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Abstract

Recordings of ongoing neural activity with EEG and MEG exhibit oscillations of specific frequencies over a non-oscillatory
background. The oscillations appear in the power spectrum as a collection of frequency bands that are evenly spaced on a
logarithmic scale, thereby preventing mutual entrainment and cross-talk. Over the last few years, experimental,
computational and theoretical studies have made substantial progress on our understanding of the biophysical
mechanisms underlying the generation of network oscillations and their interactions, with emphasis on the role of neuronal
synchronization. In this paper we ask a very different question. Rather than investigating how brain rhythms emerge, or
whether they are necessary for neural function, we focus on what they tell us about functional brain connectivity. We
hypothesized that if we were able to construct abstract networks, or ‘‘virtual brains’’, whose dynamics were similar to EEG/
MEG recordings, those networks would share structural features among themselves, and also with real brains. Applying
mathematical techniques for inverse problems, we have reverse-engineered network architectures that generate
characteristic dynamics of actual brains, including spindles and sharp waves, which appear in the power spectrum as
frequency bands superimposed on a non-oscillatory background dominated by low frequencies. We show that all
reconstructed networks display similar topological features (e.g. structural motifs) and dynamics. We have also reverse-
engineered putative diseased brains (epileptic and schizophrenic), in which the oscillatory activity is altered in different
ways, as reported in clinical studies. These reconstructed networks show consistent alterations of functional connectivity
and dynamics. In particular, we show that the complexity of the network, quantified as proposed by Tononi, Sporns and
Edelman, is a good indicator of brain fitness, since virtual brains modeling diseased states display lower complexity than
virtual brains modeling normal neural function. We finally discuss the implications of our results for the neurobiology of
health and disease.
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Introduction

Recent studies of electroencephalography (EEG) and magneto-

encephalography (MEG) as well as of extracellular recordings

(local field potentials) in acute brain slices have demonstrated that

both macroscopic and microscopic neural networks exhibit

multiple activity rhythms [1–5]. In the power spectrum, these

rhythms appear as a number of frequency bands which are evenly

spaced on a logarithmic scale, thereby reducing the potential for

cross-talk (phase-locking) or mutual entrainment between frequen-

cy bands. Furthermore, the baseline of the power spectrum P

decreases proportionally to the inverse of a power a of the

frequency, P,1=f a, which is a feature common to many complex

systems [1]. Using mathematical tools recently developed for

solving inverse problems [6], as well as stochastic theory, we set

out to reverse-engineer network configurations, or ‘‘virtual

brains’’, that recreate multi-oscillatory brain dynamics on a

1=f abackground. The virtual brains are not meant to model

specific anatomical pathways or synaptic connections. Instead,

they model functional coupling between elements (nodes) of an

abstract network. We hypothesized, however, that the virtual

brains would share common features, such as functional (not

necessarily anatomical or synaptic) connectivity and dynamics,

among themselves and also with actual brains. Characterizing

these commonalities would in turn help us identify parameters and

physiological features of healthy brains, such as the balance

between functional excitation and inhibition, the relative number

of highly connected nodes (hubs), the probability of finding certain

structural motifs, etc. In addition, since the multi-oscillatory

activity of the brain is known to be altered in disease, we also set

out to reconstruct virtual brains that reproduce altered EEG and

MEG patterns such as those observed in epilepsy [5,7] and

schizophrenia [8,9]. We expected to find alterations of connectiv-

ity and dynamics in these altered virtual brains that would give us

some insight into structural and physiological changes associated

with the above pathologies.

Results

The mathematical and computational details of our approach

are explained in Methods. Briefly, following the approach of several
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authors [10–13], macroscopic brain activity was modeled as a

linear multivariate stochastic system, which in its continuous

version in time is equivalent to an Ornstein-Uhlenbeck process

[14]

dxi

dt
~
XN

j~1

Wijxjzgi, ð1Þ

where Wij is the functional connectivity matrix, i.e. the coupling

between the j-th and the i-th nodes; xi is the neural activity of the i-

th node with respect to baseline, measured as the signal from the i-

th EEG or MEG channel; gi are the residuals (background,

uncorrelated white noise) of the i-th channel; and N is the number

of nodes (channels). The sign of Wij can be thought of as functional

excitation and inhibition, although these do not necessarily

represent excitatory and inhibitory synaptic connections at the

cellular level. From a physiological perspective Wij can be thought

of as the net effect of many excitatory and inhibitory synapses plus

other neuromodulators converging onto the area associated with a

node. The units of Wij are reciprocal of time, i.e. frequency units.

If W is known, system (1) can be integrated numerically to

simulate EEG or MEG recordings; this is the forward problem of

calculating the dynamics from the connectivity matrix (Fig. 1A).

Moreover, the power spectrum (PS, P(v)) can be analytically

calculated from (1), (see Methods). The solution to the inverse

problem is more difficult: What is the underlying architecture, W,

which gives rise to a particular power spectrum, P(v)? This

problem does not have a unique solution; in fact, there may be an

infinite number of connectivity matrices (or ‘‘virtual brains’’)

which give rise to the same power spectrum. In spite of this, the

inverse problem can still be rigorously investigated (see Methods).

We note that the peaks of the power spectrum, P(v), are

determined by the eigenvalues of the connectivity matrix. In

particular, the real part of the complex eigenvalues describes the

half width at half maximum (HWHM) and the imaginary part

describes the peak frequency. Thus, the eigenvalues of W can

reciprocally be inferred from the power spectrum. This reduces

our network reconstruction problem to an inverse eigenvalue-

problem (IEP), which consists in finding a matrix with a given set

of eigenvalues [6]. Following Chu and Golub [6], the IEP is

formulated as a minimization problem in a matrix space. For

different realizations of the initial condition, the algorithm

converges to different matrices but all have the same prescribed

spectrum. The reconstructed matrices contain no information

about the spatial arrangement of the nodes; they only convey

information about the network’s graph structure (network

topology). Adjacent elements in W do not represent connections

between, for example, adjacent EEG electrodes.

