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Abstract

Although the metabolic networks of the three domains of life consist of different constituents and metabolic pathways,
they exhibit the same scale-free organization. This phenomenon has been hypothetically explained by preferential
attachment principle that the new-recruited metabolites attach preferentially to those that are already well connected.
However, since metabolites are usually small molecules and metabolic processes are basically chemical reactions, we
speculate that the metabolic network organization may have a chemical basis. In this paper, chemoinformatic analyses on
metabolic networks of Kyoto Encyclopedia of Genes and Genomes (KEGG), Escherichia coli and Saccharomyces cerevisiae
were performed. It was found that there exist qualitative and quantitative correlations between network topology and
chemical properties of metabolites. The metabolites with larger degrees of connectivity (hubs) are of relatively stronger
polarity. This suggests that metabolic networks are chemically organized to a certain extent, which was further elucidated in
terms of high concentrations required by metabolic hubs to drive a variety of reactions. This finding not only provides a
chemical explanation to the preferential attachment principle for metabolic network expansion, but also has important
implications for metabolic network design and metabolite concentration prediction.
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Introduction

One of the most intriguing findings in systems biology is that

despite the varied constituents and metabolic pathways of three

domains of life, their metabolic networks exhibit the same scale-

free organization. That is, a small part of metabolites participate in

a large number of reactions (which are also termed hubs), while

others are involved in a few reactions [1]. As the scale-free

architectures are robust and error-tolerant, this finding provides

meaningful insights into the design principle of metabolic

networks.

The scale-free organization of metabolic networks has been

hypothetically explained in terms of evolution that the new-

recruited metabolite members attach preferentially to those that

are already well connected (rich get richer, also known as

preferential attachment principle) [2–4]. This implies that the

metabolic network hubs originated relatively earlier than others in

evolutionary history [5]. However, several issues about this

evolutionary explanation remain elusive. First, the molecular basis

of preferential attachment principle has not been fully elucidated,

as it is inexplicable how the new metabolites ‘‘know’’ which

metabolites are well connected. Second, the evolutionary expla-

nation to the metabolic network organization has little implica-

tions for network design, because we do not know how to choose

metabolites as hubs to construct a new metabolic network. Since

most metabolites are small molecules and metabolic processes are

basically chemical reactions, we speculate that the metabolic

network organization may have a chemical basis, which stimulated

our interest to address these issues by combining bioinformatics

and chemoinformatics. The latter is a discipline devoted to

encoding, storing, managing, searching and analyzing all kinds of

chemical data by information technology [6,7].

Results/Discussion

Correlations between network topology and chemical
properties

Primarily, we explored the relationships between network

topology and chemical properties for the metabolites recorded in

Kyoto Encyclopedia of Genes and Genomes (KEGG). As

illustrated in Figure S1, the metabolic network of KEGG is

scale-free. There are 154 metabolites with degrees (defined as the

number of edges linked to the metabolites) higher than 10, while

1180 are connected with only one metabolite. As shown in Table 1

and Figure 1, there exist qualitative and even quantitative

correlations between degree and some chemical properties. In

particular, molecular polarity, characterized by partition coeffi-
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cients (ClogP, AlogP and LogD), ratio of atomic charge weighted

partial positive surface area on total molecular surface area

(FPSA3) and water solubility, rises with the increase of degree.

Similar correlations can be observed for the metabolic networks of

Escherichia coli (E. coli) (Figure 2) and Saccharomyces cerevisiae (S.

cerevisiae) (Table 2). Therefore, it seems that metabolites get more

polar and thus more water-soluble with the rise of degrees, which

implies that the organization of the metabolic networks has a

chemical basis. It is of apparent interest to explore the reasons

underlying these correlations.

Explanation to the correlations between network
topology and chemical properties

As metabolic reactions are basically chemical reactions, it is

natural to resort to chemical principles to explain the correlations.

It is well known that the precondition for a chemical reaction to

occur is DG = DG0 + RTlnQ ,0, where Q is the reaction quotient

and is determined by the relative concentrations of reactants and

products. Thus, for metabolites that participate in a large number

of reactions as reactants (which usually have large degrees, as

shown in Table S4), they must reserve high concentrations

(quantities) to drive the reactions. Since metabolic reactions mainly

occur in non-membrane systems which are hydrophilic environ-

ments, the metabolic network hubs must be highly water-soluble to

reach high concentrations, which means that the hubs tend to be

strong-polar. Therefore, the observed correlations between degree

and chemical properties could be basically explained in terms of

chemical property requirements of metabolic hubs. This explana-

tion is supported by the correlations between degree and

metabolite concentration and between metabolite concentration

and chemical properties.

