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Abstract

There have been several reports on the varying rates of progression among Alzheimer’s Disease (AD) patients; however,
there has been no quantitative study of the amount of heterogeneity in AD. Obtaining a reliable quantitative measure of AD
progression rates and their variances among the patients for each stage of AD is essential for evaluating results of any
clinical study. The Global Deterioration Scale (GDS) and Functional Assessment Staging procedure (FAST) characterize seven
stages in the course of AD from normal aging to severe dementia. Each GDS/FAST stage has a published mean duration, but
the variance is unknown. We use statistical analysis to reconstruct GDS/FAST stage durations in a cohort of 648 AD patients
with an average follow-up time of 4.78 years. Calculations for GDS/FAST stages 4–6 reveal that the standard deviations for
stage durations are comparable with their mean values, indicating the presence of large variations in the AD progression
among patients. Such amount of heterogeneity in the course of progression of AD is consistent with the existence of several
sub-groups of AD patients, which differ by their patterns of decline.
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Introduction

The temporal progression of Alzheimer’s Disease (AD) shows a

pattern of high variability, with patients transiting the stages of the

disease having time-courses ranging from months to decades [1,2].

While the biological correlates of this variability have been

investigated by many groups [2–19], the underlying reasons for

such variations remain largely uncertain. One of the challenges

posed by a high variability of a temporal disease course is the

difficulty in treatment efficiency assessments. For any current and

future progression-delaying drug, it is important to be able to

establish whether and by how much it delays the deterioration

caused by AD. To this end, it is necessary to have a reliable

quantification of the heterogeneity of the disease.

Global Deterioration Scale (GDS) was proposed in [20] and

allows professionals and caregivers to chart the decline of people with

AD. While a number of scales exist, GDS is one of the most widely

used instruments to stage the course of AD. It measures cognitive,

behavioral and functional impairment of patients. There are a total

of 7 GDS stages (from stage 1 corresponding to no impairment to

stage 7 corresponding to the most severe AD). In particular, stage 4

(mild AD) is characterized by patients requiring assistance in

complex tasks such as handling finances, planning a dinner party etc.

In GDS stage 5 (moderate AD) patients require assistance in

choosing proper attire. In stage 6 (moderately severe AD) patients

require assistance in dressing and bathing, and start experiencing

urinary and fecal incontinence. GDS has been shown to correlate

with both behavioral measures, and anatomic brain changes [20].

Functional Assessment Staging procedure (FAST) was proposed

in Ref. [21,22]. Based on GDS, this procedure describes a

continuum of 16 successive stages and substages from normality to

most severe dementia of the AD type. The FAST stages have been

enumerated to be concordant with the GDS stages from which

they were derived [23], although some differences between the two

scales have also been demonstrated [24]. One of the advantages of

GDS/FAST staging system is that it allows the assessment and

staging of AD in its entire range from normal aging to very severe,

end-stage, AD [25].

In the literature, the course of AD as characterized by GDS/

FAST staging system has been described in quantitative terms. In

particular, the stages are thought to follow in a sequential fashion

and are characterized by certain stage durations [26]. For

example, stage 4 is thought to last for 2 years, to be followed by

stage 5 whose duration is 1.5 years, which in turn is followed by

stage 6 (2.5 years).

While this quantification is a useful diagnostic tool, it reflects the

average course of the disease and provides no information about

possible heterogeneity of AD progression. At the same time,

quantifying the variance of GDS/FAST stage durations is essential,

as one needs to compare the delay gained by a treatment strategy

with the amount of natural variation in stage durations, to be able to

judge whether there is significance to any improvements observed.

In this paper we investigate the heterogeneity of AD by studying the

distribution of GDS/FAST stage durations of AD patients. We ask:

how much variability is there in the course of AD, and how well do

the average values for GDS/FAST stage durations reflect the

disease course of individual patients?

Results

The estimates for the cumulative probability distributions of

GDS/FAST stage durations are presented in figure 1. We can see
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that there is a slight difference between the GDS and FAST scale.