Our algorithm is described in Methods and the complete Matlab

code to obtain connectivity matrices from the power spectrum

(Virtual Brain Generator) is available as supporting material and

from our lab’s webpage [15]. We have implemented this algorithm

such that reconstructed networks generate brain dynamics in five

different scenarios: 1) A power spectrum with evenly spaced

frequency bands on a logarithmic scale (‘‘Normal’’ group), a

signature of long recordings of ongoing activity from healthy

individuals [2]. 2) A spectrum with frequency bands that are

rational multiples of each other leading to phase-locking

(‘‘Entrained’’ group). This form of ‘‘cross-talk’’ between frequency

bands has been recently observed in magnetoencephalograms

(MEG) of epileptic patients during seizures [5,7]. Interactions

between frequency bands can also occur in normal individuals but

are transient and modulated in different behavioral tasks [16]. We

note that MEG data and EEG data are complementary, since they

measure different components of the same electromagnetic field

generated by neural activity. 3) A spectrum lacking high-frequency

peaks, as observed in patients with cognitive disorders, such as

schizophrenia or autism [9] (‘‘Incomplete’’ group). 4) As a first

control, we also considered a 1=f a spectrum lacking any rhythmic

oscillations, establishing an EEG baseline conserved across all

groups (‘‘Background’’ group). 5) As a second control for several

analyses, we also considered EEG spectra where the frequency

peaks had been randomly positioned with uniform probability on

the logarithmic frequency axis (‘‘Random’’ group). Each trial’s

spectrum in this group is different, as their peaks are shuffled

independently. For each of these five scenarios, we constructed

several (n = 20) virtual brains with 80 nodes each, so that we were

able to analyze similarities and differences corresponding to

normal and pathological conditions.

In order for (1) to have stable dynamics, i.e. to prevent that the

traces of neural activity grow unbounded, the real part of every

eigenvalue of W must be negative. Additionally, since the

connectivity matrix is real, complex eigenvalues must exist as

conjugate pairs, each of which prescribes a peak in the PS. The

complex eigenvalues with positive imaginary part are shown in

Fig. 1B for the Normal, Incomplete and Entrained groups. The

remaining eigenvalues (not shown) are real valued and were

randomly chosen from a uniform distribution bounded by the

minimum and maximum real values of the Normal distribution

(abscissa, Fig. 1B). The analytic power spectra resulting from the

eigenvalues of W are displayed in Fig. 1C. These spectra recreate

the defining features of real data from the studies cited above.

Having determined the eigenvalues of W, we ran the IEP to

obtain W itself. In the case of the Normal group, connectivity

matrices demonstrated sparse connectivity and a high degree of

stratification of connective strengths (Fig. 2A). This stratification is

still evident when rescaled by the cubic root (Fig. 2B) to enhance

the contrast between weak and strong connections. Self connec-

tions (the diagonal) are strictly inhibitory (negative). We also note

an overall balance between excitatory and inhibitory connections,

Author Summary

The fact that the brain generates weak but measurable
electromagnetic waves has intrigued neuroscientists for
over a century. Even more remarkable is the fact that these
oscillations of brain activity correlate with the state of
awareness and that their frequency and amplitude display
reproducible features that are different in health and
disease. In healthy conditions, oscillations of different
frequency bands tend to minimize interference. This is
similar to radio stations avoiding overlap between
frequency bands to ensure clear transmission. During
epileptic seizures, mutual entrainment, analogous to
interference of radio signals, has also been reported.
Moreover, in schizophrenia and autism, there is a loss of
higher frequency oscillations. Most studies thus far have
focused on the mechanisms generating the oscillations, as
well as on their functional relevance. In contrast, our study
focuses on what brain rhythms tell us about the functional
network organization of the brain. Using a reverse-
engineering approach, we construct abstract networks
(virtual brains) that display oscillations of actual brains.
These networks reveal that brain rhythms reflect different
levels of hierarchical organization in health and disease.
We predict specific alterations in brain connectivity in the
aforementioned diseases and explain how clinicians and
experimentalists can test our predictions.

Brain Rhythms and Network Organization
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observable in the trial-averaged distribution of connection

strengths (Fig. 2C). The distribution of weights is long-tailed in

both the positive and negative directions, and the vast majority of

connections have minimal strength, especially when compared to

the maximal connection strengths. The units of Wij are Hz, so the

range of Wij values scales with the effective bandwidth of the

prescribed power spectrum. For instance, the spectrum for the

Normal group contains significant power between 0 and 300 Hz.

Thus, the absolute value of most elements in Wij roughly spans the

same interval, as shown in Fig. 2C.

Once the inverse problem has been solved, the forward problem

can easily be computed by integrating (1) numerically. We

compared the PS for the Normal group obtained analytically

from expression (2) in Methods with the PS calculated numerically

from the simulated channel traces (Fig. 2D). We observed good

agreement between the analytic and numeric values. We also

calculated a rank parameter based on the Total Nodal Strength

(TNS), the sum of the absolute value of all the input and output

connection strengths associated with a node. In this way, each

node’s TNS is calculated, and these values were ranked in

descending order to yield TNS rank: low rank nodes have the greatest

TNS, high rank nodes the least. We selected a 3-second epoch for

channels selected from three TNS rank regimes: low (rank = 7, 8,

9), medium (rank = 38, 39, 40), and high (rank = 79, 80). These

dynamics (Fig. 2E) demonstrate common features to all virtual

brains in the Normal group and change considerably between low

and high ranked nodes. We observe network events, in which

changes in dynamics correlate across channels, but we do not

observe global entrainment; the dynamics of each channel are not

strictly entrained to all other channels at all times (Fig. 2F). We

also observe the appearance of spindle waves, wherein a transient

oscillatory frequency, usually an increase from time-averaged

dynamics, waxes, sustains, and wanes; observed most easily in the

low rank nodes (Fig. 2E and 2F) corresponding to larger TNS.

We next investigated the distribution of spectral power between

channels. Spectrograms (time-resolved power spectra) were

computed for the dynamics of nodes with different TNS ranks.

We selected nodes from TNS rank regimes of high (rank = 77, 79;

Fig. 3A), medium (rank = 39, 42; Fig. 3B), and low (rank = 1, 3;

Fig. 3C). We note that low TNS (high TNS rank) correlates with

reduced high-frequency content (Fig. 3A), and note that such

nodes show primarily slow frequency fluctuations, which are

characteristic of pink noise. Nodes of medium TNS demonstrate

the appearance of some medium and high frequency content

(Fig. 3B), but the frequency characteristics are variable across

nodes of similar rank. The spectrograms for low-ranked nodes

(Fig. 3C) show the presence of all prescribed frequency content,

with differing balance. Supporting Fig. S1 plots the analytical

power spectra for various nodes from a matrix of the Normal

group and each of the other groups studied below. We note again

clear spectral differences for different nodes and a richer spectral

structure for nodes with low TNS rank.

