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Abstract

The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins
reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive
bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The
translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and
presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria’s
habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has
never been systematically studied. We show for the first time that such mutations are systematically present in most
bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with
secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol
show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape
mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like
viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other
translocated proteins examined, Pseudomonas aeruginosa’s ExoU, which ultimately induces host cell death, was found to
have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The
ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell
death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most
proteins tested.

Citation: Maman Y, Nir-Paz R, Louzoun Y (2011) Bacteria Modulate the CD8+ T Cell Epitope Repertoire of Host Cytosol-Exposed Proteins to Manipulate the Host
Immune Response. PLoS Comput Biol 7(10): e1002220. doi:10.1371/journal.pcbi.1002220

Editor: Bjoern Peters, La Jolla Institute for Allergy and Immunology, United States of America

Received February 1, 2011; Accepted August 20, 2011; Published October 13, 2011

Copyright: � 2011 Maman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by NIH grant number R01 AI61062-01 (http://grants.nih.gov/grants/oer.htm). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: louzouy@math.biu.ac.il

Introduction

CD8+ T-cells recognize mainly cytosolic epitopes presented on

MHC-I molecules. Their response is thus assumed to be directed

mainly against viruses [1,2,3]. Bacterial proteins, on the other

hand, are typically expressed outside the cytosol, and as such,

induce CD4+ T-cells and B cells responses [4,5,6,7,8,9,10], and

are not expected to induce a CTL response in the classical

pathway. For such a response to occur, these proteins must reach

MHC-I proteins in the ER.

One extensively studied possible mechanism for the presentation

of bacterial epitope is "cross presentation". In general, "cross

presentation" refers to the transfer of peptides from the MHC-II

presentation pathway to the MHC-I presentation pathway and vice

versa [11,12,13,14]. Specifically, peptides of intracellular bacterial

proteins derived from endosomal cleavage are presented on MHC-I

molecules. This could take place in two ways: either the peptides are

translocated to the cytosol, cleaved by the proteasome and delivered

to the ER through TAP where they bind to MHC class I molecules,

or endosomal peptides bind to MHC-I molecules probably in the

endocytic compartment itself (for a review see [15]).

Another much more direct mechanism is the translocation of

bacterial protein to the cytosol by highly conserved secretion

systems. Such systems exist in a variety of bacteria. The secretion

system that has been most characterized is the type III secretion

system (T3SS) in gram-negative bacteria. The T3SS is a complex

that allows bacteria to deliver protein effectors across eukaryotic

cellular membranes through needle-like structure. In the cytosol,

T3SS effectors exert many effects, such as cellular invasion [16],

modulation of host immune response [17,18] and apoptosis [19].

Another secretion system is the ESX-1 system in Mycobacterium

tuberculosis (TB) [20]. Similar systems (also called ESX/T7S systems)

exist in other gram positive bacteria as well [21]. However, since

these systems do not have a needle-like structure, they cannot inject

proteins through the plasma membrane. Nevertheless, TB is an

intracellular bacterium and its secreted proteins can gain access to

the cytosol [22]. The third characterized system that injects

cytosolic proteins was studied in the intracellular cytosolic

bacterium Listreria monocytogenes that injects the virulence factors

Listeriolysin O (LLO) and ActA to the host cytosol [23].

These proteins are good candidates for presentation on

MHC class I molecules. In similar situations, viruses avoid the

PLoS Computational Biology | www.ploscompbiol.org 1 October 2011 | Volume 7 | Issue 10 | e1002220



presentation of CD8+ T cell epitopes through escape mutations

[1,24,25,26,27,28]. Here we study bacterial sequences to test

whether bacteria adopt a similar strategy of epitope removal.

Specifically, we systematically compute the epitope density in

bacterial effector proteins and show a clear selection against the

presentation of epitopes. This selection is highly specific to

cytosolic proteins.

Evidences for MHC-I presentation in bacteria are limited to

specific bacterial proteins, such as the L. monocytogenes proteins

listeriolysin O [29] and ActA [30], the Bordetella pertussis

adenylatecyclase toxin [31], the TB CFP10 antigen [22] and

Streptococci protein streptolysin O [32]. A CTL response to

extracellular pathogens was also suggested by some studies.

Bergman et al. showed that the CTL response has a critical role

in eliminating Yersinia infections, and that this response is directed

against Yops, the secreted effector proteins of Yersinia [33]. Other

studies about the CTL response against extracellular pathogen

were carried out by Meissner et al. that demonstrated a vigorous

CD8+ T cell influx into the lung in response to Pneumocystis, an

extracellular fungal pathogen [34], and by Mehrzad et al. (2008)

that showed that trafficking of CD8+ T cells during initiation of

Escherichia coli mastitis is accelerated when increasing the E. coli

inoculum dose [35]. However, none of these studies suggested the

existence of escape mutations in bacteria. We here show that such

escape mutations are common in most tested effector proteins.

The field of immunomics has made a significant leap forward in

the last decades. Tools for epitope prediction have been developed

for most branches of the immune system. The precision of CD8+ T

cell epitopes prediction processing and presentation tools has

reached the level that allows a systematic prediction of full organism

epitope libraries. CTL epitopes are typically 8-10 amino acid long

peptides, bound to MHC-I molecules [36]. These peptides are

presented after proteasomal cleavage and transfer from the cytosol

via TAP to the ER [37,38], where they bind to MHC-I molecules.

We have developed a precise cleavage prediction algorithm [39]

and used TAP [40] and MHC binding [41] algorithms, which were

found to be precise enough for most MHC-I alleles, to compute

presented epitopes densities [24,25,42,43,44]. The precision of these

densities has been tested in depth [24,43,44].

In this study, we study the epitope density of proteins in a group

of representative bacteria expressing proteins translocated to the

cytosol. Three of them, Escherichia coli, Shigella flexneri, and

Pseudomonas aureginosa, are gram-negative T3SS-containing bacte-

ria. In parallel, we study cytosol-exposed proteins from the gram-

positive Listeria monocytogenes and Mycobacterium tuberculosis. In order

to validate the results, we repeat the analysis using three different

algorithms to test that the results obtained are not the artifact of

the specific MHC binding algorithms used.

