network clusters in the distribution of

vaccination, the probability of large outbreaks is greatly increased.

Importantly, this effect is strongest when the levels of vaccination

coverage are near the levels of required herd immunity under the

assumption of a random distribution [2,18]. We do not assume

that online social networks strongly overlap with contact networks

relevant to infectious disease in the real world, but the extent of

homophily may very well be quite similar in both networks (or

even lower in online networks such as Twitter where links need not

be reciprocated). Indeed, there is increasing evidence from

multiple studies that there is significant geographic and social

clustering of non-medical vaccination exemptions, resulting in

increases in local risk of vaccine-preventable disease outbreaks

[3,19-21]. Communication strategies that aim to decrease the

positively assorted distribution of vaccination might thus be an

efficient way - in addition to existing efforts to increase general

vaccination rates in the population - to decrease the risk of disease

outbreaks. Currently, empirical data on assortativity in vaccination

status is lacking, but collecting such data would be desirable in

order to identify the communities which are at highest risk.

While data from online social media offers great potential to

measure health behaviors, and even measure human behavior

more generally, a number of caveats need to be mentioned. First,

because of the observational nature of the study, we cannot

exclude that other confounding factors (e.g. vaccine supply) might

have influenced the results. Second, extracting information from

short online text messages for the purpose of assessing health

behaviors presents a number of challenges. Users of online social

media might not be a representative sample of the population; text

Assessing Vaccination Sentiments with Online Media
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messages may be interpreted differently by different users, and

sentiment analysis is not 100% accurate (see also Methods).

However, the large volume of data - and the large number of users

- substantially reduce the extent to which such limitations affect

the overall results. Furthermore, data from online social media

have a number of advantages that other data cannot provide. The

fact that social media provide network data - i.e. the data do not

only contain what is being broadcast, but also to whom - allows us

to study processes such as the spread of information, behaviors,

opinions, etc. as well as the social structure on which these

processes occur. A particular benefit of Twitter data is that they

are publicly available - tweets are by default public messages,

unlike messages exchanged on other social media services that are

generally private by default. This is important because the

potential of computational social sciences to understand the

dynamics of human societies cannot be fully explored if all data are

private and owned by companies and governments [22].

Publicly available data from online social media provide

unprecedented opportunities, especially in the realm of public

health, e.g. by allowing for inexpensive and efficient tools for the

public health community to identify regional areas that would

most benefit from intensified communication about the safety and

benefit of vaccines. Given the explosive growth of online social

media in the past few years, we believe the approach presented

here can be applied more generally to study the spread of various

health behaviors, a topic of great importance as health behaviors

are a leading cause of morbidity and mortality [23].

Methods

Data Collection
Starting on August 25th 2009, we collected all tweets in English

containing at least one of the following search strings: vaccination

OR vaccine OR vaccinated OR vaccinate OR vaccinating OR immunized

OR immunize OR immunization OR immunizing. Along with the

tweet text, we downloaded the date and time when the tweet was

published, and the location of the user (if provided). We also

downloaded the user id, follower ids, and friends ids. The followers

of a user A are those users who will receive messages from user A.

The friends of a user A are those users from whom user A receives

messages. Thus, information flows from a user to his followers.

Until January 19th 2010, we collected tweets every day in real

time. Barring occasional short term disruptions due to technical

issues, the data set represents the set of tweets meeting the keyword

conditions mentioned above in that timeframe.

Sentiment Analysis
Each tweet in the dataset needed to be classified into one of four

sentiment polarities: positive, negative, neutral and irrelevant (see below).

Since the dataset of 477,768 tweets was too large to classify

manually in a reasonable time frame, we used a machine learning

approach to identifying the sentiments expressed in the tweets.

This process involved choosing a machine learning algorithm,

selecting features of the input and considering other strategies for

maximizing the accuracy of the sentiment analysis. We evaluated

various classifiers and experimented with different feature sets in

order to select the most accurate combination. We compared three

standard classification algorithms: Naive Bayes, Maximum

Entropy and a Dynamic Language Model classifier (using process

character n-gram models). The Naive Bayes classifier was

implemented using the Natural Language Toolkit (NLTK) [24].

The Maximum Entropy classifier was accessed using NLTK, but

used the MegaM (http://www.cs.utah.edu/,hal/megam/) im-

plementation. The Language Model classifier was implemented

using LingPipe (http://www.alias-i.com/lingpipe/) and is recom-

mended in the LingPipe documentation for sentiment analysis.