Given that spectral content of channel dynamics is distributed

heterogeneously across TNS rank, we were interested in the role

played by each node in affecting the dynamics observed in the

whole network. To investigate this, we removed an individual

node from the network, and analytically calculate the resultant

perturbed PS. This is plotted in Fig. 3D, where the abscissa is the

Figure 1. Reverse-engineering Virtual Brains. (A) Schematic representation of EEG/MEG recordings and the forward and inverse problems. W is
the matrix of functional brain connectivity; xi(t) is the recording from the i-th channel. (B) Eigenvalues defining the peak frequency and half width at
half maximum in the power spectrum. (C) Power spectrum.
doi:10.1371/journal.pcbi.1002207.g001
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TNS rank of the singular removed node, the ordinate is the

frequency and the color represents power from zero (dark blue) to

highest (red). We see that removing low rank nodes affects the

power spectrum the most, but no node’s removal eliminates or

adds peaks; rather, the removal of a node shifts and scales the

existing peaks. The correlation between the rank of the removed

node and the resulting spectral error was then calculated (Fig. 3E)

as the normalized sum of absolute difference between the log10 of

the spectra. For all cases where spectral peaks are prescribed, the

correlation is high, signifying that nodes of increasing TNS rank

contribute decreasingly to the PS. This suggests that the presence

of brain rhythms is by itself indicative of a hierarchical network

structure, where the removal of highly connected nodes (hubs) can

have a major impact on the network dynamics. Consistent with

this, in the Background group case, which lacks spectral peaks and

hence brain rhythms, the correlation is significantly reduced,

indicating a fundamental difference in stratification of nodes and

channel dynamics.

In addition to the Normal group, we also studied the remaining

scenarios mentioned above. We first investigated the connectivity

matrices of the virtual brains returned for these cases (Fig. 4). The

Background group (Fig. 4A–C) differs the most from all other

groups. The side lobe in the distribution of connection strengths is

centered about 21 and accounts for the matrix diagonals (self

connections), while the off-diagonal elements are centered about 0

(Fig. 4C). In the case of the Incomplete and Entrained groups

(Fig. 4D–I), we note less dominance of the diagonal and greater

connection strength stratification than in the Background case, but

a more dominant diagonal and less stratification than in the

Normal case. In all groups, the range of strength values scales with

the effective bandwidth of the prescribed spectrum.

We next investigated the dynamics evolved from these networks,

in the same manner as with the Normal group. The dynamics for

the Background group shows clear differences from any other

group: dynamical features are the same regardless of TNS rank

(Fig. 5A) and comprised solely of pink noise, where no oscillatory

frequencies are preferred. The dynamics of the Incomplete group

does show a dependence on TNS rank, where higher frequency

content diminishes with increasing rank (Fig. 5B). However, the

Incomplete group does not display the kind of transient activity

(spindles) observed in the Normal group. We also observe weaker

and less frequent network events. The Entrained group demon-

strates the second greatest deviation from the behavior observed in

the Normal and Incomplete groups. The Entrained dynamics

again show a dependence on TNS rank (Fig. 5C), and additionally

demonstrate overall channel entrainment (Fig. 5D), observable at

2.7 and 8.1 Hz, but existent across all frequencies. The Entrained

group dynamics also demonstrate fluctuations reminiscent of

‘‘sharp waves’’, which resemble an ictus in recordings from

epileptic brains, observable in the dashed square shown in Fig. 5E.

The interactions between channel pairs can also be investigated

via two spectral properties: the coherence and the phase spectrum

(see 13 in Methods). For each frequency component, the former

quantifies the fractional part of the signal power that is produced

by the coupling with the other channel. The latter represents the

relative phase lag of the oscillations in both channels at each

frequency. Supporting Fig. S2 and S3 respectively show examples

of coherence and phase lag for various pairs of nodes with different

TNS rank from one virtual brain of each group. The spectra of

those nodes are shown in Fig. S1. For all groups except the

Background group, the coherence is high at each frequency, when

both nodes in the pair have a low or moderate TNS rank. The

coherence at high frequencies drops off when both nodes have

high TNS rank. The drop-off is more pronounced for the

Incomplete group. For the Background group, the coherence

tends to decay quickly with the frequency. The phase spectrum

(Fig. S3) shows that for most node pairs in all groups except the

Background group, there is a fair degree of variability in the phase-

lag as a function of the frequency regardless of the nodes’ rank

(note the wrap-around boundaries of the y-axis). Perhaps the most

obvious feature is the tendency of pairs from the Background

group to oscillate at high frequencies with a relative lag of a

quarter of a cycle +p=2.

We then investigated structural measures for the virtual brains

in the five groups. First, we studied the standard deviation (mean

amplitude) of channel fluctuations and its relationship with the

inputs to the corresponding nodes. There was some variability

with respect to the standard deviation averaged across channels

within and between groups (Fig. 6A). We then computed for each

virtual brain, the correlation coefficient between the standard

deviation of each node’s dynamics to two measures of the node’s

connectivity: the total excitatory input (Fig. 6B), and total

inhibitory input (Fig. 6C). The totals were calculated by summing

the absolute values of all excitatory or inhibitory input connections

to a node. We found that in the Background group, there was a

positive correlation between the overall amplitude of the signal

fluctuations and the total amount of excitation received by the

nodes (Fig. 6B). In contrast, there was a negative correlation in the

Normal and Entrained groups. This is an important result for

clinical analysis of ongoing EEG and MEG signals: nodes with

smaller fluctuations tend to receive more excitatory drive. The

virtual brains of the Incomplete case, however, show no

correlation between fluctuation amplitude and total excitatory

input. The Random group, investigated as a control, shows a

spread across both positive and negative correlation. This is not

surprising, since all virtual brains of this group have different

spectra with randomly shuffled peaks.

Group-wise correlation between fluctuation amplitude and total

inhibitory input match those of excitatory input (Fig. 6C), as the

virtual brains from all groups show a strong correlation between

the total excitatory input and the total inhibitory input impinging

on a node (Fig. 6D). Moreover, there is a strong negative

correlation between the net input to a node (sum of all elements in

a row of W) and the net output (sum of all elements in the

corresponding column of W) from that node (Fig. 6E). Thus, if the

total input to a node is excitatory, the total output from that node

tends to be inhibitory, and vice versa. The only exception is again

the Background group. In brief, the properties shown in Figs. 6D

and 6E ensure an overall balance between excitation and

inhibition in the virtual brains, and hence their dynamical stability.