Results

SIR score
We have previously conducted a systematic analysis of the

predicted CTL epitope repertoire in human and foreign proteins,

and defined the normalized epitope density of a protein or an

organism as the Size of Immune Repertoire (SIR) score

[24,25,39,43,45,46,47]. The number of predicted CTL epitopes

from a sequence was computed by applying a sliding window of

nine amino acids, and computing for each nine-mer and its two

flanking residues whether it is cleaved by the proteasome and

whether it binds to TAP channels and to a given MHC-I allele

(Figure 1). The SIR score was defined as the ratio between the

computed CTL epitope density (fraction of nine-mers that were

predicted to be epitopes) and the epitope density expected within

the same number of random nine-mers. The choice of the

‘‘random’’ nine-mers will be discussed in the following section. An

average SIR score of less than 1 represents an under-presentation

of epitopes, whereas an average SIR score of more than 1

represents an over-presentation of epitopes. For example, assume

a hypothetical sequence of 1,008 amino acids (1,000 nine-mers)

containing 15 HLA A*0201 predicted epitopes. If the average

epitope density of HLA A*0201 in a large number of random

proteins was 0.01 (i.e. 10 epitopes in 1,000 nine-mers), then the

SIR score of the sequence for HLA A*0201 would be 1.5 (15/10).

The average SIR score of a protein was defined as the average of

the SIR scores for each HLA allele studied, weighted by the allele’s

frequency in the average human population. These results

obviously depend on the definition of a ‘‘random protein’’. We

have thus tested multiple such definitions.

Defining the baseline for the SIR score
An important issue in the analysis of selection is the baseline

against which the number of epitopes of a given protein is

compared. In previous work on viruses [24,25,43,48], we have

compared human to parallel non-human viruses as a negative

control. However, bacteria have a wide range of possible hosts and

purely non-human homolog bacteria often do not exist. We thus

use three different background distributions to compare with:

N In order to produce the first baseline, we have produced a long

random sequence of amino acids that have the typical amino

acid sequence composition of viral proteins. We have then

computed the epitope density in this sequence for each allele,

and defined it as the average expected epitope density for this

allele. This value is used as the denominator of the SIR score

for each allele. The advantage of this baseline is that it is

uniform over all proteins.

N A second, baseline, which is protein dependent, is the average

epitope density over 50 sequences produced by permuting the

order of the amino acids in the protein (scrambled versions of

the protein). Although these scrambled versions have no

biological viability, they gives a picture of the typical epitope

density of proteins with similar amino acid distribution in

Author Summary

Bacterial proteins are mainly exposed to B-cells and CD4+
T-cells, while CD8+ T-cells (CTL) typically respond to
viruses. The limitation of the CTL response to viruses
results from processing pathways of epitopes presented to
CTLs. These epitopes usually stem from proteins expressed
in the cytosol. Such proteins are eventually degraded and
presented on MHC-I molecules to CTLs. However bacterial
Type III secretion system (T3SS) effectors also have an
access to the host cytosol and may also be exposed to CTL
response. Thus, we can assume that this group of proteins
undergoes selection against the presentation of CTL
epitopes, as seen in viral proteins. Using multiple epitope
prediction algorithms, we show that most T3SS effectors,
as well as LLO, and ActA in Listeria monocytogenes and
ESAT-6 proteins in Mycobacterium tuberculosis, are system-
atically selected to reduce the number and quality of their
epitopes. The exception in this respect is the Pseudomonas
aeruginosa effector ExoU that has high density of high
quality epitopes. Since ExoU is known to induce rapid cell
death in hosts cells, we assume that P.aeruginosa utilize
the immune response to induce such death. The E.coli
epitope density is highly variable among strains.

CTL Response Against Cytosolic Bacterial Proteins
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which selection does not play a role. Such a baseline can, for

example, neutralize the effect of hydrophobicity on the epitope

density [48,49,50,51].

N The third baseline is the epitope density in a randomly selected

group of proteins in the same bacteria. Such a baseline

represents the difference between protein groups (the random

group and the group of interest) in the same bacteria.

In the following section, we will use all three baselines to show

that selection occurs in cytosolic bacterial proteins.

Typical bacterial proteins show no specific escape
mutations

While most viral proteins are expressed in the cytosol and

exposed to the MHC-I presentation pathway, bacterial proteins

are usually expressed either within the bacteria or within the

endosome of a phagocyte, and hence are not exposed to the

MHC-I presentation pathway. Thus, we expected that in contrast

with viruses [24,25,42,43,44], the SIR score of all bacterial proteins

would be distributed around 1.

The epitope density of a protein is affected by two main

elements: A) a direct negative selection of epitopes through the

immune response against pathogens expressing proteins carrying

many epitopes, B) inherent features of the protein, determining its

amino acid usage, which in turn affects the epitope density. In

order to check for the direct effect of negative selection, we

compared the SIR score of each protein, not only to 1, but also to

the SIR score of scrambled sequences with identical amino acid

distribution (that we denote as the neutral SIR score). When all

bacterial proteins are analyzed, the SIR scores distributions of the

real and scrambled proteins are similar and are close to 1 (Figure 2,

T-test , P-value.0.15 for all bacteria tested).

Bacterial proteins translocated to the cytosol are selected
to evade CTL recognition

While most bacterial proteins have the expected epitope density

(Figure 2), the epitope density of bacterial proteins that are

secreted to the host cytosol may be affected by CTL mediated

selection. Such proteins are often present at high concentrations in

the cytosol and are exposed to the MHC-I presentation pathway.

Five examples of such bacteria are tested in this study: P.

aeruginosa, S.flexneri, E.coli, L.monocytogenes and M.tuberculosis. Before

examining each bacterium separately, we compared the SIR score

in all cytosolic proteins of these bacteria against the SIR score in

randomly selected proteins, against scrambled versions of

themselves and against 1. In all three cases, the SIR score of the

cytosolic bacterial proteins were significantly lower (ANOVA P-

value,1.e-11 for all three tests). No significant differences were

found between the SIR score of randomly selected proteins and

their scrambled versions. (ANOVA P-value = 0.9114). These

results suggest that bacterial proteins located in the host cytosol

have evolved to evade CTL recognition.