Recently, the absolute concentrations for over 100 metabolites of

E. coli, exponentially growing in aerobic environment, were

determined by Bennett and co-workers [8]. The concentrations of

the measured metabolites are strongly biased. The top 10 abundant

compounds account for 77% of the total concentration, while the less

abundant half comprise only 1.3%, reminiscent of the topological

structures of metabolic networks. As shown in Figure 3, there exists a

correlation between the concentration and degree for E. coli

metabolites. The metabolites with larger degrees have relatively

higher concentrations and the degrees decline gradually with the

drop of concentrations. However, one may argue that the metabolite

concentrations oscillate during different phases of life, so how the

concentrations of metabolites can correlate with degrees of

connectivity–a static property? The answer resides in the fact that

the amplitude of metabolite oscillation is rather low. For instance,

during the life cycle of a yeast cell the amplitude of metabolite

oscillation is usually within 10-fold, with a median of ,2.4-fold [9].

Therefore, it is reasonable to consider that the observed correlation

between degree and metabolite concentration (at the level of order of

magnitude) is robust.

A stepwise multiple linear regression analysis was conducted by

SPSS (Version 15.0. SPSS Inc. Chicago, IL.) to select the most

meaningful chemical properties from 83 descriptors to correlate

with negative logarithm of E. coli metabolite concentrations

(2LogC). The final regression equation is: 2LogC = 6.105 +
0.431 6 "ClogP" + 15.595 6 "FNSA3" + 16.727 6 "FPSA3" 2

5.333 6"RPCG", in which ClogP, FNSA3 (ratio of atomic charge

weighted partial negative surface area on total molecular surface

area), FPSA3 and RPCG (ratio of most positive charge on sum total

positive charge) are all descriptors characterizing molecular

Author Summary

The metabolic networks of the three domains of life
exhibit the same scale-free organization, which has been
hypothetically explained in terms of preferential attach-
ment principle. Here we reveal that the scale-free
organization of metabolic networks may have a chemical
basis. Through a chemoinformatic analysis on metabolic
networks of Kyoto Encyclopedia of Genes and Genomes
(KEGG), Escherichia coli and Saccharomyces cerevisiae, it
was found that the metabolites with higher degrees of
connectivity (hubs) are of relatively stronger polarity. The
reason underlying this phenomenon is that to drive a
variety of reactions, metabolic hubs have to be highly
concentrated. Since the intracellular environments are
hydrophilic, metabolic hubs have to be strong-polar to
reach high concentrations. This finding has direct implica-
tions for metabolic network design and provides a
chemical explanation to the preferential attachment
principle, which has been validated by numerical simula-
tions of metabolic network expansion. In addition, the
correlations between metabolite concentration, metabolic
network topology and metabolite chemical properties also
suggest that we can use chemical and topological
properties of metabolites to predict their intracellular
concentrations. A support vector regression model has
been successfully established to predict the metabolite
concentrations for Escherichia coli.

Table 1. Mean values of some chemical descriptors for KEGG-recorded metabolites.

Descriptors Characterization Mean values

Degree 1 (n = 1180) Degree 2-6 (n = 3327) Degree . 6 (n = 368)

ClogPa Partition coefficient octanol/water 1.30d 0.70d 21.10d

FPSA3b Ratio of atomic charge weighted partial positive
surface area on total molecular surface area

0.062d 0.067d 0.079d

LogDc Octanol-water partition coefficient calculated taking
into account the ionization states of the molecule

0.43d 20.53d 22.31d

Molecular
Solubilityc

Water solubility, expressed as logS, where S is the
solubility in mol/L

22.91d 22.82d 20.98d

acalculated with Cerius2 (Version 4.11L. Accelrys Inc. San Diego, CA.).
bcalculated with Sybyl (Version 7.0. Tripos Associates Inc. St. Louis, MO.).
ccalculated with Pipeline Pilot (Student Edition. Version 6.1.5. SciTegic Accelrys Inc. San Diego, CA.).
dKruskal-Wallis Test significance at the 0.01 level.
doi:10.1371/journal.pcbi.1002214.t001
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polarity. The fitted concentrations by the chemical properties