Next, we employed a measure developed by Tononi, Sporns, and

Edelman (TSE) to quantify neural complexity based on the

covariance matrices of the signals [17], which we analytically

derived from each connectivity matrix (Fig. 6F; see also 15 in

Methods). The Background group clearly shows smallest complexity.

This implies that the presence of brain rhythms is associated with

higher structural complexity. Among the other groups, except the

Random group which is not physiologically relevant, we note that

Figure 2. Characterization of the Normal Virtual Brains. (A) Example connectivity matrix from Normal group (B) and rescaled by cubic root.
(C) Trial-averaged histogram of connection strengths. (D) Analytic and numeric power spectrum. (E) Selected epochs of dynamics from three regimes
of TNS: low, medium and high ranks. (F) Magnified view of low-rank dynamics.
doi:10.1371/journal.pcbi.1002207.g002
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Figure 3. Nodal contributions to brain rhythms. (A) Spectrograms from high-ranked nodes, (B) from medium-ranked nodes, and (C) low-
ranked nodes. (D) Power spectrum after the removal of an individual node of given rank. (E) Correlation of TNS rank to error between the
unperturbed and the perturbed spectra from (D).
doi:10.1371/journal.pcbi.1002207.g003
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complexity is largest for the Normal virtual brains as compared to

the Entrained and Incomplete virtual brains, which model

pathological conditions. Remarkably, this suggests that neural

complexity is also an indicator of brain fitness. The Normal group

does not maximize TSE complexity, however, as at least one

realization of the Random group displays larger complexity.

Early work on TSE complexity demonstrated that this measure is

largest for hierarchical networks [17]. We next investigated the

hierarchical structure of the virtual brains. We first plotted the TNS

vs. the rank (Fig. 6G). The TNS was normalized, so that the TNS

for the lowest rank was one, and averaged across all virtual brains

from the same group. Vertical lines in Fig. 6G indicate the 50th

percentile of ranked TNS, i.e., the nodes up to that rank account for

50% of the total nodal strength in the whole network. Hierarchical

networks are characterized by a steep decay of TNS with the rank

and by a low 50th percentile of ranked TNS, and we observe such a

decay for the Normal and Entrained groups. The virtual brains

from the Incomplete group display only a moderate hierarchical

structure, whereas the Background group shows no hierarchical

structure whatsoever. This suggests that brain rhythms reflect a

hierarchical network where a few nodes are strongly connected to

many, whereas most nodes are only weakly connected to the rest.

Along the lines of previous studies [18], we then asked what

specific structural motifs (network graphs and subgraphs) may

account for the differences in TSE complexity we observed. We

focused on connectivity patterns among nodes below the 50th

percentile of ranked TNS, i.e. among the nodes with greater

connective strength. Even in this case, the number of subgraphs to

Figure 4. Characterization of non-Normal Virtual Brains. (A) Example connectivity matrix from Background group, (B) rescaled by cubic root
(C). Histogram of connection strengths from Background group. (D–F) Similarly for the Incomplete group and for the Entrained group (G-I).
doi:10.1371/journal.pcbi.1002207.g004
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consider is phenomenally high. However, due to the nature of our

problem, some educated guesses on relevant motifs can be made.

For instance, from linear algebra we know that at least two nodes

are necessary in order for system (1) to have a spectral peak, which

is the minimum number of nodes required to have a complex

eigenvalue of W and its conjugate. For the same reason, in order to

study interactions between two spectral peaks, the minimum

number of nodes to consider in a subgraph is four. From linear

algebra we also know that a simple way of obtaining complex

eigenvalues consists in having graphs with a circulant connectivity

matrix (a particular case of a Toeplitz matrix), which represents a

cyclic loop. Taking all these pieces of information into account, we

considered subgraphs with up to five nodes representing cyclic

loops with both, single and reciprocal (feedforward and feedback)

connections. In addition, we considered subgraphs with radial

connectivity, in which a given node is linked to other nodes with

reciprocal connections, but the connections among these nodes are

not considered. All these subgraphs and their probabilities of

appearing in all scenarios are shown in Supporting Figs. S4 and

S5. An explanation of how the probabilities were calculated is

presented in Methods. A selection of relevant network motifs is

shown in Fig. 6H. We first note that for all groups with spectral

peaks, the most common motif of two reciprocally coupled nodes

is the one having forward excitation and feedback inhibition or

vice versa. This helps maintain the overall balance between

excitation and inhibition. Second, we note that a given type of

cyclic loop with reciprocal connections is more frequent in the

Normal group as compared to the Incomplete and especially the

Entrained group. This is the cycle in which each feedforward

excitatory connection has inhibitory feedback (Fig. 6H, dashed

squares). As the number of nodes in the cycle increases, the

predominance of this subgraph increases in the Normal group as

compared to the Entrained and Incomplete groups. Third, we

note that for the Entrained group, cyclic subgraphs in which two

nodes are connected through reciprocal inhibition and the rest are

counterbalanced have a much higher probability than in the

Normal and Incomplete groups (Fig. 6H, dashed triangles).

Fourth, we note that radial subgraphs in which each feedforward

excitatory connection is counterbalanced with feedback inhibition

are less probable in the Normal group, as compared to the

Incomplete and even more clearly to the Entrained group (Fig. 6H,

dashed prolate ovals). Fifth, in the Entrained group, radial motifs

in which two nodes are connected through reciprocal excitation,

but the remaining connections are counterbalanced, are much

more probable than in the Normal and Incomplete groups

(Fig. 6H, dashed oblate ovals). In brief, the three groups that are

physiologically relevant possess clearly different probabilities of

certain motifs. In particular, the Normal group is characterized by

cyclic graphs with balanced feedforward excitation and feedback

inhibition, as well as by radial motifs in which the symmetry

between excitation and inhibition is broken. Deviations from these

structural patterns may be indicative of a pathological condition,

as suggested by the results from the Incomplete and Entrained

groups.

Discussion

The existence of brain rhythms has intrigued neuroscientists

since the early observations of electrical brain activity by Richard

Caton in the late 19th century [19], and later by Hans Berger, who

recorded and documented electrical oscillations in the human

brain with an unprecedented level of detail in the beginning of the

20th century, despite the technological constraints of the time

[19,20]. The functional relevance of network oscillations has been

debated ever since. Substantial progress has been made over the

last few decades with experiments and computational models in

our understanding of the biophysical mechanisms generating brain

rhythms, and in particular, on neuronal synchronization

[1,3,4,21–24]. However, the functional role of those oscillations

is still unclear. The approach taken in this paper was to investigate

functional aspects of oscillatory brain dynamics, rather than the

mechanisms underlying those oscillations. Our focus was not on

how oscillations are generated or why. Instead, we started off with

an agnostic approach and focused on what oscillations tell us about

functional brain connectivity.