The most characterized bacterial cytosolic proteins are the

effector proteins of secretion systems in gram negative bacteria.

We analyzed the SIR score of bacterial proteins in bacteria where

we had a clear definition of effector proteins. We first analyzed P.

aeruginosa , S. flexneri and E.coli as models for gram negative bacteria

with Type III secretion systems. S. flexneri represents intracellular

bacteria, P. aeruginosa represents cytopathic extracellular bacteria

and E. coli (entropathogenic (EPEC) and enterohemoreagic

(EHEC) subgroups) represent extracellular non-cytopathic bacte-

ria. In the following sections, we show that systematically, in most

bacteria tested, the epitope density in effector proteins is lower

than expected, with one interesting exception.

Pseudomonas aeruginosa effectors. P. aeruginosa is a major

cause of health care associated infections. It has only four known

effector proteins: ExoS, ExoT, ExoU and ExoY. Almost all

Pseudomonas strains contain ExoY and ExoT (89% and 96%,

respectively) [52]. However, nearly all strains have either the ExoS

or the ExoU gene but not both [53]. ExoS has several adverse

effects on the host cell, including actin cytoskeleton disruption

(associated with cell rounding) and inhibition of DNA synthesis,

vesicular trafficking, endocytosis and cell death. ExoS induced

stress is characterized by slow death induction of the infected cell.

ExoU is a potent phospholipase that is capable of causing rapid

cell death in eukaryotic cells. ExoU containing strains of P.

aeruginosa are much more cytopathic than their ExoS containing

counterparts, which are more invasive.

In Pseudomonas aeruginosa - all effectors proteins have
low epitope densities, except for the ones inducing cell
death. As shown in Figure 3A, in all P. aeruginosa effectors

besides ExoU, the SIR score was significantly lower than 1 (T-test

P-value,1.e-4), lower than the neutral SIR score (the SIR score of

scrambled versions of the same proteins) (ANOVA P-

Figure 1. Algorithm for epitope prediction and SIR score
computation. Each protein is divided into all nine-mers and the
appropriate flanking positions (a). For each eleven-mer (a nine-mer and
the C and N flanking positions), a cleavage score is computed (b). We
compute for all peptides with a positive cleavage score a TAP binding
score and choose only supra-threshold peptides (c). The MHC binding
score of all TAP binding and cleaved nine-mers is computed (d). Nine-
mers passing all these stages are defined as epitopes. We then compute
the number of epitopes per protein per HLA allele (e). The ratio
between the number of predicted epitopes and the parallel number on
a random sequence with a random amino acid distribution is defined as
the SIR score.
doi:10.1371/journal.pcbi.1002220.g001

CTL Response Against Cytosolic Bacterial Proteins
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value = 0.011), and lower than the SIR scores of randomly selected

non-effector proteins (ANOVA P-value = 2.4e-6). All randomly

selected -non-effector- proteins showed no difference between the

actual and the neutral SIR score. These results suggest that P.

aeruginosa effectors, ExoS, ExoY and ExoT, are selected to present

less CTL-epitopes. The special case of the fourth effector, ExoU

will be discussed later. SIR scores for each effector separately are

given in Supplementary Material, table S2.

Shigella flexneri effectors. Shigella species are gram-negative

bacteria that can colonize the intestinal epithelium by exploiting

epithelial-cell functions [54]. The first step of the Shigella infection

is crossing the intestinal epithelial barrier. When this is achieved,

the bacterium enters the macrophages that reside within the

microfold-cell (M-cell) pocket. S.flexneri effectors can be divided

into early and late subsets. The early effectors, IpaA, IpaB, IpaC,

IpgB1, IpgB2, IpgD and VirA, are secreted early in the infection,

immediately after contact with the epithelial cell. Their function is

mainly to promote bacterial basolateral entry into polarized

epithelial cells.

When Shigella reaches the epithelium, it secretes the late effectors

subset: IcsB, VirA, OspF, OspG and IpaH family proteins (VirA is

secreted in both stages). These effectors facilitate bacteria

intracellular survival, promote intra and intercellular movement,

and modulate the host inflammatory response [55].

In Shigella flexneri, all effectors have a low epitope

density, but early expression effectors have the lowest

epitope density. We have previously shown in viruses that

early expressed proteins are under a more stringent pressure than

late ones [24,25,43]. We have tested whether the same

phenomenon occurs in bacteria. In Figure 3B, the SIR score of

early and late effectors as well as non-effectors proteins is

compared to their scrambled versions. Again, in non-effectors

proteins, the neutral SIR score is very similar to the actual SIR

score. In effectors, the SIR score is significantly lower than both 1

(T-test P-value,1.e-15) and than other bacterial proteins in the

Shigella (ANOVA P-value = 4.8e-4). The decrease against the

neutral score is not significant (ANOVA P-value = 0.294).

However, when using other prediction algorithm, this decrease

is also significant, as shall be further discussed.

The decrease in the epitope number was much more significant

in early effectors than in late effectors (ANOVA P-value 1.0e-10).

Early effectors have a significantly lower SIR score than 1 (T-Test

P-value = 6.4e-19), other proteins (ANOVA P-value = 3.16e-13),

or their own Neutral SIR score (ANOVA P-value 8.8e-4). In late

effectors, the decrease was not significant (P-values = 0.69, 0.12

and 0.71 is the three tests above), as was observed in viruses

[24,25,43].

Therefore, beyond the general CTL-induced selection ob-

served in effectors, these results suggest a differential force of

selection in S. flexneri effectors proteins, where early effectors are

under stronger pressure to hide their CD8+ T cell epitopes than

late ones.