correlate well with the experimental values (Figure 4), indicating

that the metabolite concentrations (at least for E. coli) are

determined to a certain extent by their polarity and solubility,

namely, strong-polar metabolites have relatively high concentra-

tions. This finding is similar to the observation about protein

abundance of E. coli that highly abundant proteins are on average

more hydrophilic than those with low copy numbers [10]. However,

in protein-protein interaction (PPI) networks, protein degree is

negatively correlated with concentration [11], just contrary to the

observation on metabolic networks. The underlying reason was

suggested as that the hub proteins of PPI networks tend to use

hydrophobic residues at surface to bind diverse partners through

nonspecific hydrophobic interactions [11]. The cellular concentra-

tions of hub proteins are thus constrained by their hydrophobicity.

Therefore, the different behaviors of PPI and metabolic network

hubs can be well understood by basic chemical rules.

Taken together, the above observations offer an explanation to

the correlation between topology and chemistry of metabolic

networks. This finding also provides new clues to understanding

the molecular basis of preferential attachment principle underlying

the evolution of metabolic networks.

Chemical basis for the preferential attachment principle
Since life originated from water environments, the primordial

metabolites must be highly hydrophilic. With the evolution of

organisms, more and more complex membrane systems evolved,

which required hydrophobic metabolites to perform intercellular

and intracellular communications [12]. As a result, the evolution-

ary direction of metabolites is from hydrophilic to hydrophobic,

which is clearly shown in the chemical evolution of S. cerevisiae

metabolomes (Table 3). According to the correlation between

metabolite concentration and chemical properties (Figure 4), it is

reasonable to infer that the early-originated metabolites have

relatively higher concentrations than the late-recruited counter-

parts in water environments. Since high-concentrated metabolites

have more potential to drive new reactions, it is understandable

why the new-recruited metabolites prefer to select old members as

initial reactants (because they are more abundant and thus more

accessible). Taken together, the present analysis reveals that

metabolite concentration is a key factor to govern the metabolic

network expansion. Although the late metabolites can not ‘‘know’’

which counterpart is well connected, they can ‘‘sense’’ which

member is abundant, which provides a self-consistent explanation

to the preferential attachment principle in terms of chemistry.

This explanation was validated by numerical simulations that

were based on three rules. First, the network expands continuously

by adding new metabolites (vertices) with a constant rate, namely,

n metabolites are added in each step (n = 1 in the present

simulations). Second, the newly added metabolites have lower

Figure 2. Correlations between topological and chemical properties of E. coli metabolites. (A) Degree-Molecular Solubility (mean 6 SE)
correlation (R = 0.835, P,0.001). (B) Degree-PNSA3 (mean 6 SE) correlation (R = 0.796, P,0.001). (C) Degree-Hydrophobe (mean 6 SE) correlation
(R = 20.743, P,0.005). PNSA3 is defined as atomic charge weighted partial negative surface area. Hydrophobe is the number of hydrophobe.
doi:10.1371/journal.pcbi.1002214.g002

Figure 1. Correlations between topological and chemical
properties of KEGG metabolites. (A) Degree-ALogP (mean 6 SE)
correlation for KEGG metabolites (R = 20.778, P,0.001). (B) Degree-
Molecular Solubility (mean 6 SE) correlation for KEGG metabolites
(R = 0.795, P,0.001).
doi:10.1371/journal.pcbi.1002214.g001
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concentrations compared to the old ones, i.e., there is a declining

trend for the concentrations of emerging metabolites. Third, the

metabolites of higher concentrations have higher probability to be

involved in the emerging reactions (edges). The present simula-

tions start with 1 metabolite with the initial concentration (Ci) of

1,000,000 and terminate when a metabolite reaches a concentra-

tion (Cf) of # 10. This concentration range spans five orders of

magnitude, which coincides with the variation range of metabolite

concentrations in E. coli (from ,1027 to ,1022 mol/L) [8]. The

concentration decline (d) in each step is 1,000, with a random

fluctuation (f) of 1,500. As a result, the total number of generated

metabolites reaches around 1,000, which is close to the real

number of metabolites of organisms. The numbers of reactions

(edges) added in each step are 5 or 10. As shown in Figure 5, the

simulations with different parameters exhibit similar power-law

distributions of node degrees, which suggests that the concentra-

tion-governed model provides a viable explanation to the scale-

free organization of metabolic networks.

