
Optimizing Experimental Design for Comparing Models
of Brain Function
Jean Daunizeau1,2*, Kerstin Preuschoff2, Karl Friston1, Klaas Stephan1,2

1 Wellcome Trust Centre for Neuroimaging, University College of London, London, United Kingdom, 2 Laboratory for Social and Neural Systems Research, Department of

Economics, University of Zurich, Zurich, Switzerland

Abstract

This article presents the first attempt to formalize the optimization of experimental design with the aim of comparing
models of brain function based on neuroimaging data. We demonstrate our approach in the context of Dynamic Causal
Modelling (DCM), which relates experimental manipulations to observed network dynamics (via hidden neuronal states) and
provides an inference framework for selecting among candidate models. Here, we show how to optimize the sensitivity of
model selection by choosing among experimental designs according to their respective model selection accuracy. Using
Bayesian decision theory, we (i) derive the Laplace-Chernoff risk for model selection, (ii) disclose its relationship with classical
design optimality criteria and (iii) assess its sensitivity to basic modelling assumptions. We then evaluate the approach when
identifying brain networks using DCM. Monte-Carlo simulations and empirical analyses of fMRI data from a simple bimanual
motor task in humans serve to demonstrate the relationship between network identification and the optimal experimental
design. For example, we show that deciding whether there is a feedback connection requires shorter epoch durations,
relative to asking whether there is experimentally induced change in a connection that is known to be present. Finally, we
discuss limitations and potential extensions of this work.
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Introduction

The history of causal modeling of fMRI data in terms of

effective connectivity began in the mid-1990’s and has unfolded in

two major phases (for reviews, see [1–2]). The first phase

addressed the optimization of connectivity estimates. This involved

optimising methods that exploited the information contained in

fMRI time series and dealt with confounds such as inter-regional

variability in hemodynamic responses. In this development, the

community progressed from using methods originally developed

for other types of data (such as structural equation modeling; [3])

to dynamic causal models, specifically tailored to fMRI [4]. The

second phase concerned optimization of model structure, introducing

Bayesian model selection methods to neuroimaging that are

increasingly frequently used for selecting among competing models

[5]. This paper goes beyond this and hopes to contribute to the

initiation of a third phase. It describes a method for selecting

experimental design parameters to minimize the model selection

error rate, when comparing candidate models of fMRI data. This

is the first attempt to formalize the optimization of experimental design

for studying brain connectivity with functional neuroimaging data.

This paper describes a general framework for design optimiza-

tion. Although we examine design optimization in the specific

context of inferring effective connectivity and network structure

from fMRI data, it should be noted that the approach is very

general and not limited to any data acquisition technique, nor to

any particular generative model. In brief, it can be used whenever

one wishes to optimize experimental design for studying empirical

responses by means of generative models.

To date, statistical approaches to experimental design for fMRI

studies have focused on the problem of detecting regionally

specific effects of experimental (e.g., cognitive, sensory or motor)

manipulations [6–10]. This addresses the traditional question of

functional specialization of individual areas for processing components

of interest [11]. The associated statistical procedure involves

testing for the significance of contrasts of effects of interest,

encoded by regressors in the design matrix of a general linear

model (GLM). The established approach to fMRI experimental

design thus proceeds by extremising the experimental variance in

summary statistics (e.g., GLM parameters estimates) at the subject

level. This is typically done under (non statistical) constraints, such

as psychological validity or experimental feasibility (see, e.g., [12]).

However, no attempt has been made so far to optimise

experimental designs in relation to functional integration, i.e. the

information transfer among activated brain regions. Here, the

challenge is to identify context-dependent interactions among

spatially segregated areas [13]. The key notion in this context is

that optimizing the experimental design requires both a quanti-
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tative model that relates the experimental manipulation to

observed network dynamics and a formal statistical framework

for deciding, for example, whether or not a specific manipulation

modulated some connection within the network (see Figure 1).

Dynamic Causal Modelling (DCM) was developed to exploit

biophysical quantitative knowledge in order to assess the context-

specific effects of an experimental manipulation on brain dynamics

and connectivity [4]. Typically, DCM relies upon Bayesian model

comparison to identify the most likely network structure subtending

observed fMRI time series within regions of interest. We refer the

interested reader to [14] for a critical review on the biophysical and

statistical foundations of the DCM framework. At present, DCM is

the most suitable framework within which to address the problem of

optimizing the experimental design to infer on brain network

structure. This is because it is based upon a generative model that

describes how experimental manipulations induce changes in

hidden neuronal states that cause the observed measurements.

This is in contrast to other network models based on functional

connectivity that simply characterise the surface structure or

statistical dependencies among observed responses [15].

