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Abstract: Illumina whole-genome
expression BeadArrays are a popu-
lar choice in gene profiling studies.
Aside from the vendor-provided
software tools for analyzing Bea-
dArray expression data (GenomeS-
tudio/BeadStudio), there exists a
comprehensive set of open-source
analysis tools in the Bioconductor
project, many of which have been
tailored to exploit the unique
properties of this platform. In this
article, we explore a number of
these software packages and dem-
onstrate how to perform a com-
plete analysis of BeadArray data in
various formats. The key steps of
importing data, performing quality
assessments, preprocessing, and
annotation in the common setting
of assessing differential expression
in designed experiments will be
covered.

Introduction

Microarrays are a standard laboratory

technique for high-throughput gene ex-

pression profiling in genomics research.

The BeadArray microarray platform

from Illumina Inc. (San Diego, CA)

consists of an array of randomly packed

beads, each bead bearing many copies of

a particular 50-mer oligonucleotide se-

quence (the ‘‘probe’’). Each BeadArray

contains a collection of probes designed

to interrogate the majority of protein-

coding transcripts in a given organism

(human, mouse, or rat) along with a

large set of both positive and negative

control probes. Due to the random

sampling of beads during the manufac-

turing process, the number and arrange-

ment of replicate beads varies from array

to array.

Multiple BeadArrays are grouped to-

gether to form a BeadChip, with gene

expression products configured to have six

(WG-6), eight (Ref-8), or 12 (HT-12)

samples per chip. This format allows

samples to be processed in parallel with

benefits for experimental design, a key

factor in the experimental workflow [1].

The hierarchy of data, from individual

pixels that make up beads on a BeadArray

for a WG-6 BeadChip, is illustrated in

Figure 1A.

The experimental process for measur-

ing transcript levels in a sample of

interest involves labelling RNA and

hybridizing this material to the probes

on a BeadArray. The scanned intensities

from these probes provide a snapshot of

transcript abundance in a particular

sample. Comparing the intensities ob-

tained from different RNA species can

provide researchers with insight into the

molecular pathways regulating the system

under investigation. There is a rich

literature on the analysis of gene expres-

sion microarrays (see Smyth et al. 2003

[2], Allison et al. 2006 [3], or Reimers

2010 [4] for reviews), and while the main

steps of an analysis such as quality

assessment and normalization still apply,

BeadArray data present a number of

unique opportunities that may not be

fully exploited by standard microarray

analysis workflows. These include a high

and variable level of intra-array replica-

tion of probes and a large set of negative

controls. Specialized algorithms that

make use of these features have been

developed for Illumina BeadArrays to

improve the results obtained from this

technology.

The aim of this article is to provide a

how-to guide for Illumina expression

analysis, using packages from the open-

source Bioconductor project [5]. The

overall workflow of an Illumina analysis

is summarized in Figure 1B. Analyses may

begin with data at one of four starting

points: raw data including the scanned

TIFF images, bead-level data without the

TIFF images, summarized output from

BeadStudio/GenomeStudio, or data ob-

tained from a public repository. Depend-

ing on the format available, different

open-source tools from Bioconductor

may be used to import and analyze the

data (Figure 1B). The methods we rou-

tinely use in our own analyses of Illumina

gene expression data are summarized in

Table 1.

The companion Bioconductor package

BeadArrayUseCases [6] provides a vignette

with a series of examples aimed at

computational biologists wanting instruc-

tion on the specific commands involved

in analyses from any starting level of

data. Three experiments using three

generations of BeadArray allow us to

span the range of data levels and

illustrate the use of specific functions

from the beadarray, limma, and GEOquery

packages. We also demonstrate how to

extract information from chip-specific

annotation packages.