Implications for metabolic network design
The above finding implies a chemical criterion in metabolic

network design that the polarity of hubs should be compatible with

the working environments to guarantee the high concentrations of

these critical metabolites. If the environments are polar (e.g., water),

one should use hydrophilic molecules as hubs, while if the

environments are non-polar (e.g., hydrocarbon solutions) [13],

hydrophobic molecules should be selected as hubs. This opinion is

preliminarily supported by the fact that the ‘‘core’’ of organic

chemical network (i.e., a small set of strongly connected, chemically

diverse substances) identified by Bishop et al. [14] are really much less

polar than the hubs of metabolic networks (Table 4), well reflecting

the fact that organic chemical reactions are mainly performed in

organic solvents which are less polar than water. Thus, this chemical

criterion is of apparent value in metabolic network design.

Implications for metabolite concentration prediction
A primary goal of systems biology is to quantitatively characterize

cellular behaviors, which requires the information about the

absolute concentrations of metabolites. As the intracellular content

of metabolites is quite low [15], it is a big challenge to determine

their concentrations experimentally. Thus, it is of great significance

to use theoretical methods to do predictions. In a pioneering study,

Kümmel et al established a network-embedded thermodynamic

Table 2. Mean values of some chemical descriptors for S. cerevisiae metabolites.

Descriptors Characterization Mean values

Degree 1-3 (n = 301) Degree 4-15 (n = 285) Degree . 15 (n = 26)

ClogPa Partition coefficient octanol/water 0.46d 20.54d 23.05d

FPSA3b Ratio of atomic charge weighted partial positive
surface area on total molecular surface area

0.066d 0.068d 0.080d

LogDc Octanol-water partition coefficient calculated taking
into account the ionization states of the molecule

20.89e 21.94e 23.88e

Molecular
Solubilityc

Water solubility, expressed as logS, where S is
the solubility in mol/L

22.47e 21.99e 0.11e

acalculated with Cerius2 (Version 4.11L. Accelrys Inc. San Diego, CA.
bcalculated with Sybyl (Version 7.0. Tripos Associates Inc. St. Louis, MO.).
ccalculated with Pipeline Pilot (Student Edition. Version 6.1.5. SciTegic Accelrys Inc. San Diego, CA.).
dKruskal-Wallis Test significance at the 0.05 level.
eKruskal-Wallis Test significance at the 0.01 level.
doi:10.1371/journal.pcbi.1002214.t002

Figure 3. Degree-concentration correlation for E. coli metabo-
lites (P,0.01, Kruskal-Wallis test).
doi:10.1371/journal.pcbi.1002214.g003

Figure 4. Theoretical fitting of E. coli metabolite concentrations
by chemical properties. A stepwise multiple linear regression
analysis was conducted to select the most meaningful chemical
properties that correlate with concentration (C). The final regression
equation is: 2LogC = 6.105 + 0.431 6 "ClogP" + 15.595 6 "FNSA3" +
16.727 6 "FPSA3" 2 5.333 6 "RPCG". The negative logarithm of fitted
concentrations (2LogCf) for 80 E. coli metabolites correlates well with
that of experimental values (2LogCe) (R = 0.704, P,0.0001).
doi:10.1371/journal.pcbi.1002214.g004
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(NET) method to predict intracellular metabolite concentrations

[16]. However, this method depends largely on Gibbs energies of

formation for metabolites, so its use is restricted to a small part of

metabolites. The correlations between metabolite concentration

and their topological/chemical properties revealed in this study

suggest that intracellular metabolite concentrations may be

predicted by their topological and chemical properties.

By using the support vector regression (SVR) [17] method in R

(version 2.11.1), a SVR model was established to predict E. coli

metabolite concentrations by their topological and chemical

properties. This model was evaluated by leave-one-out cross

validation. The squared correlation coefficient is 0.5906 and the

total mean squared error is 0.5316. The fitted metabolite

concentrations by this model correlate well with the original

experimental values (Figure 6). To evaluate the relative contribu-

tion of each descriptor to the performance of SVR model, we

constructed SVR models by deleting one parameter each time and

calculated the squared correlation coefficients of leave-one-out

cross validation by using grid search over supplied parameter

ranges. The smaller the squared correlation coefficient becomes,

the more important the deleted descriptor is to the SVR model. As

shown in Table 5, the deletion of degree results in the lowest

squared correlation coefficient, followed by the deletion of ClogP,

which means that degree and ClogP make most important

contributions to the performance of SVR model.