This is further illustrated in figure 2 where we show the mean values

of the GDS/FAST stage durations together with their standard

deviations. In both figures, the values pertaining to the GDS system

are plotted in black, and those for FAST staging are represented by

gray lines. We can see that for stages 4 and 5, the FAST stage mean

durations are slightly shorter than the GDS mean durations, and for

stage 6, the FAST stage mean duration is longer than that calculated

for the GDS system. We can also see that for stages 4,5 and 6, the

estimated mean durations are somewhat longer than those given in

[27] (the values from [27] for each GDS/FAST stage are shown by

dashed horizontal lines). Despite this fact, we can see that, consistent

with the literature, the GDS/FAST stage 5 is the shortest of the

three stages, followed by stages 4, and 6.

A striking observation can be made by looking at the calculated

values for the standard deviations of the stage durations. In

figure 2, the standard deviation values are represented by vertical

bars around the mean, and are also shown in brackets next to the

calculated means. Both for GDS and FAST staging systems, the

standard deviations are relatively large. For example, for the

shorter stages 4 and 5, the standard deviations are of the order of

the mean values for stage durations, and for the longer stage 6, the

standard deviations exceed 50% of the mean stage duration

values. Given such large standard deviations of stage length

durations, it is remarkable that the calculated mean values of

stages 4 and 5 are so close to the previously reported durations;

and for stage 6, the calculated means are definitely within a

standard deviation from the value in [27]. We further observe that

the differences between the GDS and FAST measurements are

also well within the standard deviation, so we cannot conclude that

the two systems yield different mean values [25].

Discussion

Analysis of a large longitudinal dataset has revealed a significant

degree of variation in the lengths of GDS/FAST stages 4–6 of AD.

In particular, the calculated standard deviations for GDS/FAST

stage durations turned out to have values similar to their mean

durations. This is an indication that the patterns of cognitive and

functional decline vary significantly from patient to patient.

The suggestion that AD is a genuinely heterogeneous disease, has

been proposed in the literature [28]. One paper [29] studies a 4-year

longitudinal dataset, and identifies four different subgroups of AD

patients which differ by the rate of their intellectual and functional

decline as well as other symptoms. Ref. [30] states that AD shows

heterogeneity in its clinical, anatomic, and physiologic characteris-

tics, and identifies several patient subtypes with respect to different

characteristics, including the time course of progression. In

particular, inhomogeneity is observed with respect to the rates of

ventricle enlargement, which are related to rates of cognitive decline.

In Ref. [31], the presence of aphasia in AD patients is correlated with

a more rapid course of the disease. This is done by performing

extensive testing of the patients, as well as interviewing reliable

informants, in the course of a 2.5 year-long follow-up. Ref. [2]

follows patients for 3 year, and discovers an association between

relatively severe frontal lobe involvement and a rapid clinical course

of AD, measured by using the dementia rating scale and estimating

the symptom duration time. A recent paper, Ref. [32], examines AD

data from a 15-year longitudinal study, and provides important

insights into the patterns of progression of AD. It identifies three

groups of patients based on their initial (pre-progression) rate. This

rate is estimated by using the (normalized) Mini Mental Status Exam

(MMSE) score at base-line, divided by the symptoms’ duration. It is

found that the different groups remain separate in the course of the

follow-ups, which is consistent with our previous finding [33]. Most

relevant to our present study, it is found that the average rates of

decline for the three groups are different for three types of measures:

a cognitive measure (Alzheimer’s disease Assessment Scale-Cognitive

Subscale), a functional measure (Physical Self-Maintenance Scale),

and a global measure (Clinical Dementia Rating Scale Sum of

Boxes). Although no direct estimate of the variation has been

presented, these results clearly show that AD progression rates are

heterogeneous in many respects.

The patient data used here come from a longitudinal study

conveyed between 1983 and 2006. It is theoretically possible that

the large variation observed in the cohort of patients is a

Figure 1. The calculated cumulative probability distribution functions for GDS/FAST stage durations.
doi:10.1371/journal.pcbi.1002251.g001

Author Summary

In recent decades, our understanding of Alzheimer’s
disease (AD) has increased; however, some basic questions
still remain unresolved. One of them is: how homogeneous
is AD? Is the course of progression more or less the same
for most patients, or are there large variations? Our paper
studies a large cohort of AD patients which comes from a
23-year-long study, and performs a statistical analysis of
progression speed. We quantify the amount of spread in
GDS/FAST stage durations (a staging system widely used
by clinicians). We arrive at an astonishing conclusion that
the mean length of AD stages is comparable with their
standard deviation! This means that individual courses of
AD progression may differ very much from each other, and
from the textbook mean values. This has implications both
for clinical trials (how do we assess if a new drug is
effective, if the amount of natural spread is so large in
untreated patients?), and for our understanding of this
disease, which appears to be comprised of sub-diseases
with different patterns of decline.