Figure 2. Upper row and lower left drawings - Histograms of SIR score values for real and scrambled sequences of bacterial
proteins. The x axis is the SIR scores and the y axis is the frequency of sequence with such an SIR score. Each drawing represents a different
bacterium. The dark lines are the real sequences and the gray lines are the values obtained for scrambled versions of the same sequences. The
distributions of the real and scrambled sequences overlap showing that bacteria, unlike viruses, do not generally accumulate escape mutations in
their CTL-epitopes (P = 0.4306,0.1574 and 0.1942 for Shigella, E.coli and Pseudomonas, respectively). The lower left drawing is the SIR score histogram
in human viruses (dark line) and the parallel in non human viruses (gray line). The average human virus SIR score is lower than the one of non-human
viruses, revealing the accumulation of escape mutations in human viral proteins (P value,1.e-7).
doi:10.1371/journal.pcbi.1002220.g002

CTL Response Against Cytosolic Bacterial Proteins
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Escherichia coli effectors. Escherichia coli are gram negative

bacteria whose main natural habitat is the gastrointestinal tract of

warm-blooded organisms (for review see [56]). Most strains exist as

harmless symbionts, but some are pathogenic. Two of them,

EPEC (enteropathogenic E. coli) and EHEC (Enterohemorrhagic

E. coli), consist of a 35-kb genetic element known as the ’locus of

enterocyte effacement’ (LEE) [57]. This locus encodes for 41

different genes, at least 5 of which are T3SS-effectors proteins (Tir,

Map, EspF, EspH, and EspZ). Many functions have been

suggested for these effectors, including re-organizing the actin

filopodia and pedestals (Tir, Map and EspH [58,59,60]), altering

septin cytoskeleton (EspF [61]), and inhibiting apoptosis (EspZ

[62]). All these effectors are located and act in the host-cell cytosol.

Moreover, their secretion is vital for the initiation of the E. coli

infection of enterocytes, and are thus expressed at the early stages

of the infection [63].

Escherichia coli- selection for CD8+ T cell evasion in

T3SS-effector. Figure 3C represents the comparison between

the SIR score of these effectors proteins and the score of all non-

effectors E. coli proteins. As expected, for most of E.coli strains

tested, T3SS effectors have lower epitope densities than 1 (T test P-

value,1.e-3), than other proteins from the same bacterium (ANOVA

Figure 3. SIR score of T3SS effectors and non-effectors proteins in Shigella flexneri, Pseudomonas aeruginosa and Escherichia coli.
A) Comparison between the average SIR score in real sequences and in scrambled sequences in Pseudomonas aureginosa. The first column is the
average over 400 randomly selected proteins and the second column is the average of ExoT, ExoS and ExoY (non-necrotic effectors). The third column
is the average of the necrotic effector ExoU. The first column has a similar average for the real and scrambled sequences (P value.0.18). In the second
column, the real T3SS effectors sequences have a lower averaged SIR score than randomly selected proteins and also than expected from their
scrambled sequences (P values = 2.4e-6 and 0.011, respectively). The third column demonstrates that ExoU has a higher SIR score than randomly
selected proteins and than expected from its scrambled sequences (P-value,1e-4). B) Comparison between the average SIR score in real sequences
and in scrambled sequences in Shigella flexneri. The first column is the average over 400 randomly selected proteins. The second column is the
average over all T3SS effectors. The third and fourth columns are the averages over all early secreted and late secreted effectors, respectively. The first
column has a similar average for the real and scrambled sequences (P value.0.3). Again, as in P. aureginosa, effectors have a lower SIR score average
than randomly selected proteins, and also than expected from their scrambled sequences (second, third and fourth columns). Moreover, this bias is
much stronger in early secreted effectors (*P-value,8e-4.). The differences in the second and fourth columns (overall and late effectors) are not
significant (P-value.0.2). C) Comparison between the average SIR score in real sequences and in scrambled sequences in Escherichia coli. The left
column is the average over 400 randomly selected proteins and the right column is the average over all T3SS effectors. The left column has a similar
average for the real and scrambled sequences (P value.0.15). In the right columns, the real T3SS effectors sequences have a lower SIR score average
than randomly selected proteins (P-value = 2.4e-3). Although E.coli effectors have a lower averaged SIR score than expected from their scrambled
sequences, the difference is not significant (P-value.0.3). Bordered bars represent results that are not consistent with the other MHC-I binding
algorithms, MLVO and NetMHC (figures 6 and 7, respectively).
doi:10.1371/journal.pcbi.1002220.g003

CTL Response Against Cytosolic Bacterial Proteins
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P-value 0.00248). However, the variance in the E.Coli epitope densities

among different E.Coli strains is very large. The typical EPEC differs

significantly at the genetic level from the atypical EPEC and EHEC. In

the typical EPEC strains (O127:H6, O103:H2, O111:H-), the SIR

score of effectors was not significantly lower than both their scrambled

sequences and non-effectors proteins (data not shown). These proteins

have very high epitope densities in two frequent alleles, A*0201 and

B*4001 (SIR scores of 1.8 and 3.5 compared with neutral SIR scores of

0.8 and 0.7, respectively). Since these alleles have high frequency

among the Caucasian population (accumulated frequency of 15%),

their donation to the averaged SIR score is very high. We have no clear

explanation for this observation. However, EHEC O157:H7, the most

important cause of severe diseases in the Western world [64] , and its

closely related atypical strain O55:H7, have the lowest SIR scores,

suggesting a strong selection pressure on specific strains. Given this high

heterogeneity, we cannot clearly prove selection in E.Coli in general.

T3SS-effectors epitopes have a much lower affinity than
other epitopes in bacteria

The absolute number of epitopes or their density might not give

the full picture regarding to escape mutations. Such mutations

could affect, for example, the quality of the epitopes. We have thus

checked if the epitopes still present on T3SS effectors have an

affinity similar to epitopes from other proteins. In order for

peptides to be presented on MHC-I molecules, they have to pass

three stages: Proteasomal cleavage, TAP translocation, and MHC-I

binding.

We computed the probability to pass these three stages using

proteasomal cleavage, TAP binding and MHC-I binding algo-

rithms. An epitope was defined as a peptide with a supra-threshold

score at each stage.