To this end, we applied a reverse-engineering strategy using a

generic mathematical model of high-dimensional stochastic

dynamics, namely, a multivariate Ornstein-Uhlenbeck process

(1). It is important to mention that there is no contradiction

between such a stochastic linear model and the fact that brain

dynamics are strongly nonlinear, because we do not intend to

model neuronal dynamics per se. Instead, we use a phenomeno-

logical model of the recorded signals, which are electromagnetic

fields that do superimpose linearly. An analogue dichotomy takes

place in weather forecasting. Although the dynamics of air masses

is turbulent, chaotic and therefore, unpredictable, when consid-

ered over a large area the flow of air masses becomes predictable

within a time window of a few days. This coarse dynamics of air

masses fits well a linear multivariate stochastic process, which can

then be used to accurately forecast variations and co-variations of

air pressure and temperature in several locations [25]. In neural

models, the strong nonlinear dynamics of single neurons when

averaged over a fairly large spatial range displays regularities that

make a stochastic linear model suitable for the description of large-

scale activity. We also note that nonlinear neuronal networks, like

those based on the celebrated Wilson-Cowan model [26,27] and

the neural-mass models [28–34] frequently possess hyperbolic

equilibria. Linearization of the dynamics around a hyperbolic

equilibrium leads to model (1) when stochastic perturbations are

included. A recent paper has taken advantage of this fact to

investigate the link between connectivity and spontaneous activity

patterns in a neural network model [13].

Using our reverse-engineering approach, we have demonstrated

that the power spectrum of neural recordings conveys significant

information about the functional, though not necessarily anatom-

ical, connectivity of the brain. We have first reconstructed virtual

brains displaying multi-oscillatory dynamics over a 1=f a

background that resemble those of field potentials from EEG

traces and magnetic fields from MEG recordings. We have then

shown that the presence of these brain rhythms is indicative of a

hierarchical network structure with high complexity, in which

certain motifs with reciprocal connections are more probable than

others. We have finally shown that alterations of the multi-

oscillatory activity lead to a reduction of neural complexity,

changes in the hierarchical structure, and changes in the

probability of finding certain motifs. Alterations were imposed

either by reducing the high-frequency content or by allowing

cross-talk (in the form of entrainment) between different rhythms.

Figure 5. Dynamics for non-Normal Virtual Brains. (A) Selected epochs of dynamics for Background group from three regimes of TNS rank:
low, medium and high rank. (B) Same for Incomplete group (C) and for Entrained group. (D) Superimposed traces from Entrained group. (E) Trace
from Entrained group showing sharp waves.
doi:10.1371/journal.pcbi.1002207.g005
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Neural complexity, as defined by Tononi, Sporns and Edelman

[11], can thus be regarded as a measure of brain fitness. This is

consistent with recent MEG studies revealing decreased functional

connectivity, measured as large-scale coordinated dynamics (long-

range phase synchronization) in autism-spectrum disorders [35].

Our results complement previous models of neural dynamics

underlying field potential recordings. Recent computational work

by Miller et al. [36] demonstrates that neuronal inputs with

Poisson statistics plus synaptic filtering and passive Ohmic filtering

in the tissue can account for the power-law drop-off of the spectral

background observed in subdural recordings. Without Ohmic

filtering, the drop-off decreases as 1=f 2, but with Ohmic filtering,

which in their model acts as a low-pass filter, the drop-off

decreases as 1=f 4. An important consequence is that the drop-off

does not reflect any specific features of the connectivity but rather

is a general property of random baseline activity. Our results are

consistent with that model in the sense that the spectral

background does not convey any information about structural

complexity of the underlying networks. Indeed, virtual brains

obtained from the Background group are not hierarchically

organized. On another note, the drop-off of the spectral

background decreases as 1=f 2 in our model, which is a

consequence of system (1) being an Ornstein-Uhlenbeck process

when driven with white noise. Indeed, Ornstein-Uhlenbeck

processes are general models of Brownian motion and hence,

display a 1=f 2drop-off. However, if system (1) is driven with low-

pass filtered noise (e.g. 1=f 2noise), then the spectral drop-off

decays as 1=f 4, as shown in Supporting Fig. S6. We also show in

Fig. S6 that in the low frequency range, the slope of the spectrum

on a logarithmic scale can be made steeper or shallower by

increasing the density of real eigenvalues to the right, i.e. less

negative (Fig. S6B) or to the left, i.e. more negative (Fig. S6C),

respectively (dashed lines indicate the median of the eigenvalue

distribution).

When driven with white noise, the statistics of model (1) are

Markovian and Gaussian [14]. Transient spindle-like oscillations

represent chance excursions in a Gaussian field that fade out with

an exponential decay. The fact that the model displays these

realistic activity patterns is in our opinion a good validation of our

model despite its simplicity, and suggests that at least some spindle-

like network events may indeed have a probabilistic nature in real

brains. There is, however, evidence for non-Gaussian statistics in

EEG recordings. Recent computational models [37,38] based on

experimental observations [39] show that nonlinear thalamocor-

tical coupling may underlie the bistability observed in alpha

rhythms, a phenomenon that cannot have Gaussian statistics, and

hence, cannot be accounted for by our model. We note, however,

that our model does not take into account thalamocortical

coupling (or any other anatomical structures) explicitly, which

may certainly enrich brain dynamics with strongly non-linear and

non-Gaussian features.

Regarding the size of the networks investigated, we chose 80

nodes as a trade-off between computing time and network size,

since the time needed to solve the inverse problem increased

exponentially with network size. We felt 80 nodes was an

appropriate network size as it is much larger than the number of

electrodes in EEG studies (typically 20). Current MEG studies may

use up to 300 SQUIDS but the signals recorded in neighboring

sensors overlap considerably, and thus fewer distinct sources can

be resolved after independent component analysis. In our

simulations, a hierarchical structure was already apparent in

virtual brains of 20 nodes. To test whether this was an artifact of

small network size, we progressively increased the size to 40, 50, 60

and finally 80 nodes. Looking at motifs in the 80-node networks,

we note a prevalence of bidirectional links. This is consistent with

structural connectivity studies in the macaque showing that 85%

of the cortical fiber tracts are bidirectional [40]. We also

investigated solutions with size 85, 90, and 100 nodes, and found

that the convergence of the inverse problem required a prohibitive

amount of computational time, and networks did not display any

marked changes from size 80 networks with the measures

investigated.