Heterogeneity of Alzheimer’s Disease Progression
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consequence of a change in lifestyle factors, which affected the

course of AD progression. To explore this possibility, we have split

the cohort of patients into two subgroups based on their dates of

visit, and calculated the statistics of stage durations both for the

‘‘earlier’’ and the ‘‘later’’ parts of the cohort. We found that within

the subgroups, the variances of the stage durations were as large as

the ones reported here, and further, the mean values of stage

durations were not significantly different.

Note, however, that the analysis performed here was not

specifically designed to discern slight trends in the disease progression

over the decades. We cannot perform such an analysis with the data

at hand because of the data scarcity issues (using smaller sub-groups

of patients necessarily jeopardizes the reliability of the statistics).

More data would be needed to catch the trends related to changes in

life-style and other generational effects. Here we could only conclude

that in both early and late halves of the cohort, the variances were

large, and stage durations were statistically not different.

Given a high variability of progression patterns, an important

question is finding variables that correlate with progression rates.

We have attempted to relate the rate of progression to demographic

factors, and determine if it correlates with age at baseline,sex,

education, or the age of onset of AD (which was back-calculated by

using the information on the estimated stage durations). No

significant correlations with these factors have been found, which

is consistent with several previous papers [2,13–19]. In the

literature, several factors have been proposed to be predictive of

the disease progression rate. The work of [34] highlights the

heterogeneity of AD, and shows that clusters of CSF biomarker

levels are related to patients’ cognitive profiles. In particular, it finds

that patients with extremely high CSF levels of tau and tau

phosphorylated at threonine 181 demonstrate a distinct cognitive

profile with more severe impairment of memory, mental speed, and

executive functions; importantly, these differences cannot be

explained by disease severity. Paper [35] finds that at the time of

diagnosis, a combination of high CSF tau without proportionally

elevated p-tau-181 is correlated with a faster rate of cognitive

decline in AD patients. In paper [36], the variability of AD is

explained in terms of specific types of EEG abnormalities. In paper

[37], heterogeneity of AD is related to genetic variation in patients,

such as that associated with cerebrospinal fluid phospho-tau levels.

It is plausible that a combination of many different factors is

responsible for a high variability of AD progression rates.

Our main finding is the large heterogeneity in the duration of

GDS/FAST stages in AD, which is consistent with the reports

Figure 2. The mean values and standard deviations calculated for GDS/FAST stages 4–6. The black bars represent GDS stages, and the
gray bars – FAST stages. The mean stage values reported in [27] are presented by dashed horizontal lines.
doi:10.1371/journal.pcbi.1002251.g002
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cited above. Our methods however are very different. In this study

we use a very extensive (23-year long) longitudinal dataset for AD

patients, where there is a representation of patients at GDS/FAST

stages 4–7 of AD. We calculate the amount of variance in patients

explicitly, and demonstrate a large spread in values of GDS/FAST

stage values for stages 4, 5, and 6. There are several applications of

our results.

N Most immediately, having a standard deviation values (and not

just the mean values) for GDS/FAST stage durations is

important for those scientists and clinicians who use the GDS/

FAST staging system.

N Such large values of variance in GDS/FAST stage durations

caution against interpreting the GDS/FAST system as a

prognostic tool: the course of decline of individual patients can

be very different from the mean.

N Having the estimate on the GDS/FAST stage durations

calculated in such an extensive longitudinal dataset shows the

amount of heterogeneity in the course of progression of AD.

This is consistent with the existence of several sub-groups of

AD patients, which differ by their patterns of decline, see also

[33].

N The knowledge of stage durations together with their natural

variance is a necessary tool for the clinical trials. It allows to

make quantitative judgments about new drugs’ efficiency.

To conclude, we analyzed a longitudinal dataset to extract the

mean and the standard deviation for GDS/FAST stage durations

for stages 4–6 of AD. Applying similar methodology to larger

datasets with more frequent assessments will reveal more accurate

results.