Choosing a Starting Point for
the Analysis of BeadArray Data

The first decision facing the bioinfor-

matician may be what data to use as the

starting point for their analysis. If all

primary data formats (raw data including

TIFFs, bead-level data without TIFFs, or

summarized data) have been made avail-

able, then it should be clear that starting

from the TIFF images gives the greatest

amount of control over the steps being

performed at each stage. In most situa-

tions, the default processing methods
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Figure 1. Overview of the technology and workflow. (A) A zoomed view of a typical bead (top) with the pixels that contribute to the overall
(red square) and local background (yellow squares) signals marked. Many replicate beads that contain the same 50-mer oligo are located on each
BeadArray (middle) to ensure robust measures of expression can be obtained for each probe in a given sample. Around 48,000 different probe types
are assayed in this way per sample. These BeadArrays come from a WG-6 BeadChip (bottom), which is made up of a total of 12 arrays, which are
paired to allow transcript abundance to be measured in a total of six samples per BeadChip. (B) Summarizes the various data formats available along
with the Illumina workflow associated with the different levels of data. Data can be in raw form, where pixel-level data are available from TIFF images,
allowing the complete data processing pipeline, including image analysis, to be carried out in R. The next level, referred to as bead-level, refers to the
availability of intensity and location information for individual beads. In this format, a given probe will have a variable number of replicate intensities
per sample. Processed data, where replicate intensities have been summarized and outliers removed to give a mean, a measure of variability, and a
number of observations per probe in each sample, is the most commonly available format. Summary data are usually obtained directly from
Illumina’s BeadStudio/GenomeStudio software, but can also be retrieved from public repositories such as GEO or ArrayExpress. The right-hand
column of this figure indicates the R/Bioconductor packages that can handle data in these different formats. Probe annotation packages are also
listed. List of abbreviations and footnotes used in this figure: QA, quality assessment; DE, differential expression; ‘, package available from CRAN [46];
*, denotes chip-specific part of package name that depends upon platform version (e.g., v1, v2, v3, v4).
doi:10.1371/journal.pcbi.1002276.g001

Table 1. Summary of the processing methods recommended for different levels of data.

Data Type Analysis Task Recommended Approach

All levels Quality assessment Examine scanner metrics

Rawa Local background adjustment Median background subtraction

Raw Transformation log2

Bead-levelb Spatial artefact detection & removal BASH

Bead-level Quality assessment Examine image plots & boxplots

Bead-level Summarization Default Illumina method

Summary-levelc Data export from BeadStudio/ GenomeStudio Non background corrected, non normalized, Sample
and Control ‘‘Probe Profile’’ tables

Summary-level Quality assessment Examine boxplots of regular & control probes, MDS
plots

Summary-level Background correction Normal-exponential convolution using negative
controls

Summary-level Normalization Quantile

Summary-level Transformation log2

Summary-level Estimation of proportion of expressed probes in a sample Mixture model that uses negative controls (propexpr
[29])

Summary-level Probe filtering Based on annotation quality

Summary-level Differential expression analysis Linear modelling using weights

aRaw data comprises one observation per pixel, per array.
bBead-level data comprises one observation per bead, per array.
cSummary-level data comprises one observation per probe type, per sample.
doi:10.1371/journal.pcbi.1002276.t001
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employed by Illumina to extract intensities

from the TIFFs and summarize these

values within each sample produce good

intensity estimates. Whether these process-

ing steps are carried out in R (see vignette),

or using vendor-provided software, is

obviously up to the user; however, the

ability to perform the entire analysis in a

platform-independent, reproducible, and

flexible manner in R will be appealing to

many computational biologists. In addi-

tion, image registration issues [7] and

spatial artefacts [8] can only be managed

if raw or bead-level data are available.

While the impact of such events can range

from mild to catastrophic, if an analysis

begins with summarized data, then the

user will only see the symptoms of such

errors, and be unable to deal with the

potential cause of the problem.

Quality Assessment for All
Levels of Data

Irrespective of whether raw, bead-level,

or summarized data are being analyzed, the

first opportunity to assess the quality of an

experiment occurs as the arrays are being

scanned, and without the need for special-

ized software. The scanner produces a text

file that contains various signal-based array

quality measures. As an example, Figure 2A

shows the signal-to-noise ratio (SNR) for

200 arrays, including the 12 arrays from the

first data set analyzed in the vignette. Of

these 12 samples, one has a very low SNR,

which warrants further investigation and

provides grounds for down-weighting or

removal of this sample from the analysis.