The averaged proteasomal cleavage, MHC-I binding and TAP

binding scores of epitopes derived from random bacterial proteins

and from effectors of the three gram-negative bacteria used in this

study are represented in Figure 4.

One can clearly see that most effectors have consistently lower

scores for cleavage, TAP binding and MHC binding. (T test 1.e-

10,P-value,0.06) with two exceptions: ExoU, that, consistent

with our previous results, has proteasomal cleavage score and

binding score higher than randomly selected proteins, and

proteasomal cleavage of E.coli where the differences are not

significant (T test P-value = 0.388). Since these scores correspond

to the probability that a given peptide will be eventually presented

at MHC-I molecule, these results highlight again the efforts made

Figure 4. Average scores of epitope for all steps of epitope presentation (proteasomal cleavage, TAP binding and MHC-I binding)
in Shigella flexneri, Pseudomonas aeruginosa and Escherichia coli. The y axis values represent the score in each step. P. aeruginosa effector, ExoU,
being a unique necrosis effector was examined separately. In all bacteria tested, the average scores of epitopes in effectors in all stages are lower than
the scores of epitopes in randomly selected proteins (with one exception of proteasomal cleavage of E.coli). ExoU epitopes had higher proteasomal
cleavage and MHC-I binding scores in comparison to these scores of randomly selected proteins. Note that TAP is the less limiting factor in epitope
processing. All differences (except proteasomal cleavage of E.coli with P-value = 0.388) are significant with 1.e-10,P-value,0.06.
doi:10.1371/journal.pcbi.1002220.g004

CTL Response Against Cytosolic Bacterial Proteins
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by the bacteria to prevent T3SS-effectors recognition by CD8+ T-

cells: not only are there less epitopes in T3SS effectors, but the

remaining epitopes have lower probabilities of being presented.

Intracellular bacterial toxins are similar to Gram Negative
T3SS effectors in terms of immune-induced evolution

Cytosol localization of bacterial proteins is not unique to T3SS

effectors. While Intracellular bacteria are localized within host

cells, they usually do not reach the cytosol. Most of the bacteria

reside in the phagosome of the host cell. However, some bacterial

proteins are exposed to the host cytosol even in Intracellular

bacteria. Two examples for such bacteria are Listeria monocytogenes

and Mycobacterium tuberculosis.

Listeria monocytogenes
L. monocytogenes can escape from the phagosome and remain

in the cytosol. This escape occurs through the secretion of

pore forming toxin- listeriolysin O (LLO) [65] that degrades

the phagosomal membrane. LLO is a member of cholesterol-

dependent cytolysins (CDCs) – a large group of pore-forming

toxins that depends on membrane cholesterol for their activity.

This group consists of about 20 members (for a review see [66]),

each produced as a soluble monomeric protein that, in most cases,

is secreted by a type II secretion system. LLO is known to reside in

the cytosol. However, cytosolic LLO is much less active as a pore-

forming toxin. Instead, it is highly degraded due to a PEST-like

sequence that promotes its targeting to proteasomal cleavage,

preventing the pore forming in the cell membrane and the

sequential lysis of its host cell [67]. While in the cytosol,

L.monocytogenes secretes another protein, ActA that is used for actin

polymerization and horizontal movement within the intestinal

epithelial layer [68]. As expected from the results in the previous

sections, both LLO and ActA have a lower SIR score than 1

(T test P-value,7.6e-12) and both their scrambled versions

(ANOVA P-value = 7.e-7), and randomly selected proteins (T test

P value,1.e-12 for LLO and ActA, separately, and ANOVA

P-value,1.e-12 for both proteins together). This suggests an

immune escape strategy of L. monocytogenes as in gram negative

bacteria. As in all previous cases, the average over randomly

selected proteins of L.monocytogenes does not show such a decrease in

the epitope density (Figure 5A).

Mycobacterium tuberculosis cytosolic proteins
Mycobacterium tuberculosis (TB) [61] resides in the phagosome of

lung macrophages. In MB, the ESAT-6 (esxA) and CFP10 (esxB)

proteins are secreted into the host cell and were proved to reach

the cytosol [22]. The access of these ESX-1 proteins to the cytosol

might be achieved either by the TB escape from the phagosome or

translocation of these proteins to the cytosol through sec61, or

alternatively directly by ESX-1. Consistent with these last two

options, these proteins were shown to induce CD8+ T-cell

response regardless of the escape of the bacteria from the cytosol

[22]. Besides these two proteins, there is a group of at least 18

ESAT-6 homologues. Very little is known about these proteins,

but they show homology to the ESAT-6 protein and are thus

suspected to be secreted by the same system [69].

Mycobacterium tuberculosis SIR scores
We tested both ESAT-6/CFP10 proteins and ESAT-6

homologues for their SIR score. Overall SIR scores of ESAT-6

family proteins are lower than 1 (T test p,1.e-15) and than their

scrambled versions (ANOVA P-value = 3.5e-9) as well as in

comparison to randomly selected tuberculosis proteins (ANOVA

P-value,1.e-13). Moreover, when checking each protein sepa-

rately , ESAT-6, as well as 15 out of 18 of its homologues have

shown to have lower SIR scores than both randomly selected

proteins and their own scrambles sequences (T-test P-value,0.05).