In this paper, we argue that one should choose among

experimental designs according to their induced model selection

error rate and demonstrate that this can be done by deriving an

information theoretic measure of discriminability between models.

We first derive and evaluate the Laplace-Chernoff risk, both in terms

of how it relates to known optimality measures and in terms of its

sensitivity to basic modelling choices. The ensuing framework is

very general and can be used for any experimental application that

rests upon Bayesian model comparison. We then use both

numerical simulations and empirical fMRI data to assess standard

design parameters (e.g., epoch duration or site of transcranial

magnetic stimulation). In brief, we formalize the intuitive notion

that the best design depends on the specific question of interest. En

passant, we also identify the data features that inform inference

about network structure. Finally, we discuss the limitations and

potential extensions of the method.

Methods

Bayesian model selection is a powerful method for determining

the most likely among a set of competing hypotheses about (models

of) the mechanisms that generated observed data. It has recently

found widespread application in neuroimaging, particularly in the

context of dynamic causal modelling (DCM). However, so far,

Figure 1. The DCM cycle. The DCM cycle summarizes the interaction between modelling, experimental work and statistical data analysis. One
starts with new competing hypotheses about a neural system of interest. These are then embodied into a set of candidate DCMs that are to be
compared with each other given empirical data. One then designs an experiment that is maximally discriminative with respect to the candidate
DCMs. This is the critical step addressed in this article. Data acquisition and analysis then proceed, the conclusion of which serves to generate a new
set of competing hypotheses, etc…
doi:10.1371/journal.pcbi.1002280.g001

Author Summary

During the past two decades, brain mapping research has
undergone a paradigm switch. In addition to localizing
brain regions that encode specific sensory, motor or
cognitive processes, neuroimaging data is nowadays
further exploited to ask questions about how information
is transmitted through brain networks. The ambition here
is to ask questions such as: ‘‘what is the nature of the
information that region A passes on to region B’’. This can
be experimentally addressed by, e.g., showing that the
influence that A exerts onto B depends upon specific
sensory, motor or cognitive manipulations. This means one
has to compare (in a statistical sense) candidate network
models of the brain (with different modulations of
effective connectivity, say), based on experimental data.
The question we address here is how one should design
the experiment in order to best discriminate such
candidate models. We approach the problem from a
statistical decision theoretical perspective, whereby the
optimal design is the one that minimizes the model
selection error rate. We demonstrate the approach using
simulated and empirical data and show how it can be
applied to any experimental question that can be framed
as a model comparison problem.

Optimal Design for Model Comparison
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optimizing experimental design has relied upon classical (frequen-

tist) results that apply to parameter estimation in the context of the

general linear model. This section presents the derivation of the

Laplace-Chernoff risk, which serves as a proxy to the model selection

error rate. The emphasis here is on model selection, rather than

parameter estimation. This is important, because the former

problem cannot, in general, be reduced to the latter, for which

most formal optimality criteria have been designed [16]. We thus

outline the theory, which involves: (i) deriving a Bayesian decision

theoretic design optimality score: this can be understood, in

information theoretic terms, as expected model discriminability;

(ii) disclosing its relationship to classical (frequentist) design

optimality and (iii) inspecting its sensitivity to basic modelling

assumptions.

Bayesian model comparison
To interpret any observed data y with a view to making

predictions based upon it, we need to select the best model m that

provides formal constraints on the way those data were generated;

(and will be generated in the future). This selection can be based

on (Bayesian) probability theory to identify the best model in the

light of data. This necessarily involves evaluating the model

evidence or marginal likelihood p y m,ujð Þ:

p y m,ujð Þ~
ð

p y,q m,ujð Þdq ð1Þ

where u is the (known) experimental manipulation (or design) and

the generative model m is defined in terms of a likelihood

p y q,m,ujð Þ and prior p q m,ujð Þ on the unknown model parame-

ters, q, whose product yields the joint density by Bayes rule:

p y,q m,ujð Þ~p y q,m,ujð Þp q m,ujð Þ ð2Þ

Generally speaking, p y m,ujð Þ is a density over the set of all possible

datasets Y : y[Y that can be generated under model m and

experimental design u. Having measured data y, Bayesian model

comparison relies on evaluating the posterior probabilities

p m y,ujð Þ of models m belonging to a predefined set M:

p m y,ujð Þ~ p mð Þp y m,ujð Þ
p y ujð Þ

p y ujð Þ~
X
m[M

p mð Þp y m,ujð Þ,
ð3Þ

The reason why p y m,ujð Þ is a good proxy for the plausibility of any

model m[M is that the data y sampled by the experiment are likely

to lie within a subset of Y that is highly plausible under the model

whose predictions are the most similar to the true generative

process. However, there is a possibility that the particular

experimental sample y could end up being more probable under

a less reasonable model. This ‘model selection error’ could simply be

due to chance, since y is sampled from a (hidden) probability

distribution. In what follows, we focus on inferential procedures

based on Bayesian model selection (e.g., DCM studies, see below).