The value and interpretation of these

metrics will be influenced by many factors,

so it is advisable for laboratories to keep an

historical record of these values to assist in

the detection of systematic problems during

processing and in the identification of

outlier samples.

Raw and Bead-Level Data
Analysis

To obtain raw or bead-level data,

modifications to the default scanning

settings in BeadScan or iScan are re-

quired. Currently, the beadarray package

[9] is the only Bioconductor package that

can process these raw data either in the

form obtained from the scanner or in a

compact representation via the BeadData-

PackR package [10].

The import of raw data is handled using

the readIllumina function. The availability

of TIFF images depends on scanner settings

(jpegs are provided by default), and where

present beadarray can extract background,

foreground, and total intensities to the

user’s specifications. In particular, using a

more robust measure of the local back-

ground intensity (median) has been shown

to be beneficial [7]. If TIFF images are not

available, then the user begins with Illumi-

na’s foreground intensities, calculated by

subtraction of the local background mea-

sure from the total intensity.

As with other microarrays, it is usual to

analyze data on the log2 scale, and

therefore the plotting and analysis meth-

ods used in beadarray employ this transfor-

mation by default. The first within-sample

quality plots that one can produce are

overall image plots of the array surface

(Figure 2B) to look for obvious spatial

problems. In addition, the checkRegistra-

tion function provides a convenient way to

assess whether the reported bead centers

agree with the bead locations in the raw

images.

Although Illumina’s processing steps

include the removal of outliers for each

bead type, we find that this is not sufficient

to account for all spatial artefacts that may

occur on the array surface. Although it is a

computationally expensive operation, we

routinely use the BASH tool in beadarray to

detect and remove spatial artefacts [8,11].

This method is based upon the principles

of the Harshlight [12] package for Affyme-

trix, but works on a within-array basis

rather than between arrays, using the

within-array replication to generate simi-

lar performance. The use of BASH is

recommended, but the parameters may

need to be tuned to achieve good perfor-

mance between different labs or experi-

ments.

Other useful diagnostic plots such as

boxplots can be used to reveal unusual

signal distributions (Figure 2C) and plots

of control probes (positive or negative) can

highlight processing problems that may

warrant sample removal. For convenience,

Figure 2. Various diagnostic plots which are useful for quality assessment. Where scanner metrics information is available, arrays within a
particular experiment can be compared to each other, or to a wider set from the same core facility. In (A), a per array signal-to-noise value (95th
percentile of signal divided by the 5th percentile) is plotted for 200 consecutive BeadArrays, with the arrays from the experiment in question
highlighted in color (blue or red). Low signal-to-noise ratios indicate a poor dynamic range of intensities and can highlight problems with array
processing when they occur sequentially over time. At the individual array level, sub-array artefacts can be detected using spatial plots of the
intensities across the BeadArray surface (B) and removed using BASH and outlier removal. For a between sample display, boxplots of the intensities
from different arrays within an experiment can highlight samples with unusual signal distributions (C). The relationships between different samples
can also be assessed using a multi-dimensional scaling (MDS) plot (D), which can highlight true biological differences between samples (in this
example, the difference between UHRR and Brain in dimension 1 and the pure versus mixed samples in dimension 2), as well as technical effects due
to lab, experiment date, etc., which may also need to be accounted for in the modelling.
doi:10.1371/journal.pcbi.1002276.g002
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the expressionQCPipeline function auto-

matically generates all recommended

quality control plots for a given data set.

After image processing, a key step is the

reduction of raw data (many values per

probe type) to summary data (one value

per probe type) in order that we might

apply the methods detailed in the next

section. beadarray offers flexibility in the

definition of which beads to include in

summarization and the choice of summary

statistic and transformation applied to the

raw data (the key aspects of summariza-

tion). The standard summary statistics to

use in beadarray are the mean and standard

error of the log-intensity (Illumina’s stan-

dard statistics to report are the mean and

standard error of the raw intensity). Note

that the standard error is important for

Illumina BeadArrays, as the random

design means that we will have differing

levels of confidence from one measure of

intensity to the next. Besides variations of

the standard Illumina outlier removal

method offered by beadarray, other robust

summary options are possible as described

in Kohl and Deigner (2010) [13] and

implemented in the RobLoxBioC package.