CFP-10 and the ESAT-6 homologues esxC, esxE and esxU have

higher SIR scores than their neutral SIR scores (T-test P-

value,0.05) (Figure 5B). Two of the above proteins, esxE and

Figure 5. SIR score of cytosolic proteins and randomly selected proteins in Listeria monocytogenes and Mycobacterium tuberculosis. A)
Comparison between the average SIR score in real sequences and in scrambled sequences in Listeria monocytogenes. The cytosolic proteins
Listeriolysin O and ActA (second and third columns, respectively) have lower SIR scores than randomly selected proteins and than their scrambled
sequences (P-value,1.e-12 for both proteins). In randomly selected proteins (first column), the differences between real and scrambled sequences
was insignificant (P-value = 0.8652). B) Comparison between the average SIR score in real sequences and in scrambled sequences in Mycobacterium
tuberculosis. The first two columns are the average SIR scores of EsxA and EsxB. Columns 3-20 are the scores of ESAT-6 homologues hypothetical
proteins. Column 21 is the averaged SIR score over all proteins in the Esx family, and the last column is the averaged scores of 400 randomly selected
proteins. In EsxA (ESAT-6), as well as in 15 out of 18 ESAT-6 homologues, the average SIR score in the real sequence is lower than the SIR score in
randomly selected proteins and their scrambled sequences. In randomly selected proteins, the differences between real and scrambled sequences
was insignificant (P-value = 0.2212). These results argue that the hypothetical ESAT-6 homologues - like ESAT-6 itself – might be localized in the host
cytosol. *NS-not significant. All other differences are significant with P-value,0.05.
doi:10.1371/journal.pcbi.1002220.g005
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esxU, are regulated by the same protein, sigM, a member of the

extracytoplasmic function subfamily of alternative sigma factors,

and were suggested to function in host modulation at later stages of

infection but seemed to have no importance in the pathogenesis of

acute infection [70]. One could assume that the consistent low SIR

score in most of this family members’ is due to sequence similarity.

We have calculated the edit distance between members of the

ESAT-6 family (divided by the length of the longer among the

compared proteins). As shown in Figure S2, most of ESAT-6

family members are very different from each other in their

sequences. This result suggests that the selection for immune

evasion has occurred in each protein separately. One can thus

summarize that CTL epitopes modulation is a mechanism

common to practically all cytosolic bacterial proteins.

The interesting case of ExoU – an indirect killer
In contrast with all other confirmed effectors, the SIR score of P.

aeruginosa’s ExoU was significantly higher than its neutral SIR score

(T test, p ,1e-9). Moreover, the candidate epitopes of ExoU have

a higher proteasomal cleavage and MHC-I binding scores than

other effectors or non-effector proteins (Figure 4). Thus not only is

ExoU not trying to hide, it seems it is making every possible effort

to expose itself. Taking into account that ExoU is secreted by

cytopathic strains of P. aeruginosa and is known to induce rapid cell

death in host-cells, we propose that these P. aeruginosa strains may

use the host immune system to induce cell death. Since the goal of

ExoU expression is to kill the cell, having the cell recognized by

CTLs may be the easiest way to obtain this goal. The utilization of

the host’s immune response by bacteria was suggested recently by

Gagneux et al [71]. In their study on TB, they detected hyper-

conserved epitopes in MTBC (Mycobacterium tuberculosis complex)

proteins, and suggested that the bacteria benefit from T-cell

recognition. Similarly, the extremely high epitope density found in

the ExoU protein suggests that over-presentation of this protein

acts to induce CD8+ T-cell response in the host-cell by the

cytopathic strains of P. aeruginosa as part of their mechanism to

induce cell death. We are now looking for similar effects in viruses.

Validation with other algorithms
In this study we have used the SIR formalism as used in our

previous studies. While this formalism was validated for some

alleles, its MHC-binding algorithm (BIMAS) is relatively old and

new algorithms have been introduced since then for some alleles.

In order to test that our results are not an artifact of the algorithms

used, we have tested the validity of our results using two other

algorithms: MLVO and NetMHC (see method section for

a detailed description of these algorithms).

When using the MLVO, the results were similar to the

traditional SIR score (based on BIMAS) results, and were often

more significant. For most bacteria tested, all effectors were shown

to have a lower SIR score than expected from their sequence. The

results were significant for most groups of proteins (Figure 6,

ANOVA p ,0.03). The exception were again the E.Coli that

showed a high variability among strains and proteins, and late

effectors of Shigella in which no significant differences were shown

(ANOVA P-value.0.5 for both E.coli and late Shigella effectors).

The main difference between the MLVO and BIMAS results was

that in the MLVO formalism, the SIR score of ExoU was lower

than its scrambled versions (T test P-value,0.04). Although the

accuracy of MLVO is better than most other algorithms for the

vast majority of alleles, this algorithm was not systematically tested

on other organisms. We thus use the MLVO results at this stage

only as a validation of the SIR results.

To further validate the results, we have repeated the analysis

using NetMHC. In most bacteria tested (again, with the exception

of E.Coli and late effectors of Shigella in which the differences was

not significant (ANOVA P-value.0.58 and 0.064, respectively)),

the SIR score predicted by the NetMHC of cytosolic proteins was

lower than their neutral SIR score (Figure 7, ANOVA P-value

,5.e-3). Consistent with MLVO but in contrast with BIMAS

formalism, ExoU score was lower than expected (T-test

P-value = 0.012).

Taken together, in most cases our results using BIMAS

algorithm were in agreement with the results of MLVO and

NetMHC algorithms, and that the observed reduction in the

number of epitopes is not an artifact of a specific algorithm. A

summary of the significance of the results in all three algorithms

are presented in Supplementary Material (Table S3).

Figure 6. Validation of the results with MLVO algorithm. In
Pseudomonas, Shigella, Micobacterium and Listeria, the cytosolic
proteins have lower SIR scores than expected, consistent with our
previous results. However, the E.coli effectors had higher SIR scores than
expected from their sequence and ExoU have shown a lower SIR score
than expected, in contrast with the results using BIMAS. (P-value,0.08
for late Shigella proteins and P-value,0.04 for other proteins).
doi:10.1371/journal.pcbi.1002220.g006

Figure 7. Validation of the results with NetMHC algorithm. In
Pseudomonas, Shigella, Micobacterium and Listeria, the cytosolic
proteins have lower SIR scores than expected, consistent with our
previous results (P value,0.02). However, E.coli effectors showed no
significant differences between the real and neutral SIR scores and ExoU
have lower SIR score than expected (P value = 0.012), in contrast with
the results using BIMAS.
doi:10.1371/journal.pcbi.1002220.g007
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Discussion

We have performed a broad analysis of immune-induced

selection of CD8+ T-cells escape mutations in cytosolic bacterial

proteins. While in general CD8+ T-cell response induces very weak

selection, if at all, on bacterial proteins, a strong selection was

observed on the T3SS-effectors group of gram-negative bacteria

and probably on cytosolic bacterial proteins in general. Further-

more, the strength of the selection on the effectors depends on their

time of expression as can be seen in the case of S.flexneri where the

early set of effectors was selected more strongly than the late set.