The experimental design should then minimize the expected model

selection error. We now turn to a formal Bayesian decision

theoretical approach for design optimization (we refer the interested

reader to [17] for an exhaustive review).

The Chernoff bound to the model selection error rate
Following [18], we consider the following decision theoretic

problem. A design u must be chosen from some set U and data y

from a sample space Y is observed. Based on y, a model m̂m will be

chosen from the comparison set or model space M. Note that the

decision is in two parts: first the selection of the design u, and then

the model selection m̂m. Before the experiment is actually

performed, the unknown variables are the models m[M and the

data y[Y . Within a Bayesian decision theoretic framework (see

e.g., [19]), the goal of the experiment is quantified by a loss

function e m,m̂mð Þ, which measures the cost incurred in making

decision m̂m[M (the selected model) when the hidden model is m.

Note that obviously, no model is ‘true’ (or ‘false’): it is an imperfect

approximation to reality, whose imperfections can, in certain

circumstances, become salient; by ‘hidden model’, we mean ‘the

model that is the least imperfect’. Following the Neyman-Pearson

argument for hypothesis testing [20], we define the model selection

error or loss e m,m̂mð Þ as follows:

e m,m̂mð Þ~
1 if m̂m=m

0 otherwise

�
: ð4Þ

According to Bayesian decision theory, the optimal decision

m̂m:m̂m yð Þ is the one that minimizes the so-called posterior risk, i.e.

the expected model selection error, given the observed data y:

m̂m yð Þ: arg min
m̂m[M

Ep m y,ujð Þ e m,m̂mð Þ½ �,

~ arg max
m[M

p m y,ujð Þ
ð5Þ

where the expectation is taken over the model posterior

distribution p m y,ujð Þ. The optimal decision rule m̂m yð Þ depends

on the observed data y, whose marginal density p y ujð Þ depends on

the experimental design u. A model selection error might still arise,

even when applying the optimal model selection in equation 5.

Note that the probability Pe of selecting an erroneous model, given

the data and having applied the optimal model selection rule is

simply given by:

Pe~p êe~1 y,ujð Þ

~Ep m yj ,uð Þ e m,m̂m yð Þð Þ½ �

~1{p m̂m yð Þ y,ujð Þ

~1{ max
m

p m y,ujð Þ

ð6Þ

where we have used êe:e m,m̂m yð Þð Þ, for the potential error we

make when selecting the optimal model m̂m yð Þ. Equation 6 means

that the probability of making a model selection error is

determined by the experimental evidence in favour of the selected

model. Thus, repetitions of the same experiment might not lead to

the same model being selected because of the variability of the

posterior probability distribution over models p m y,ujð Þ, induced

by the sampling process.

In this context, the task of design optimization is to reduce the

effect of the data sampling process upon the overall probability of

selecting the wrong model. This means we have to marginalize the

probability Pe of making an error êe over the data sample space Y .

Note that design optimization is the only Bayesian problem where

it is meaningful to average over the sample space Y . This is

because the experimental sample y has not yet been observed,

which makes the decision theoretic principle of averaging over

what is unknown valid for Y . More formally, the potential error êe
is the loss in our design decision theoretical problem, and the

model selection error rate p êe~1 ujð Þ is the design risk for Bayesian

model selection. We define the optimal design (for Bayesian model

Optimal Design for Model Comparison

PLoS Computational Biology | www.ploscompbiol.org 3 November 2011 | Volume 7 | Issue 11 | e1002280



selection) as the design u� that minimizes the design risk; i.e. the

expectation of êe under the marginal prior predictive density

p y ujð Þ:

u �: arg min
u

Ep y ujð Þ êe½ �

Ep y ujð Þ êe½ �~p êe~1 ujð Þ

~

ð
Y

p êe~1 y,ujð Þp y ujð Þdy

~1{

ð
Y

max
m

p mð Þp y m,ujð Þ½ �dy

ð7Þ

where we have used the expression for the error probability Pe in

equation 6. The integrand in equation 7 switches from one model

to another one as one spans the data sample space Y .

Unfortunately, this means that the error rate p êe~1 ujð Þ has no

analytical close form, and might therefore be difficult to evaluate.