The E. coli metabolite concentrations that have been predicted

by the NET method [16] were also estimated by the SVR model.

The SVR predictions agree well with the NET results and those

determined by prior experiments (at the level of order of

magnitude) (Table 6). By the SVR method, the intracellular

concentrations for other E. coli metabolites were also predicted and

presented in Table S6, which can be used as initial data in E. coli

metabolic network simulation. As the SVR model only depends on

very basic (topological and chemical) properties of metabolites, it is

expected to be applicable in metabolite concentration prediction

for other bacteria.

In summary, the present analysis indicates that the organization

of metabolic networks has a chemical basis. That is, metabolic

hubs prefer to select relatively strong-polar metabolites. This basis

can be explained in terms of high concentrations required by

metabolic hubs to drive a variety of reactions. The present finding

not only provides a molecular-level explanation to the preferential

attachment principle for metabolic network expansion but also has

direct implications for metabolic network design and metabolite

concentration prediction.

Table 3. Mean values of some chemical descriptors for early and late metabolites of S. cerevisiae.

Descriptors Characterization Mean values

Early metabolites (n = 243) Late metabolites (n = 369)

ClogPa Partition coefficient octanol/water 21.98d 0.98d

FPSA3b Ratio of atomic charge weighted partial positive surface area on total
molecular surface area

0.079d 0.061d

LogDc Octanol-water partition coefficient calculated taking into account the
ionization states of the molecule

23.12d 20.44d

Molecular Solubilityc Water solubility, expressed as logS, where S is the solubility in mol/L 20.74d 23.06d

acalculated with Cerius2 (Version 4.11L. Accelrys Inc. San Diego, CA.).
bcalculated with Sybyl (Version 7.0. Tripos Associates Inc. St. Louis, MO.).
ccalculated with Pipeline Pilot (Student Edition. Version 6.1.5. SciTegic Accelrys Inc. San Diego, CA.).
dMann-Whitney Test significance at the 0.01 level.
doi:10.1371/journal.pcbi.1002214.t003

Figure 5. Numerical simulations of metabolic network expan-
sion. The simulations were based on three rules: i) n metabolites are
added in each expansion step (n = 1 in the present simulations); ii) the
newly added metabolites have lower concentrations compared to the
old ones; iii) the metabolites of higher concentrations have higher
probability to be involved in the emerging reactions (edges). The
simulations start with 1 metabolite with the initial concentration (Ci) of
1,000,000 and terminate when a metabolite reaches a concentration (Cf)
of # 10. The concentration decline (d) in each step is 1,000, with a
random fluctuation (f) of 1,500. (A) The number of reactions (edges)
added in each step is 5; (B) The number of reactions (edges) added in
each step is 10. In both simulations, the number of metabolites (N)
decays with the increase of degrees (D) and follows the equation
N = aD-b.
doi:10.1371/journal.pcbi.1002214.g005
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Materials and Methods

Metabolic network reconstruction and topological
parameter calculation

The KEGG-based metabolic network was reconstructed by

manually screening the 8100 small-molecule reactions recorded in

KEGG Ligand Database (http://www.genome.jp/kegg/ligand.

html) (up to Sep 2009) [18]. The screening criteria are as follows: i)

The reactions involving macromolecules (e.g., polymers, proteins

and nucleic acids) and metabolites with unspecified residues

(denoted by R group) were deleted; ii) Currency metabolites,

including gases, metal ions and cofactors were discarded, except

that they directly participate in metabolic reactions [19,20]. The

resulting small-molecule metabolic network consists of 4875 nodes

(compounds) and 9263 undirectional edges (substrate-product

relations).

The metabolic network of E. coli was reconstructed by manually

screening the 1317 small-molecule reactions for E. coli K-12

recorded in EcoCyc Database (http://www.ecocyc.org) [21]. The

screening criteria are the same as above described. The resulting

small-molecule metabolic network consists of 601 nodes (com-

pounds) and 1538 undirectional edges (substrate-product rela-

tions).

The metabolic network of S. cerevisiae was reconstructed by

manually screening the 1923 small-molecule reactions recorded in

YEASTNET (http://www.comp-sys-bio.org/yeastnet) [22]. The

screening criteria are the same as above described. The resulting

small-molecule metabolic network consists of 612 nodes (com-

pounds) and 2654 undirectional edges (substrate-product rela-

tions).