Materials and Methods

In order to calculate the probability distribution of stage

durations in AD, we used a longitudinal dataset of AD patients,

which is an outcome of a longitudinal study performed between

the years 1983 and 2006 [33]. The following information is

contained in the dataset: the date of each patient’s visit to the

Medical Center, current GDS and FAST stage, and some

Figure 3. Some statistics of the dataset. (a) A histogram showing the number of records per patient. (b) A histogram showing patient inter-visit
times.
doi:10.1371/journal.pcbi.1002251.g003
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demographic information on each patient (such as gender, age and

years of education). The total number of AD patients in the dataset

is 1321, of which 648 have repeated records (that is, they were

seen more than once). The latter group is the one we considered in

this study. The mean number of records per patient is 2.660.9;

the histogram of the number of records for different patients is

presented in figure 3(a). The patients’ age at the first visit to the

clinic is 73.168.7 years (see figure 3(b) for the age-distribution).

66% of the patients are female, and 34% male; the average length

of education received by the patients is 13.163.4 years.

Extracting accurate estimates for the standard deviations for

longitudinal datasets is complicated by the practical realities of

how the data is collected. First of all, we only know the current

stage at the times of assessments, but we have no information on

when each stage actually starts and the next one begins (in other

words, the data is left-and right- censored). Further complication

comes from the fact that the patients’ total observation time (time

from first to last visit) was 4.78 6 2.94 years, see the histogram of

figure 3(c). This means that many patients in the cohort were not

followed for the entire course of their disease. Table 1 shows a split

of all the patients into transition classes, that is, it counts the

number of patients first seen in stage i, and last seen in stage j. This

quantifies exactly how many patients contribute to the calculations

for different stages. It is obvious that the information coming from

each individual patient is not nearly sufficient to reconstruct all the

FAST/GDS stage durations. A method is required which would

allow to combine data from different patients to reconstruct the

stage duration distributions for the whole cohort (although the

information coming from individual patients is incremental).

Finally, another problem is illustrated in figure 3(d), where we

present the inter-visit time distribution, which shows how long the

patients waited before their next visit to the doctor. We can see

that: (1) the distribution has a strong peak around 2 years, and

then a weaker mode around 4 years, which tells us that the

sampling times are strongly biased (the reason for this shape of the

distribution is that the next appointment is usually recommended

after two years); and (2) the average inter-visit time, which is

3.0361.59, is comparable with the approximate average stage

duration for FAST stages 4–6, which makes this dataset very

‘‘coarse’’ and not ideally suited for extracting stage time variations.

Analysis of long, multistage disease processes has been

addressed in literature in many different context [38–40].

Statistical approaches to estimating the mean stage durations

from a set of AD patients medical records have centered on a

linear regression approach [26], where the mean duration of

FAST stages were determined, or the use of statistics such as the

Kaplan-Meier estimate [32,41] to determine the survival times of

patients. Unfortunately, the linear regression method does not lend

itself to calculating the variances of FAST stage durations (see Text

S1). Here we used the methodology developed by [42–44] to

approximate the probability distribution of stage durations.

We view the beginning and the end of each stage as censored

events. For each stage i, for each patient, we identify the latest

record when they were diagnosed with a stage prior to i (e.g. stage

i-1), and then the earliest record where they were diagnosed with

stage i or higher. These two time-points give us the interval of time

where stage i began, [XL,XR]. Similarly, the latest record in stage i

or lower, together with the earliest record at a stage higher than i,

give the time-interval where stage i ended, [ZL,ZR]. Some of the

right bounds are set to infinity for the lack of appropriate records.

We further make an assumption on the patients’ first visit, see Text

S1 and also [33]: for patients who come to the doctor’s office for

the first time, we assume that the date of the visit effectively

coincides with the onset of the current stage.

We used the iterative approach developed in [43] to

approximate the probability distribution function of stage

durations for stages 4, 5 and 6. We did not perform the analysis

for stage 3 because the number of records for GDS/FAST stages 3

and lower was very small in the database. For stage 7, we were not

able to extract meaningful information on the stage duration

because of the absence of data on patients’ death. The obtained

solutions were further checked against a non-parametric numerical

estimate of the cumulative distribution function obtained by a

straightforward counting method. The two methods are mathe-

matically different, but they revealed very similar results. Further

details of the methodology are given in Text S1.
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