These results are in good agreement with our previous studies on

herpesviruses [43], HIV [24] and viruses in general [25], showing

that proteins expressed in phases critical to the fate of infection (e.g.,

early lytic and latent) evaded immune detection more than others.

In order to validate these results, we have repeated the analysis

using a recently developed algorithm (the MLVO), as well as the

more classical NetMHC with similar results for the vast majority of

the proteins.

An intriguing possibility is that the direction of selection

depends on the function of the effectors. This was demonstrated

by the P. aeruginosa cell death mediated effector ExoU that has

evolved to have more epitopes, and thus, might induce CTL

response. The involvement of ExoU in inducing CTL response is

in good agreement with studies of corneal infection by the P.

aeruginosa strain which was shown to be dependent on ExoU

secretion [72]. Barrett et al. [73] have shown that mouse strains

favoring development of a Th1-type response are susceptible to

corneal infection, suggesting the involvement of CTL response in

this infection. Note that this result was not observed using MLVO,

and is thus left as a hypothesis to be checked further.

In E.Coli, a very high variability in the epitope density of

proteins and strains has been observed, as well as a large difference

between the epitope densities in different HLA alleles. We

currently have no clear explanation for this variability, except

perhaps for a specific adaption of EPEC and EHEC to different

populations and thus different epitope densities distributions

among HLA alleles. Thus, in contrast with all other bacteria

tested here, we cannot safely claim that E.Coli effectors proteins

have evolved to avoid detection. Further research is needed to

understand the peculiar differences between E.Coli strains.

Compared with viruses, bacteria have a relatively low mutation

rate of approximately 1.e-8 (as compared with approximately 1.e-5

in viruses). Considering the lack of species specificity and the

horizontal transfer of many genes, including the members of type III

secretion system, bacteria are much less genetically flexible, and

therefore, epitope density within a protein might be influenced not

only by the immune-induced selection but also by the time when the

horizontal transfer took place and the variety of species infected by

the bacteria, forcing them to adapt to different HLA alleles and

other species-specific constraints. A way to maximize the evolu-

tionary conservation of epitopes (or the lack of epitopes) is to directly

affect the cleavage mechanism that is common to most mammals.

Indeed, when computing the proteasomal cleavage ratio (number of

nine-mers that are the results of proteasomal cleavage divided by the

total number of nine-mers), effector proteins had a lower ratio than

other proteins in all bacteria. These results were significant for P.

aeruginosa effectors and late and early S. flexneri effectors (T-test, P-

values = 5.7e-5, 4.3e-5 and 6.6e-45, respectively), and insignificant

for E. coli effectors (p = 0.1) (Figure 8).

The current analysis shows that an important part of the

immune response against bacteria may be the CTL response

against cytosolic bacterial proteins. This response may be a key

element in the development of future anti-bacterial therapies.

Methods

Bacterial sequences
Pseudomonas aeruginosa, Escherichia coli, Shigella flexneri, Listeria

monocytogenes and Mycobacterium tuberculosis gene sequences were

used for this analysis. The sequences were obtained from the

NCBI (http://www.ncbi.nlm.nih.gov/) database. All sequences

are available in the Supplementary Material. For P. aeruginosa, we

used 16 ExoU sequences and 18 sequences of the 3 other effectors.

For S. flexneri, we used 75 early effectors and 30 late effectors

sequences. For E. coli, we used 38 effectors sequences (11 Tir, 4

EspF, 4 EspH, 14 EspZ and 5 Map). For L. monocytogenes, we used

107 listeriolysin sequences and 483 ActA sequences. For M.

tuberculosis, we used 62 Esat-6 proteins sequences. For all bacteria,

we took 400 sequences of random non-effectors proteins. For each

protein sequence, we produced 50 scrambled sequences as

a reference.

SIR score
We have analyzed the ratio between the number of epitopes

presented in bacterial proteins and their random counterpart. This

ratio was defined as the Size of Immune Repertoire (SIR) score.

The epitope number was computed using three algorithms:

a proteasomal cleavage algorithm [39], a TAP binding algorithms

developed by Peters et al. [40] and the BIMAS MHC binding [74]

algorithms. We have computed epitopes for the 33 most common

HLA alleles and weighted the results according to the allele

frequency in the global human population (Figure 1). The

algorithms’ quality was systematically validated vs. epitope

databases and was found to induce low FP and FN error rates.

The computation of the SIR scores can be performed through our

web-server at http://peptibase.cs.biu.ac.il/index.html.

The comparison between effectors and their scrambled

sequences, as presented in Figures 3–8, was done on the average

of the entire group of proteins. We have also tested the possibility

of first averaging each protein separately and then to average the

results over all proteins, as we have previously done for some viral

proteins [25,43,44,75]. There is no major difference between the

results in the two approaches. The results using the latter approach

are represented in the Supplementary Material (Figure S1).

Figure 8. Fraction of peptides derived from proteasomal
cleavage in Escherichia coli, Pseudomonas aeruginosa and Shigella
flexneri. T3SS effectors have less possible cleavage- derived nine-mers
than other proteins. Moreover, in S. flexneri, among effectors, early
secreted effectors have less cleavage-derived nine-mers than the late
secreted ones. *P-value,1e-4 for P.aeruginosa and late effectors of S.
flexneri, and P-value,1e-44 for early effectors of S. flexneri. In E.coli, the
differences in fraction of cleavage derived peptides between effectors
and other proteins was not significant (P-value = 0.1).
doi:10.1371/journal.pcbi.1002220.g008
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Cleavage score
Given a peptide with N- and C-terminal flanking regions FN

and FC and residues P1, .Pi, . . Pn, where Pi represents any residue

1, and n represents C and N positions, the following score was

defined:

S(peptide)~S1(FN)zS2(P1)z
Xn{1

i~2

S3(Pi)zS4(Pn)zS5(FC)

A peptide with a high score, S, has a high probability of being

produced, while a low score corresponds to a low probability of

production. The appropriate values for S1 to S5 were learned

using a simulated annealing process [76]. The algorithm was

validated to give a rate of false positives of less than 16% and a rate

of false negatives of less than 10% [39].