The parameters describing the network topology were calcu-

lated by Network Analyzer Plugin in Cytoscape-2.7.0 [23,24]. The

node degree of a node n is defined as the number of edges linked to

n. The basic information for KEGG, E. coli and S. cerevisiae

metabolites that are involved in the metabolic networks are

presented in Tables S1-S5.

Identification of early and late members of S. cerevisiae
metabolome

To elucidate the molecular basis of preferential attachment

principle underlying the evolution of metabolic networks, we

identified the early and late members from S. cerevisiae metabo-

lome. Recently, Prachumwat and Li classified yeast proteins into

five age groups, according to the occurring patterns of their

orthologs in other species [25]. The oldest age group, consisting of

1806 members, includes proteins that can be traced back to

eubacterial genomes. Among these proteins, 972 are enzymes.

According to the KEGG records, 633 metabolites associated with

these ancient enzymes were collected, 12 of which are aerobic

metabolites (according to the aerobic metabolite information

provided by Raymond and Segrè [26]) and thus are not early

metabolites. The remained 621 metabolites constitute the set of

early metabolites of S. cerevisiae, in which 243 members are

involved in the metabolic network of S. cerevisiae. The other 369 ( =

6122243) metabolites of S. cerevisiae metabolic network were thus

regarded as late members.

Chemical property calculation, network expansion
simulation and statistical analysis

83 commonly used property descriptors were calculated with

Cerius2 (Version 4.11L. Accelrys Inc. San Diego, CA.), Sybyl

Table 4. Mean values of some chemical descriptors for hubs of KEGG-based network and cores of organic chemical network.

Descriptors Characterization Mean values

KEGG hubs (n = 279) Chemical cores (n = 300)

ClogPa Partition coefficient octanol/water 21.26d 2.11d

FNSA3b Ratio of atomic charge weighted partial negative surface area on total
molecular surface area

20.110d 20.060d

FPSA3b Ratio of atomic charge weighted partial positive surface area on total
molecular surface area

0.080d 0.040d

LogDc Octanol-water partition coefficient calculated taking into account the
ionization states of the molecule

22.56d 2.08d

Molecular Solubilityc Water solubility, expressed as logS, where S is the solubility in mol/L 20.80d 22.61d

RPCGb Ratio of most positive charge on sum total positive charge (Relative
positive charge)

0.158d 0.233d

acalculated with Cerius2 (Version 4.11L. Accelrys Inc. San Diego, CA.).
bcalculated with Sybyl (Version 7.0. Tripos Associates Inc. St. Louis, MO.).
ccalculated with Pipeline Pilot (Student Edition. Version 6.1.5. SciTegic Accelrys Inc. San Diego, CA.).
dMann-Whitney Test significance at the 0.01 level.
doi:10.1371/journal.pcbi.1002214.t004

Figure 6. Theoretical fitting of E. coli metabolite concentrations
by the SVR model. The negative logarithm of fitted concentrations
(2LogCf) for 80 E. coli metabolites correlates well with that of
experimental values (2LogCe): 2LogCf = 0.9678 6 2LogCe (R = 0.827,
P,0.0001, regression without intercept).
doi:10.1371/journal.pcbi.1002214.g006

Chemical Basis of Metabolic Network Organization
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Table 5. Performance of SVR models evaluated by descriptor deletion.

Deleted descriptor Characterization Squared correlation coefficientf Total mean squared errorf

Degreea Number of edges linked to the node of network 0.4547 0.7094

ClogPb Partition coefficient octanol/water 0.5185 0.6304

Amide Moleculesc Number of amide 0.5489 0.5952

N Countc Number of Nitrogen atoms 0.5674 0.5963

6mem rings Moleculesc Number of 6 membered rings 0.5680 0.5628

FNSA3d Ratio of atomic charge weighted partial negative
surface area on total molecular surface area

0.5691 0.5594

HBD Counte Number of hydrogen bond donating groups in the
molecule

0.5717 0.5744

FPSA3d Ratio of atomic charge weighted partial positive
surface area on total molecular surface area

0.5778 0.5482

ALogPc The Ghose and Crippen octanol-water partition
coefficient

0.5806 0.5449

LScore Moleculesc Floating point Lipinski measure 0.5860 0.5373

RPCGd Ratio of most positive charge on sum total positive
charge (Relative positive charge)

0.6045 0.5134

acalculated by Network Analyzer Plugin in Cytoscape-2.7.0.
bcalculated with Cerius2 (Version 4.11L. Accelrys Inc. San Diego, CA.).
ccalculated with Tripos Benchware DataMiner (Version 1.6. Tripos Associates Inc. St. Louis, MO.).
dcalculated with Sybyl (Version 7.0. Tripos Associates Inc. St. Louis, MO.).
ecalculated with Pipeline Pilot (Student Edition. Version 6.1.5. SciTegic Accelrys Inc. San Diego, CA.).
fderived from leave-one-out cross validation.
doi:10.1371/journal.pcbi.1002214.t005

Table 6. Comparison of predicted and experimental concentrations for some E. coli metabolites.