Summary Data Analysis

The most common entry point for the

computational biologist is to begin with

summarized data obtained from the gene

expression module of the BeadStudio/

GenomeStudio software. These PC-based

programs provide a convenient graphical

user interface to import and process

BeadArray data from the proprietary

format idat files output by Illumina’s

scanning software. Data are exported from

this application in tab-delimited files

(separate files for the experimental and

control probes) with each row giving the

summary information for a particular

probe, and different columns for each

sample. We recommend exporting raw

summary values (which have not been

background corrected, transformed, or

normalized) at the probe level (‘‘probe

profiles’’) rather than at the gene level

(‘‘gene profiles’’) for both regular and

control probes to avoid combining probes

targeting different transcripts of the same

gene in an undesirable manner. Such files

can be imported and processed in the R

software environment using a range of

tools that include beadarray [9], lumi [14],

and limma [15].

Another potential source of summarized

data are public repositories such as Gene

Expression Omnibus (GEO) [16] or Ar-

rayExpress [17]. Experimental data from

these databases will generally be summa-

rized and probably normalized, and can

be imported into R using the repository-

specific packages GEOquery [18] and Ar-

rayExpress [19].

Once summarized data have been

imported into R, quality assessment is

necessary to identify poor-quality arrays

and check for systematic biases. The

arrayQualityMetrics [20] package is able to

collate quality assessment plots for sum-

marized data created by beadarray and

identify potential outlier arrays. Boxplots

are commonly used to assess the dynamic

range from each sample and look for

unusual signal distributions (Figure 2C).

We also recommend making separate

boxplots of regular probes and control

probes as a means to highlight unusual

samples.

Before comparisons between different

biological samples can be made, it is

important to remove per-array technical

effects to ensure the values being analyzed

truly reflect the biology. In the microarray

literature, the three steps to achieve this

are commonly referred to as background

correction (not to be confused with the

image processing step of the same name),

between-array normalization, and trans-

formation. Two popular methods that

implement these steps for Illumina data

are neqc and vst from the limma and lumi

packages, respectively.

For background correction, the Geno-

meStudio option of subtracting the aver-

age of the negative controls on an array

has been shown on several occasions to be

flawed [21–23]. One can get by with no

background correction and a simple log2

transformation to stabilize variances; how-

ever, more sophisticated approaches that

use Illumina’s negative control probes

(sequences with no match to the ge-

nome/transcriptome) are preferable.

These controls can be used to correct the

observed signal intensities from each array

using a normal-exponential convolution

model [24–27] to reduce bias and the

number of false positives. Adding a small

offset to the corrected intensities has been

shown to improve precision and reduce

the false discovery rate further. In our

research, we routinely use an offset of 16

for neqc to give a good trade-off between

variance stabilization and bias. Alterna-

tively, the VST (variance stabilizing trans-

formation) method [28] performs variance

stabilization and background correction in

the same transformation. Instead of using

negative controls, the within-array stan-

dard errors calculated from the replicate

beads are used to remove the relationship

between intensity and signal variability

that typically exists.

Negative controls are also useful for

estimating the proportion of probes that

are expressed in a given sample [29],

which can be used to distinguish hetero-

geneous cell samples from pure samples

[29] and to filter out non-expressed

probes.

For normalization, between-array

quantile is the method most frequently

applied to Illumina data both in the

literature [21,27,30] and in our own

research. More sophisticated variants on

this approach that use control probes or

robust splines (implemented in rsn in lumi)

have emerged and are increasing in

popularity. Strip-level processing, which

separates probes depending on physical

location and normalizes strips containing

the same probes between samples, can also

be beneficial for older BeadChip versions

[31]. Ultimately, as with other high-

throughput technologies, there is no

‘‘one-size-fits-all’’ solution for normaliza-

tion and the analyst should be prepared to

make an informed decision based on

exploratory plots and consideration of

the assumptions of the method. For

instance, classical quantile normalization

may be inappropriate in data sets com-

prising many different tissue types. Stan-

dardized data sets and methods of com-

parison may help guide the analyst in their

choice [32].