Instead, we propose to minimize an information theoretic criterion

b uð Þ that yields both upper and lower bounds to the above error

rate [21]:

1

4 ��MM�MM{1
� � b uð Þ2ƒp êe~1 ujð Þƒ 1

2
b uð Þ,

b uð Þ~H p mð Þð Þ{DJS uð Þ

ð8Þ

where ��MM�MM is the cardinality of the model comparison set M, H .ð Þ
is the Shannon entropy and DJS uð Þ is the so-called Jensen-Shannon

divergence (see, e.g., [22]), which is an entropic measure of

dissimilarity between probability density functions:

DJS uð Þ~H
X
m[M

p mð Þp y m,ujð Þ
 !

{
X
m[M

p mð ÞH p y m,ujð Þð Þ

~
X
m[M

p mð ÞDKL p y m,ujð Þ;
X
m[M

p mð Þp y m,ujð Þ
 ! ð9Þ

where DKL p1; p2ð Þ is the Kullback-Leibler divergence between the

densities p1 and p2. Note that the Jensen-Shannon divergence is

symmetric, nonnegative, bounded by 1 (0ƒDJSƒ1) and equal to

zero if and only if all densities are equal. It is also the square of a

metric (that of convergence in total variation).

In the context of classification or clustering, b uð Þ is known as the

Chernoff bound to the classification error rate [21]. Note that, since

the prior distribution p mð Þ over model space M is independent of

design u, minimizing b uð Þ with respect to u corresponds to

maximizing DJS with respect to u. From equation 9, one can see

that DJS is the difference between the entropy of the average prior

predictive density over models minus the average entropy. In this

setting, entropy can be thought of as average self information over

models. Maximising DJS minimises the dependencies among the

prior predictive densities. Informally, one could think of this as

orthogonalising the design, in the same way that one would

orthogonalise a covariance matrix, namely minimise the covari-

ances (the first term in equation 9 – first line) under the constraint

that the variances are fixed (second term in equation 9 – first line).

The second line in equation 9 gives yet another interpretation to

the Jensen-Shannon divergence: it is the average Kullback-Leibler

divergence between each prior predictive density and the average

prior predictive density. It is a global measure of dissimilarity of

the prior predictive densities; maximizing DJS thus separates each

model prediction from the others. In turn, this means that the

optimal design u� is the one that is the most discriminative, with

respect to the prior predictive density of models included in the

comparison set.

In summary, we have derived the Bayesian decision theoretic

design optimization rule that minimizes the model selection error

rate. We have then proposed an information theoretic bound,

which relies upon maximizing the discriminability of model

predictions with respect to experimental design. We now turn to a

specific class of generative models, that of nonlinear Gaussian

likelihood functions, which is a class of generative models that

encompasses most models used in neuroimaging data analyses.

Nonlinear Gaussian models and the approximate
Laplace-Chernoff risk

In the following, we will focus on the class of nonlinear Gaussian

generative models. Without loss of generality (under appropriate

nonlinear transformations), this class of models has the following

form:

m :
p y q,m,ujð Þ~N gm q,uð Þ,Qmð Þ

p q mjð Þ~N mm,Rmð Þ

(
, ð10Þ

where Qm is the covariance matrix of the residual error

e~y{gm q,uð Þ, gm is the (deterministic) observation mapping of

model m and mm,Rmð Þ are the prior mean and covariance of the

unknown parameters q (under model m).

For this class of models, and using an appropriate Taylor

expansion of the observation mapping, one can derive (see Text

S1) an analytical approximation to the lower Chernoff bound to

the model selection error rate p êe~1 ujð Þ:

bLC uð Þ:H p mð Þð Þ

z
1

2

X
m[M

p mð Þlog ~QQm uð Þ
�� ��{log

X
m[M

p mð Þ DgmDgT
mz~QQm uð Þ

� ������
�����

 !
ð11Þ

where Dgm and ~QQm uð Þ are defined as follows:

Dgm~gm mm,uð Þ{
X
m[M

p mð Þgm mm,uð Þ

~QQm uð Þ~Qmz
Lgm

Lq

����
m

Rm
Lgm

Lq

����
m

T ð12Þ

In the following, we will refer to bLC uð Þ as the Laplace-Chernoff risk.

In the following, we will show that, under mild conditions, the

Laplace-Chernoff risk is monotonically related to the model

selection error rate p êe~1 ujð Þ, and is therefore a valid proxy.

So far, we have considered the problem of selecting a single

model from a set of alternatives. However, we may want to

compare families of models, irrespective of detailed aspects of

model structure [23]. This optimization of experimental design for

comparing model families is described in Text S3.

Relationship to classical design efficiency
The Laplace-Chernoff risk is simple to compute and interpret.