Metabolitea Predicted concentrationb Predicted concentrationc
Experimental concentrationd

Lower limit Upper limit

13DPG n.a.e 3.237 3.959 n.d.j

2PG 3.347 3.292 3.770 2.394

3PG 3.260 2.387 2.495 2.394

3PHP 2.906 5.046 7.000 n.d.j

DHAP 3.221 3.155 3.252 3.174

F6P 3.416 3.796 6.000 3.319

G1P 3.935f 3.959 6.000 n.d.j

G6P 3.577g 3.301 3.523 3.319

G3P 3.170 4.301 5.046 3.174

R5P 3.341 3.959 4.699 3.824

RU5P 3.617h 3.824 4.699 3.824

X5P 3.594i 3.959 6.000 3.824

aAbbreviations: 13DPG, 1,3-diphosphoglycerate; 2PG, 2-phospho-D-glycerate; 3PG, 3-phospho-D-glycerate; 3PHP, 3-phospho-hydroxypyruvate; DHAP,
dihydroxyacetone phosphate; F6P, D-fructose-6-phosphate; G1P, D-glucose-1-phosphate; G6P, D-glucose-6-phosphate; G3P, D-glyceraldehyde-3-phosphate; R5P, D-
ribose-5-phosphate; RU5P, ribulose-5-phosphate; X5P, xylulose 5-phosphate.

bNegative logarithm (-Log) of E. coli metabolite concentrations (mol/L) predicted by SVR model.
cNegative logarithm (-Log) of E. coli metabolite concentrations (mol/L) predicted by NET method [16].
dNegative logarithm (-Log) of E. coli metabolite concentrations (mol/L) determined by prior experiments [16].
eNot available, because the metabolite is not involved in the metabolic network of E. coli.
fMean of concentrations for a- and b-G1P.
gMean of concentrations for a- and b-G6P.
hMean of concentrations for D- and L-RU5P.
iMean of concentrations for D- and L-X5P.
jNot determined.
doi:10.1371/journal.pcbi.1002214.t006
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(Version 7.0. Tripos Associates Inc. St. Louis, MO.), Pipeline Pilot

(Student Edition. Version 6.1.5. SciTegic Accelrys Inc. San Diego,

CA.) and Tripos Benchware DataMiner (Version 1.6. Tripos

Associates Inc. St. Louis, MO.). Stepwise multiple linear regression

analysis was performed by Cerius2 (Version 4.11L. Accelrys Inc.

San Diego, CA.). The numerical simulations of metabolic network

expansion were performed based on python package "networkx"

(version 1.2). All of the statistical analyses were performed with

SPSS (Version 15.0. SPSS Inc. Chicago, IL.).

Support vector regression model construction
By a trial-and-deletion procedure, 11 properties that have

largest contributions to the support vector regression (SVR) model

were selected, which include degree and 10 chemical properties,

i.e., 6mem rings Molecules (number of 6 membered rings), Amide

Molecules (number of amide), ALogP (the Ghose and Crippen

octanol-water partition coefficient), ClogP (partition coefficient

octanol/water), FNSA3 (ratio of atomic charge weighted partial

negative surface area on total molecular surface area), FPSA3

(ratio of atomic charge weighted partial positive surface area on

total molecular surface area), HBD Count (number of hydrogen

bond donating groups in the molecule), N Count (number of

Nitrogen atoms), LScore Molecules (floating point Lipinski

measure) and RPCG (ratio of most positive charge on sum total

positive charge (Relative positive charge)). Radial basis kernel

function e{cju{vj2 was chosen to construct a e-SVR model. The

parameters were trained by using grid search over supplied

parameter ranges and the best parameters were obtained as

follows: gamma = 0.01, epsilon = 0.22, cost = 7.9. The SVR

algorithm for metabolite concentration prediction is available on

request.
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