Our model provides some insight into the functional role of

oscillations. We found, for instance, that the virtual brains do not

have pace-making nodes. The oscillations are distributed across

nodes but not all nodes oscillate with the same frequencies and the

nodes that are strongly connected tend to display more frequencies

and richer patterns, as shown in Fig. 5 and Supporting Fig. S1. In a

cognitive context, this inhomogeneous distribution of brain rhythms

across nodes supports the idea that oscillations may act as a

mechanism for linking perceptual information across sensory and

associative areas, as stated by the so-called binding hypothesis [41].

The relationship between our model and cognitive function is

also apparent from another perspective. Current views on the

brain-mind continuum propose that in certain neuropathologies

there is increased excitability but decreased variability (activity

fluctuations), which indicates an alteration of functional coupling

compared to the healthy brain [42]. This is particularly clear

during epileptic seizures, when the mean excitability increases but

the activity becomes less variable in time and space. More

generally, the inverse relation between excitability and variability

(more of one, less of the other or vice versa) may be a fairly

important property of the brain, which is captured by the Normal

and Entrained groups of virtual brains. For these two groups, the

standard deviation of field-potential fluctuations correlates in-

versely with the excitatory drive to a node (Fig. 6B). Interestingly

enough, this correlation does not exist in the Incomplete group,

which models neuropathologies associated with cognitive deficits.

We find it quite remarkable, that the channel-averaged power

spectrum alone contains sufficient information to reconstruct

virtual brains which are clearly distinct across groups. This

suggests that the spectral features shown in Fig. 1D, namely evenly

spaced peaks on a logarithmic frequency band, are quite

fundamental and carry significant information about the brain’s

function and structure, as previously speculated by other authors

[1–3]. One expects, however, that if instead of using the channel-

averaged power spectrum one used the spectrum of each channel,

as well as the cross-spectra, one may be able to reconstruct virtual

brains with many more features. For that, however, one would

need data sets from actual recordings, since those spectra are not

found in the literature with sufficient detail. Another extension of

the approach presented here would consist in endowing the

connectivity matrix with spatial relationships. The relative position

of the nodes (recording channels) is irrelevant to our study, and our

Figure 6. Comparisons between groups. (A) Channel-averaged standard deviations of dynamics for all virtual brains in all groups. (B) Nodewise
correlation between standard deviation and total excitatory input. (C) Same for total inhibitory input. (D) Correlation between total input excitation
and inhibition, and (E) between total input and total output. (F) TSE complexity. (G) Hierarchical structure of the virtual brains. The decay of TNS with
TNS rank indicates a pronounced nodal hierarchy for the Normal and Entrained groups, that is less pronounced for the Incomplete group and absent
in the Background group. (H) Relevant motifs appear with different probabilities in different groups.
doi:10.1371/journal.pcbi.1002207.g006
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current algorithm does not take it into account. In order to

implement all these extensions, our reverse-engineering approach

would need to be expanded, thereby increasing its already high

computational cost.

We predict that some of our results on virtual brains will also be

found in actual brains in health and disease. Clinical and

experimental groups interested in testing our predictions may

proceed in two steps. They will first obtain W by linear regression

of the recorded data and their time derivative to system (1). They

will then perform the analyses displayed in Fig. 6, in particular 6F–

H, and compare their results with ours. Future work should also

explore the link between functional network connectivity and

anatomical connections between neuronal populations, which was

not the scope of our project but is a natural extension of it. This

challenging task, however, will require a multiscale modeling

approach, based on accurate descriptions of the anatomy and

physiology of the brain that include synaptic and dendritic

filtering, as well as axonal delays, which are known to play an

important role in resting brain fluctuations [43]. Previous work by

other authors indicates how different levels of organization can be

integrated successfully into models of neural activity [29–

31,33,34,44,45], which can explain the emergence of spatiotem-

poral patterns of EEG activity. These approaches, in particular,

neural-mass models [29,33,34,44,46,47] are promising to find out

the relationship between the functional connectivity matrix

investigated here and the physiological parameters referred to

above. We note that in order to investigate spectral properties of

field potentials, like the frequency and dampening of network

oscillations, neural-mass models are linearized around the steady

state [44,47]. In addition, fluctuations around the mean voltage

are assumed to be driven by white noise [47]. In a spatially discrete

rather than a continuum neural-mass model, this would lead to a

linear stochastic equation equivalent to model (1). Proceeding this

way, one may find a useful link between neural-mass models and

ours, since the connectivity matrix will be determined by the

parameters of the neural-mass model that account for synaptic and

dendritic filtering as well as axonal delays and thalamocortical

coupling. This connection between neural-mass models and our

model deserves further attention in future studies.

Methods

1. The forward problem: From network connectivity to
spectral properties of network dynamics

Recordings of macroscopic brain activity can be modeled as a

linear multivariate stochastic process [12,17]. The modeled

dynamics are multivariate because different channels (e.g., EEG

electrodes or MEG ‘‘SQUID’’ detectors) capture different,

although not totally independent, signals. The dynamics are

stochastic because the signals can be forecast only over a short-

time window and up to a given confidence level. And finally, they

are linear because the electromagnetic fields and potentials

generated by the activity of thousands of neurons under the scalp

superimpose linearly. The phenomenological model of EEG,

MEG or field-potential signals is given by equation (1). If the

element Wij is positive, the rate of change of activity in xi increases

when the activity of xj is above its mean, which is zero. If Wij is

negative, the rate of change decreases. If Wij is zero, the activity of

xi is not directly influenced by the activity in xj. Hence, the sign of

Wij can be thought of as functional excitation and inhibition,

although these do not necessarily represent excitatory and

inhibitory synaptic connections on a cellular level. As a result,

the network nodes are not subject to Dale’s principle, so that a

given node can excite and inhibit different nodes at the same time.

Note also that the units of Wij are reciprocal of time, i.e. frequency

units (Hz in our case). We emphasize that Wij are not synaptic

connections but represent functional coupling between brain areas

from which the neural signals are recorded.