TAP binding frequency
The probability that a peptide binds the transporter associated

with antigen processing (TAP) machinery is mainly a function of

the residues at the first three N-terminal and the last C-terminal

positions. Moreover, this probability can be estimated through

a linear combination of the binding energies of the residues.

Multiple algorithms for TAP binding frequency were checked.

The score computed by Peters et al. [77] gave the best

differentiation between presented and random peptides [46].

MHC binding motifs
Each protein was divided into all possible nine-mers by using

a sliding window (e.g., a 300-amino-acid protein was divided into

292 nine-mers, positions 1 to 9, positions 2 to 10, and so on). For

each nine-mer, we computed the MHC binding energies of 31

different class I human leukocyte antigen (HLA) molecules, most

of them HLA-A and HLA-B. The affinity of a candidate peptide

for each HLA molecule was estimated using the BIMAS software

and the binding coefficients predicted by Parker ([78]; http://

www-bimas.cit.nih.gov/molbio/hla_bind/).

These matrices estimate the contribution of each amino acid at

each position to the total binding strength. While many more

modern algorithms exist for MHC binding prediction, we have

previously found the BIMAS algorithm to provide trustworthy

results in most highly frequents alleles that compose the bulk of the

score analyzed here [24,33,43].

Multi-Label Vector Optimization (MLVO)
The MLVO algorithm [79] for MHC and TAP binding

prediction finds a classifier (w) using three label types that are

combined into a single constrained optimization problem. The

method finds the optimal combination of binary classification of

peptides known to bind or not to bind the MHC/TAP molecule,

a linear regression based on the measured affinities of peptides with

a known IC50 or EC50 binding concentrations and a guess (often

based on information on similar alleles). In the current analysis, we

have used the MLVO algorithm for MHC binding [79], as well as

for TAP binding. The MHC binding accuracy of the vast majority

of MHC-I alleles in the MLVO is over 0.95 (with AUC of over 0.98)

[79]. As in all other cases, the SIR results presented are a weighted

average over alleles of the ratio between the computed epitope

density and the one expected in a random sequence.

NetMHC
The NetMHC algorithm uses an artificial neural network

(ANN) based method for MHC binding prediction [80]. The ANN

is trained by eluted MHC ligands for which binding affinity data is

measured. We define an epitope as a peptide that exceeds the

threshold of 500 nM (’weak binder’), and calculated the SIR score

accordingly. In order to compare the NetMHC results to the

BIMAS and MLVO results, we applied the Ginodi cleavage

algorithm [39] and the Peters TAP binding score [40] . Only

peptides having a supra-threshold score were tested for MHC

binding. Again, the SIR results presented are a weighted average

over alleles of the ration between the computed epitope density

and the one expected in a random sequence.

Thresholds
The different epitope prediction algorithms provide a binding

score. In order to produce an epitope list, a cutoff should be

applied to these scores. There are two possibilities to use thresholds

for the definition of epitopes: a single affinity threshold for all

alleles, or an allele dependent threshold. The first attitude is based

on the need to bind the MHC molecule for a long enough period

to activate T cells. The second attitude is based on the competition

for the presentation on a limited number of MHC molecules. For

example, an allele such as B*2705 is expected to present a very

large number of epitopes from self proteins [81]. Thus a viral

protein with a large number of epitopes would have to compete

with a similarly high number of epitopes in human proteins. We

here use the second option where we have computed an allele

specific presentation threshold value that limits the number of

predicted presented epitopes from a random sequence (Supple-

mentary Material, Table S1). While this may lead to the exclusion

of some real viral epitopes, it should not affect the ratio between

the number of computed epitopes in real and scrambled

sequences. Cutoffs for all alleles can be found in the Supplemen-

tary Material (Table S1).

Statistical analysis
The SIR score of various populations was compared to the

expected score. A two way nested ANOVA was used to compare

the SIR scores of bacterial proteins in real vs. scrambled sequences,

as well as the SIR score of effector vs. other proteins in bacteria.

The ANOVA analysis was performed using two layers of variables:

the main group -effector/non-effector or real/scrambled and the

second, nested within the first is the protein identity.

A two way T-test with unknown and unequal variance was used

in cases where no layers has to be considered (comparison SIR

score of each protein groups to 1, and comparison of the averaged

proteasomal cleavage, tap binding and MHC-I binding scores of

epitopes in effectors and non-effector proteins).

Epitope computation
We have designed a CD8+ T cell epitope SQL based library

webserver: http://peptibase.cs.biu.ac.il. This website provides

detailed CD8+ T cell epitope libraries for the human and mouse

genomes as well as for most fully sequenced viruses. It also allows

users to upload a file and produce an epitope library. All bacterial

proteins in this study were analyzed for their epitope using this

webserver.

Supporting Information

Figure S1 SIR score of effector groups, averaged each protein by

itself.

(TIF)

Figure S2 Similarity among ESAT-6 like family proteins.

Similarities are represented by the edit distance divided by the
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length of the longer protein among the two proteins that were

compared.

(TIF)

Table S1 MHC-I allleles used in the analysis. The first column

describes the allele frequency in Caucasian population (http://

www.ebi.ac.uk/imgt/hla/). The second column describes the

presentage of random epitopes that bind to the allele, and the

third column describes the cutoff used by the algorithm to classify

binders/non-binders.

(TIF)

Table S2 SIR score and neutral SIR score for each protein in the

study.

(TIF)

Table S3 Comparison between the results of BIMAS,

MLVO and NetMHC algorithms and their significance.

H/L- SIR score is higher/lower than the neutral SIR score. NS-

not significant.

(TIF)
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