Next, relationships between a collection

of samples can be assessed via multidi-

mensional scaling (MDS, Figure 2D) or

principal component analysis (PCA). MDS

quantifies sample similarity across many

genes (typically the 500 most variable), and

reduces the measure to two dimensions for

easy viewing. Ideally, samples would

separate based on biological variables

(sex, treatment, etc.), but often technical

effects (such as samples processed together

in batches) may dominate the differences

between arrays. These effects may be

accounted for in a differential expression

analysis, or managed using tools such as

ComBat [33,34] or removeBatchEffect

within limma (as used in Lim et al. (2010)

[35]). Employing a good experimental

design that ensures biological factors of

interest are not confounded with known

technical or processing variables is of

fundamental importance in any study.

Once data are preprocessed into a

normalized ‘‘expression matrix’’ format

used throughout Bioconductor, a wide

variety of analyses can take place such as
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clustering, assessing differential expression,

classification, and pathway analysis.

Differential Expression Analysis

Throughout the vignette [6], we make

use of the linear modelling framework in

the limma package for assessing differential

expression [36] due to its flexibility and

the maturity of the statistical methods it

provides. For a designed Illumina exper-

iment, which includes some replication of

RNA samples, average log-intensities are

estimated for one or more distinct sample

types simultaneously using linear models

fitted a probe at a time. The limma package

also allows for observations in a linear

model to be weighted according to the

confidence in which we hold them. For

Illumina BeadArrays, we might naturally

want to weight observations by the inverse

of the squared standard error (so that

observations about which we are more

certain are given greater weight), as the

standard error should be a function both

of the array quality and the number of

copies of that type of bead. However,

obtaining an accurate measure of the

standard error can be problematic. Even

if we start out with one, steps such as

outlier removal, trimming, background

correction at the summary level, and

normalization will transform the mean

and leave the standard error lacking

validity unless it is sympathetically trans-

formed. Thus, it is tempting to assume that

our transformation (if we have performed

one—e.g., taking logs or using vst) has

removed any mean-variance relationship

in the data, in which case the number of

beads can be used as a weight to account

for technical variation that may arise in an

experiment. This ignores biological varia-

tion between different arrays, and so we

should really use a weight consisting of the

number of beads contributing to the

observation adjusted by an array multipli-

er that gives a measure of the reliability of

the array from which the observation

comes. Array-specific weights have been

shown to improve power to detect differ-

ential expression [37] and are especially

useful in human studies where heteroge-

neity can be high.

Having fitted our weighted linear mod-

el, we then set up contrasts between RNA

conditions and proceed to estimate be-

tween-sample differences of biological

interest. Empirical Bayes shrinkage of the

probe-wise variances is then applied to

ensure that inference is reliable and stable,

even when the number of replicate

samples is small [36]. These shrunken

standard errors are used to calculate

moderated t-statistics and F-statistics

(when multiple contrasts are present),

and the resulting p-values are generally

used to rank probes in terms of their

evidence for differential expression after

adjusting for multiple testing.

Annotation

By following the steps in the previous

section, the researcher may be presented

with a list of hundreds if not thousands of

differentially expressed probes that are

named according to their manufacturer-

assigned IDs. At the very least, these must

be translated into gene symbols that the

researcher can recognize, or into function-

al pathways that can provide insight into

the biological question being investigated.

The Bioconductor project provides

infrastructure for mapping between micro-

array probes and functional genomic

annotation to be used in downstream

analyses. For Illumina chips, these pack-

ages are maintained on a per-organism

(e.g., lumiHumanAll.db) or per-chip (e.g.,

illuminaHumanv3.db) basis. The organism-

specific packages use the nuIDs from Du

et al. (2007) [38] to encode the super-set of

all probe sequences used in different

revisions of chips for the same organism,

which can be advantageous when analyz-

ing data from different BeadChip versions.

In these packages, the RefSeq IDs provid-

ed by Illumina in their own annotation

files are used to provide functional anno-

tation for each probe.