From (1), the direct or forward problem is easily solved: Given a

connectivity matrix W, what is the power spectrum P(v) averaged across EEG

channels? Using matrix notation, the answer is:

P(v)~
s2

N
trace B(v){:B(v)

� �{1
h i

withB(v)~ivI{W , ð2Þ

where the dagger ‘‘{’’ denotes the conjugate transpose, i is the

imaginary unit, I is the identity matrix, N is the number of

channels (nodes) and s is the standard deviation of the residuals.

The solution to the inverse problem is much more difficult: What is

the underlying architecture, W, which gives rise to a given power spectrum,

P(v)? This problem does not have a unique solution. In fact, there

may be an infinite number of connectivity matrices (or ‘‘virtual

brains’’) leading to the same average power spectrum of the EEG.

We hypothesized that these matrices would have important

features in common.

2. The inverse problem: From spectral properties of
network dynamics to network connectivity

We note that the peaks of the power spectrum (2) are

determined by the eigenvalues of the connectivity matrix, W.

Moreover, the eigenvalues can be inferred from the power

spectrum, P(v). This is a consequence of (1) being a multivariate

Ornstein-Uhlenbeck process, in which W is the drift operator. In

effect, it is well-known in stochastic theory that the power

spectrum of an Ornstein-Uhlenbeck process is a superposition of

Lorentzians whose location on the frequency axis, width and

height are determined by the eigenvalues of the drift operator [14].

In particular, the real part of the complex eigenvalues describes

the half width at half maximum (HWHM) and the imaginary part

describes the peak frequency in radians per time unit. Recipro-

cally, the eigenvalues of W can be inferred from the power

spectrum, P(v). This reduces our network reconstruction problem

to an inverse eigenvalue problem [6], which consists in finding a

matrix with a given set of eigenvalues. Because there might be an

infinite number of matrices with a given eigenvalue set, the

problem needs additional constraints, like prescribing some entries

of the sought matrix. This can be done, for example, by randomly

setting a fraction of entries to zero, i.e. by setting a level of sparseness

for the network connectivity. The convergence of the algorithm is

facilitated by prescribing a lower bound for the sparseness of the

connectivity matrix (number of zero entries). This is a loose

constraint, though, since the matrices that the algorithm converges

to are much sparser than the lower bound prescribed (35%). To be

more precise, the reconstructed matrices do not contain exactly

zero entries but the values of a large fraction of entries are

negligible compared to the values of the dominant nodes (Figs. 2A,

2B and 4). In that regard, the matrices are indeed sparse. Even

with the constraint on sparseness, there may be a large number of

matrices with the same eigenvalue set. It may also occur that there

is no matrix with those prescribed entries and eigenvalues.

Following Chu and Golub [6], a workaround for these issues is

to define the solution in the least square sense: The matrix we are

looking for, W, minimizes the distance to its projection, P(W),

onto the subspace of matrices with the prescribed entries. This

distance in the matrix space represents a residual, or error function

to be minimized, which defines a gradient flow in the space of

matrices. Starting with a random initial condition, the flow

Brain Rhythms and Network Organization

PLoS Computational Biology | www.ploscompbiol.org 12 October 2011 | Volume 7 | Issue 10 | e1002207



converges in the least-square sense to a matrix with the prescribed

eigenvalues and the prescribed entries. More technically, let L be a

diagonal matrix containing the set of eigenvalues that determine

the power spectrum. Then, define the matrix function k(X) as

k(X )~½X T ,X{P(X )�,where the square brackets denote the

commutator, i.e. ½A,B�~AB{BA. Finally, let V be a matrix of

the same size as W, satisfying the following differential equation

dV

ds
~k(VLV{1)V{T , ð3Þ

starting with a random matrix, V(0) as initial condition. The

numerical integration of equation (3) allows us to obtain a

connectivity matrix (virtual brain). In effect, as s??, the product

VLV{1?W . To initialize the integration, V(0) was chosen as a

random matrix, with values taken from a set which was defined to

have a width of one and a random center value between 20.5 and

0.5; thus, initial values were ultimately bounded between 21 and

1, with each trial having its own particular bounds for the

distribution of initial values in V(0), a distribution which was

almost assuredly not symmetric about zero. Candidate random

matrices (size 80680) were created until V(0) had a condition

number less than 200 (in order to assure numerical stability and

reduce computation time), and then the integration was initialized.

Integration was performed with the built-in Matlab ODE solver

ode15s. The integration was halted when the residual given by

R(t)~ VLV{1{P(VLV{1)
�� ��

F

fell below a determined threshold of value 10

:::k kF indicates Frobenious norm
� �

. The residual is a measure

of error between the requested form of the connectivity matrix and

the form at each iterative step, where the iterative solution retains

the prescribed eigenvalues exactly and approaches the prescribed

connective strengths, and is thus proportional to the size of the

connectivity matrix and the number of prescribed entries. At the

beginning of the optimization problem, i.e. for random matrices of

square dimension 80 and condition number less than 200, the

residual is in the range of several orders of magnitude (,104). In

the first few iterations the residual decreases very rapidly; however,

the convergence during a given step decreases quickly with each

subsequent iteration. Empirically, we observed that for networks of

size 80, below a residual value of 10 the convergence rate is

extremely slow, so further iterations do not improve the solution

notably.

For different realizations of the initial condition, the algorithm

converges to different matrices, but all have the prescribed

eigenvalue spectrum. We noted that the method returns

numerically identical connectivity matrices when fed with identical

initial conditions. We also observed only small variation in the

final form of connectivity matrices when initial conditions were

minimally varied. Despite the high degree of variability in the

initial conditions, the IEP converged to matrices whose entries

where symmetrically distributed around zero and shared remark-

able structural features, as shown in Results.

3. Analytical calculation of the coherence and phase
spectrum

Two important spectral quantities, the coherence and the phase

spectrum, can be analytically calculated from equation (1). In

vector notation, equation (1) reads d~xx=dt~W~xxz~gg. After taking

its Fourier transform, equation (1) in the frequency domain

becomes iv:~xx~W ~xxz~gg, where i is the imaginary unit; ~xx~~xx(v) is

the Fourier transform of ~xx~~xx(t) and ~gg~~gg(v) is the Fourier

transform of ~gg~~gg(t). Thus, the signals in the frequency domain

are given by

~xx(v)~ ivI{Wð Þ{1~gg(v),

where I is the identity matrix. The cross-spectrum matrix is then

given by

S(v):~xx(v)~xx(v){~s2 B(v){:B(v)
� �{1

with B(v)~ivI{W ,

where we have used that for white noise ~gg(v)~gg(v){~s2I , and s
being the standard deviation of the white noise process. Note that

the power spectrum of each channel is given by the diagonal

elements of this matrix and hence, averaging the diagonal we

arrive at expression (2), the channel-averaged power spectrum.