Supervised machine learning approaches, regardless of algo-

rithm used, all require a training dataset. In order to create a

training dataset, we needed people to assign sentiment polarities to

a random subset of tweets from our database. Study participants

(‘‘students’’ from now on) were recruited from two undergraduate

classes at the Pennsylvania State University to rate tweets with the

help of a simple web-based rating application. Students were asked

to rate tweets based on the following question: what sentiment

does the tweeting person (the author) have regarding the influenza

A(H1N1) vaccine? They were presented with four options:

1. positive: A positive sentiment means the author is likely to get

the influenza A(H1N1) vaccine.

Example tweet that was rated as positive:

off to get swine flu vaccinated before work.

Figure 2. (A) Proportion of negative sentiments p(-) in the network communities. Dashed line shows overall proportion in the
opinionated network. The proportions of negative and positive sentiments are significantly different from the overall proportions in the entire
opinionated network (with the exception of community E). (B) Effect of positive assortativity index (r) on relative risk increase (compared to risk at
r,0) of disease outbreaks that infect at least 3% of the population. Blue line shows best fit of linear regression (confidence interval based on standard
error). (C) Relative risk increase (compared to risk at r,0) of disease outbreaks of a given fraction of the population (on horizontal axis) for two values
of assortativity index (r), 0.075 (red) and 0.145 (green). Note that the latter corresponds to r found in the opinionated network (see main text).
doi:10.1371/journal.pcbi.1002199.g002
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2. negative: A negative sentiment means the author is unlikely to

get the influenza A(H1N1) vaccine.

Example tweet that was rated as negative:

What Can You Do To Resist The U.S. H1N1 "Vaccination" Program?

Help Get Word Out. The H1N1 "Vaccine" Is DIRTY.DontGetIt.

3. neutral: No clear sentiment can be detected.

Example tweet that was rated as neutral:

The Health Department will be offering the seasonal flu vaccine for children

6 months - 19 yrs. of age starting on Monday, Nov. 16.

4. irrelevant: The tweet is not clearly about the influenza

A(H1N1) vaccine.

Example tweet that was rated as irrelevant:

Filipino discovers new vaccine against malaria that ’treats’ the mosquitoes,

too!

The web-based rating application was set up such that every

other tweet rated by a student was one that was also rated by all

the other students. All other tweets were randomly selected. A

student could not rate any tweet more than once, but we did not

prevent multiple students from rating the same randomly selected

tweet. 64 students volunteered for the task, and submitted 88,237

ratings. Students were assigned to rate at least 1400 tweets, and 44

students complied with this request (and received extra course

credit - the other 20 students rated less than 1400 tweets). In total,

students evaluated 47,143 unique tweets.

To evaluate the best classifier, we divided the feature sets

extracted from the manually rated tweets into a training set and a

test set. The classifiers were evaluated by looking at the percentage

of tweets from the test set that classifiers could rate accurately. A

tweet was considered accurately rated if the sentiment polarity

predicted by the classifier matched majority opinion as assigned by

the students. In order to build a high confidence test set, we took

all tweets with at least 44 ratings, and then eliminated tweets

where both of the following were true: a) the percentage of the

majority sentiment polarity was not higher than 50%, i.e. an

absolute majority could not be established, and b) we (i.e. MS and

SK) disagreed with the majority sentiment polarity. This left us

with a high confidence test set of 630 tweets. The training set

(46,442 tweets) consisted of all the tweets that had less than 44

ratings.

For our sentiment classification, we used an ensemble method

combining the Naive Bayes and the Maximum Entropy classifiers.

We used the Naive Bayes classifier to determine the positive and

negative tweets, and the Maximum Entropy classifier to determine

the neutral and irrelevant tweets (leveraging the classifiers’

respective strengths). In case of a conflict, the Maximum Entropy

classifier’s decision was final. The accuracy of this ensemble

classifier was 84.29%.

Feature selection is the process of choosing the most informative

subset of all the possible features of the training data. Choosing the

right features to extract from a tweet is a process of trial and error.

We achieved the highest accuracy (for both classifiers) by choosing

the set of words constructed from the tweets after filtering out stop

words defined by Apache Lucerne’s list of stop words (http://

lucene.apache.org/ - stop words from: org.apache.lucene.analysis.

StopAnalyzer) except ‘‘no’’ and ‘‘not’’. We further filtered out all

punctuation except for ‘!’ from the tweet text since exclamation

marks are often used to indicate a stronger sentiment. Finally,

adding stemming improved the accuracy of the classifier.