However, an important issue that is

sometimes taken for granted in the

analysis of microarray data is the assign-

ment of genomic and transcriptomic

identifiers to each unique probe sequence.

Manufacturers provide their own annota-

tion, but inevitably the reported mappings

can become outdated as genome or

transcriptome versions are updated. This

issue was the subject of extensive research

for Affymetrix expression arrays (see Dai

et al. (2005) [39], amongst others) and has

recently been brought to light for Illumina

expression [40] and methylation [41]

arrays. A significant proportion of probes

on each Illumina expression platform are

reported to map to non-transcribed geno-

mic regions or have other properties that

complicate analyses, such as containing

SNPs or repeat-masked elements. Failure

to take such factors into account can have

a profound effect on the interpretation of

microarray data [42]. Barbosa-Morais

et al. (2010) [40] describe a scheme to

assign a quality score to each probe

sequence that captures how well the

sequence maps to the genome and tran-

scriptome. Four basic categories, ‘‘per-

fect’’, ‘‘good’’, ‘‘bad’’, and ‘‘no match’’,

are defined and shown to correlate with

expression level and measures of differen-

tial expression. We routinely remove

probes assigned a bad or no match quality

score after normalization. This approach

is similar to the common practice of

removing lowly expressed probes, but with

the additional benefit of discarding probes

with a high expression level caused by

non-specific hybridization. Besides the

obvious benefit of removing probes that

are either off-target or promiscuous, such

a filtering step reduces the burden of

multiple testing and thereby improves the

power to detect differential expression.

Chip-specific packages such as illuminaHu-

manv3.db and organism-specific packages

such as lumiHumanIDMapping both provide

the user with access to these quality scores.

Downstream Analyses

There are many other analysis tools

available from R/Bioconductor that can

be used for downstream analysis of

Illumina microarray data. For example,

gene ontology/pathway enrichment anal-

ysis can be performed with topGO or

GOstats and their associated annotation

packages (GO.db and KEGG.db), as can

gene set enrichment analysis using the

GSEAlm package. In limma, both self-

contained gene set testing (using the roast

function [43]) and competitive gene set

testing (using the battery of gene sets

available from MSigDB [44]—see the

romer function) that operate within the

linear model context are possible.

Conclusions

We have highlighted a number of

specially tailored tools and modelling

approaches that are available in Biocon-

ductor for the analysis of Illumina gene

expression data sets in various formats. A

summary of the methods that we currently

recommend for Illumina expression anal-

ysis are listed in Table 1. Code examples

that illustrate how to carry out each of

these steps in the analysis are provided in

the separate vignette [6] from the BeadAr-

rayUseCases package. These Bioconductor

tools expand the set of analysis options

offered in the vendor-provided GenomeS-

tudio/BeadStudio software, and are con-

tinually being developed to accommodate

new applications of BeadArray technolo-

gy, such as methlyation assays.

The open-source Bioconductor plat-

form also presents researchers with a

choice of operating system for their

analysis and a means to write analysis
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scripts and generate reports based on them

using Sweave [45], which assists with the

communication of results and ensures

reproducibility of a data analysis. Help is

also easy to come by at various levels from

manual pages for each function, through

to package-specific vignettes and the

Bioconductor mailing list for posting

questions and reporting problems. Biocon-

ductor software also benefits from a

regular release schedule that ensures

packages are kept up-to-date with changes

in the R software environment [46], which

underpins all of this work.
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Härdle W, Rönz B, eds. Compstat 2002 - Pro-

ceedings in Computational Statistics. Heidelberg:
Physica Verlag. pp 575–580. ISBN 3-

7908-1517-9. Available: http://www.stat.uni-
muenchen.de/,leisch/Sweave. Accessed 28 Oc-

tober 2011.
46. R Development Core Team (2011) R: a language

and environment for statistical computing.

Vienna: R Foundation for Statistical Computing,
ISBN 3-900051-07-0. Available: http://www.R-

project.org/. Accessed 28 October 2011.

PLoS Computational Biology | www.ploscompbiol.org 6 December 2011 | Volume 7 | Issue 12 | e1002276