The coherency between the i-th and the j-th channel is defined as the

normalized cross-spectrum

Sij(v)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sii(v)Sjj(v)

p ,

which yields a complex number for each value of the frequency.

Finally, the coherence is defined as the magnitude squared of the

coherency, and the phase (angle) of the coherency at each

frequency defines the phase spectrum [48]. Examples of coherence

and phase spectrum analyses are shown in Supporting Figs. S2 and

S3, respectively.

4. Analysis of neural complexity
Neural complexity was calculated as proposed by Tononi, Sporns

and Edelman [17], using the Matlab code provided by Sporns on

one of his Websites [49] that computes neural complexity from the

covariance matrix of the dynamics. The covariance matrix was

calculated from (1) as reported below (see 15). Neural complexity

was different across groups and the statistical significance of the

differences was assessed using bootstrap analysis.

Bootstrap analysis for Fig. 6F. The significance tests were

run in Matlab (version 2010a) using bootstrap analysis. We wanted to

test whether the difference of the means of any two groups was

significantly different. Parametric (e.g. t-tests) and non-parametric (e.g.

Wilcoxon ranksum) tests were not applicable for our data sets, as the

implicit assumptions of these tests were not satisfied. Bootstrap analysis

was performed as follows. We first gathered the 20 data points from

each group into one group with 40 data points. We then drew 20 points

randomly to form a new group, allocating the remaining 20 data points

to form a second group. This way we created random surrogate data

sets from which the difference of the means was calculated. We then

iterated this process one million times to build a probability distribution

of the difference of the means for the surrogate data. If the difference

between the means of the two groups with the actual data was larger

than the 95 percentile of this distribution, then that value was

considered to be statistically significant. The p-value was calculated as

the integral of the distribution from the left end (2‘) up to the actual

value. Significant values were indicated in the figures with one asterisk

if 0.01#p,0.05, and with two asterisks if p,0.01.

5. Covariance of nodal dynamics and functional
connectivity

We now show how to calculate the covariance matrix of neural

activity from the connectivity matrix. Starting with (1), the

covariance matrix is defined as
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C~S~xx(t)~xxT (t)T

where the brackets indicate temporal average. From stochastic

theory [14], we know that the relationship between the covariance

matrix and the drift operator in (1) is given by

WCzCW T~{2Q, ð4Þ

where Q is the covariance matrix of the background noise, which

in our case is uncorrelated across channels and with standard

deviation s, thus, we have Q~s2I . Let D be a diagonal matrix

with the eigenvalues of W, so that Dii = li, and L the matrix of

eigenvectors, so that the eigenvalue decomposition of W reads

D~L{1WL ð5Þ

Define ~CC~L{1CL{{and ~QQ~L{1QL{{, where the dagger ‘‘{’’

denotes the conjugate transpose. Then, upon substitution of (5) in

(4) one obtains D ~CCz~CCD{~{2 ~QQ, or equivalently, li
~CCijz

~CCijl
{
j ~{2 ~QQij , which implies that

~CCij~{
2 ~QQij

lizl{j
,

and finally

C~L {
2 ~QQij

lizl{j

 !
L{: ð6Þ

A similar derivation has been previously reported in [13]. In that

paper the temporal evolution of (1) was discretized with a finite

time step Dt. The covariance matrix obtained there is identical

with (6) in the limit of Dt?0.

The diagonal of the covariance matrix contains the variance of

the fluctuations in each channel. Thus, the standard deviation or

mean amplitude of the field-potential fluctuations is just the square

root of the diagonal elements. Hence, equation (6) allows us to

calculate amplitude fluctuations directly from the connectivity

matrix without integrating (1). This method was used for the

analyses displayed in Figs. 6A–C.

6. Searching for structural motifs and computing their
probabilities

We focus on connection patterns between the most relevant

nodes in the network, i.e. those below the 50th percentile of ranked

TNS. Our search for specific motifs was based on educated guesses

as described in the text. Obviously, other relevant motifs may also

exist that have not been considered. The motifs that were

investigated are shown in Figs. 7 and 8. A selection of significant

cases is also shown in Fig. 6H in the main manuscript. We note

that only the sign of the connections is taken into consideration. In

reciprocal connections, we do not distinguish between the

direction of excitation and inhibition. For instance, node A

exciting node B, which inhibits node A (z{), is equivalent to

node A inhibiting node B, which excites node A ({z). Moreover,

motifs obtained by permutations of the reciprocal loops are

counted as realizations of the same motif. For example, a motif

with two reciprocal loops (z{jzz) was considered the same

motif as (zzjz{). Taking into account these rules, we

calculated the number M of all possible motifs with n nodes, m

reciprocal loops (or m directed connections in the case of non-

reciprocal connections), and a given topology (radial or circular) in

the 20 virtual brains of each group. The probability, P of a given

motif, is then the number of times, F that it appears relative to the

total number of possible motifs, P~F=M , expressed as a

percentage.

Supporting Information

Figure S1 Power spectra for various nodes of different ranks. (A)
Low rank (strongly connected) nodes. (B) Medium rank nodes.

(C) High rank (weakly connected) nodes.

(EPS)

Figure S2 Coherence between pairs of nodes shown in Fig. S1.

(A) Low rank node versus low, medium and high rank nodes. (B)
Medium rank node versus low, medium and high rank nodes. (C)
High rank node versus low, medium and high rank nodes.

(EPS)

Figure S3 Phase spectrum for the pairs of nodes shown in Fig.

S1. (A) Low rank node versus low, medium and high rank nodes.

(B) Medium rank node versus low, medium and high rank nodes.

(C) High rank node versus low, medium and high rank nodes.

(EPS)

Figure S4 Relevant motifs with two, three and four nodes.

(EPS)

Figure S5 Relevant motifs with five nodes.

(EPS)

Figure S6 Eigenvalue distributions and background power

spectrum for networks driven with white and low-pass filtered

(colored) noise. The low-pass filter time constant was t= 10 ms.

(A) Uniform distribution of real eigenvalues. (B) Eigenvalue

distribution skewed to low negative eigenvalues. (C) Eigenvalue

distribution skewed to high negative values.

(EPS)
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