The challenge of trying to classify tweets is that each tweet is at

maximum only 140 characters. This limitation encourages non-

standard abbreviations, slang and otherwise poorly written phrases

within the body of a tweet. The general lack of context in a single

tweet combined with poorly expressed sentiment means that it is

unreasonable to expect a 100% accuracy out of the automated

classifiers or even 100% agreement among students. To get a sense

of how our automated classifier was performing, we compared it to

the accuracy of individual students. Among students that rated at

least 1400 tweets, the average accuracy of the students was 64%.

Only 7 students had a higher accuracy than the ensemble

classifier, the highest being 90%.

To ensure the highest quality during classification of tweets not

rated by students, we implemented the following strategy. Tweets

that were part of the test set didn’t need to be evaluated by the

classifier since we were confident about the assigned polarities. For

all other tweets, we let the classifier predict the sentiment. If the

classifier disagreed with the majority, we treated the classifier as a

manual rater, and simply took the polarity assigned by the rater

(i.e. users and classifier) with the highest accuracy.

Geocoding
Twitter allows a tweeter’s location to be manually entered into

his or her profile. The profile’s location field is free form, and

accepts any entry; including ones that do not specify any location.

A tweeter’s position can also be updated by their GPS enabled

mobile device, providing an accurate location specified by a pair of

latitude and longitude co-ordinates (this feature was not yet widely

used in 2009). For this location data to be useful to us, we needed

to resolve these location strings into informative locations. Our

goal for this study was to resolve within the United States to the

state level. Since we downloaded tweets over a period of several

months, there are often multiple tweets from the same tweeter.

The location of the tweeter was downloaded with each tweet. In

most cases, the tweeter’s static location was duplicated multiple

times throughout the data set. However, in some cases, over time,

tweeters reported different locations. For each tweeter, we resolved

all unique locations by using the Yahoo! PlaceFinder web service

(http://developer.yahoo.com/geo/placefinder/). Using the Place-

Finder API, we sent the location string to the service which, if it

recognized the location, returned state and country level

information. Of the 155,676 locations, there were 9,231 location

strings that could not be accurately resolved using the PlaceFinder

web service. In order to deal with those, we again created a web

application and asked students to resolve the location manually if

possible. Once all locations were resolved, tweeters with locations

in multiple states were excluded from the analysis.

Network Creation
In order to generate a network of Twitter users that captures

information flow about opinions on the influenza A(H1N1)

vaccine, we used the following algorithm (recall that information

flows from users to their followers):

1. Each user who has at least one relevant (i.e. positive, negative

or neutral) tweet is represented by a node in the network.

2. There is a directed edge from user A to user B if at any time

point, user B is found among the followers of user A, or user A

is found among the friends of user B.

Note that this algorithm treats the network as static, rather than

as dynamic. The number of followers and friends might change

over time (both generally increase). Thus, the network is essentially

a snapshot of the network as seen on the last day of data collection

(i.e. January 19th, 2010).

For extremely large counts of followers and friends, the data

collection process did only collect the first 5,000 friends and/or

followers that Twitter returned - this problem was only recognized

late in the project. However, our algorithm deals effectively with this

artificial cut off because it searches for edges both in the followers and

Assessing Vaccination Sentiments with Online Media
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friends lists. To see why this is the case, assume that a very popular

user has more than 5,000 followers. It can be safely assumed that

almost all of the followers of this user have a friend count of less than

5,000 users (because accounts with more than 5,000 friends are

extremely rare). Thus, even though we might not find an existing

edge while looking at the followers of this popular user, we will find

the edge while looking at the friends list of the followers. With regard

to the cutoff of 5,000 friends (extremely rare), it is unlikely that a

person can cognitively follow the message stream of more than 5,000

users, and thus even if we would miss some data, the effect is

negligible. Finally, we remove all users from the network that do not

have a positive or negative influenza A(H1N1) vaccine sentiment

score. The overall influenza A(H1N1) vaccine sentiment score is

defined as the difference of positive and negative tweets divided by the

sum of all relevant tweets (n+-n-)/(n++n-+n0). This results in a network

of 39,284 nodes (i.e. opinionated users) and 685,719 edges (i.e. tweets)

which has one giant component consisting of 34,025 nodes and

685,390 edges (i.e. 99.95% of the edges of the network are also in the

giant component).

Disease Simulations
We simulate the spread of an influenza A(H1N1)-like infectious

disease on an empirical network collected with wireless sensor

network technology[15]. We could have chosen any network, but

decided to use this network collected at a high school for its high

accuracy and coverage, but the results are applicable to any network

(indeed we’ve previously run infectious disease simulations on

artificial networks with qualitatively similar results[2]). The disease

simulation has been described in detail in [15], but briefly, we use an

SEIR simulation model parameterized with data from influenza

outbreaks [25,26]. Transmission occurs exclusively along the

measured contacts with a minimum duration of 30 minutes

throughout the day of the graph collected in ref. [15]. Each

individual (i.e., node of the network) is in one of four classes:

susceptible, exposed, infectious, and recovered. All individuals are

initially susceptible with the exception of the vaccinated individuals

who are always in the recovered class. On the first day of the week, a

random susceptible individual is chosen as the index case, i.e. its

status is set to exposed. A simulation is stopped after the number of

both exposed and infectious individuals has gone back to 0 (i.e., all

infected individuals have recovered). Each time step represents

12 hours and is divided into day and night. Transmission can occur

only during the day and only on weekdays (because this is a network

collected at a high school and we do not consider any transmission

outside of the school; although this assumption will not hold in

reality, it allows us to analyze the spread of a disease starting from a

single infected case). Transmission of disease from an infectious to a

susceptible individual occurs with a probability of 1 2 (1 2

0.00767)w, where w is the weight of the contact edge (in intervals of

20 seconds - the values were chosen so that the the minimum

transmission rate [i.e where w = 90] is 0.5 - this resulted in an R0 of

2.03 for all outbreaks with at least one secondary infection). After

infection, an individual will move into the exposed class (infected but

not infectious). After an incubation period, modeled by a right-

shifted Weibull distribution with a fixed offset of half a day [power

parameter = 2.21, scale parameter = 1.10 [25]], an exposed

individual will become symptomatic and move into the infectious

class. As in [15], we assume that on the half day that the individual

becomes infectious, the duration of all contacts of the infectious

individual is reduced by 75%. This reduction ensures that if an

individual becomes symptomatic and starts to feel ill during a school

day, social contacts are reduced and the individual leaves the school

or is dismissed from school after a few hours. In the following days,

all contacts are reduced by 100% until recovery (i.e., the individual

stays at home). Once an individual is infectious, recovery occurs

with a probability of 1 2 0.95t per time step, where t represents the

number of time steps spent in the infectious state [in line with data

from an outbreak of influenza A(H1N1) at a New York City

school[26]]. After 12 days in the infectious class, an individual will

recover if recovery has not occurred before that time. We assume

that all exposed individuals developed symptoms (see [15] for a

justification of this assumption).

Vaccination occurs by picking individuals randomly and

vaccinate them to achieve a vaccination coverage of 0.624,

reflecting the proportion of positive sentiments in the Twitter

network as described above. Such a random process will result in

an assortativity index r,0. In order to understand the effect of

increased homophily on disease outbreaks, we redistribute the

vaccination statuses such that the vaccination coverage remains

constant, but r increases. We use a simple algorithm to do this,

given a desired r value:

1. Start with a random distribution of vaccines (i.e. r,0) to

achieve a given vaccination coverage.

2. Calculate assortativity index r.

3. Pick two random nodes in the network such that one is

vaccinated and the other is not.

4. Swap vaccination status of the two nodes and calculate new

assortativity index r*.

5. If r*#r, undo swap and go to step 3.

6. If r*.desired value, stop. Otherwise set r = r* and continue at

step 3.

This simple algorithm allows us to use the same network

structure with a constant vaccination coverage while at the same

time generate variable values of r. For each minimum value of r,

starting from 0 up to 0.145 in increments of 0.005, we generated

100,000 redistributions of vaccinations and ran a simulation per

redistribution, as described above. This resulted in a total of

3,000,000 simulation runs on a network with constant structure

and constant vaccination coverage, but with different values for

the assortativity index r.

Acknowledgments

The authors would like to thank A. F. Read, I. M. Cattadori, J. H. Jones,

D. Kifer and D. R. Hunter for assistance.

Author Contributions

Conceived and designed the experiments: MS. Performed the experiments:

MS SK. Analyzed the data: MS SK. Contributed reagents/materials/

analysis tools: MS SK. Wrote the paper: MS SK.

References

1. Jansen VAA, Stollenwerk N, Jensen HJ, Ramsay ME, Edmunds WJ, et al. (2003)

Measles outbreaks in a population with declining vaccine uptake. Science 301:

804.
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