For example, with ��MM�MM~2 models and assuming that (i) both

models are a priori equally likely, and (ii) both prior predictive

densities have similar variances, i.e.: ~QQ1 uð Þ~~QQ2 uð Þ:~QQ uð Þ, the

Laplace-Chernoff risk is given by:

Optimal Design for Model Comparison
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bLC uð Þ~1{
1

2
log

1

4

g1 m1,uð Þ{g2 m2,uð Þð Þ2
~QQ uð Þ

z1

 !
, ð13Þ

Equation 13 shows that the Laplace-Chernoff bound bLC uð Þ is a

simple contrast resolution measure, in a signal detection theory

sense (see Figure 2). Another perspective would be to think of it as

a (log-transformed) t-test of the mean difference under two designs.

From equation 13, one can see that the Laplace-Chernoff bound

tends to one (i.e. the upper bound on the error rate p e~1 ujð Þ
tends to 0.5) whenever either the difference g1{g2 between the

first-order moments of the prior predictive densities goes to zero or

their second-order moment ~QQ uð Þ goes to infinity.

Optimizing the design u with respect to bLC uð Þ thus reduces to

discriminating the prior predictive densities, either by increasing

the distance between their first-order moments, and/or by

decreasing their second-order moments. Although this is not

directly apparent from the general mathematical form of the

Laplace-Chernoff bound (c.f. Equation 11), this intuition gener-

alizes well to an arbitrary number of models and data dimensions.

To demonstrate the properties of the Laplace-Chernoff bound,

we will compare it with the classical design efficiency measure,

under the general linear model (GLM), which is a special case of

equation 10:

y~X uð Þqze, ð14Þ

where X uð Þ is the design matrix. The classical efficiency of a given

contrast of parameters q is simply a function of the expected

variance of the estimator of q. For example, when a contrast is

used to test the null assumption H0 : qi~0, the classical efficiency

z uð Þ is [10]:

z uð Þ~ 1

s2cT X uð ÞT X uð Þ
� �{1

c

~
1

s2
Xi uð ÞT I{X\i uð Þ X\i uð ÞT X\i uð Þ

� �{1

X\i uð ÞT
� 	

Xi uð Þ

ð15Þ

where the contrast vector c has zero entries everywhere except on

its ith element, Xi is the ith column of the design matrix X , X\i is X

without Xi and s2 is the noise variance. Since decreasing the

variance of the parameter estimates increases the significance for

a given effect size, optimizing the classical efficiency z uð Þ simply

improves statistical power; i.e., the chance of correctly rejecting the

null. Although there are other design efficiency metrics (see, e.g.,

[4]), this design efficiency measure, so-called C-optimality, is the

one that is established in the context of standard fMRI studies [10].

The equivalent Bayesian test relies on comparing two models,

one with the full design matrix X and one with the reduced design

matrix X\i. Under i.i.d. Gaussian priors for the unknown

parameters q and flat priors on models m, one can show (see

Text S2) that the Laplace-Chernoff risk bLC uð Þ simplifies to the

following expression:

bLC uð Þ~1{
1

4
ln 1z

a uð Þ2

4 1za uð Þð Þ

 !

a uð Þ~a2Xi uð ÞT ~QQ\i uð Þ{1
Xi uð Þ,

~QQ\i uð Þ~s2Inza2X\i uð ÞX\i uð ÞT

ð16Þ

where a2 is the prior variance of the unknown parameters. Text S2

demonstrates that the optimal design at the frequentist limit (non-

informative priors, i.e.: a2



s2??) is the design that maximizes

the classical design efficiency measure:

lim
a2=s2??

u �: arg min
u

lim
a2=s2??

bLC uð Þ

~ arg max
u

z uð Þ
ð17Þ

In brief, under flat priors, optimizing the classical efficiency of the

design minimizes the model selection error rate for the equivalent

Bayesian model comparison. This is important, since it allows one

to generalise established experimental design rules to a Bayesian

analysis under the GLM.

This result generalizes to any classical null hypothesis testing,

which can be cast as a comparison of nested models (as above),

under appropriate rotations of the design matrix. However, there

are model comparisons that cannot be performed within a classical

framework, such as non-nested models. This means that even at

the frequentist limit and for linear models, equation 16 is more

general than equation 15.

Note that this equivalence is only valid at the limit of

uninformative priors. For linear generative models, such as the

GLM, this may not be a crucial condition. However, priors can be

crucial when it comes to comparing nonlinear models. This is

because a priori implausible regions of parameter space will have a

negligible influence on the prior predictive density, even though

their (conditional) likelihood may be comparatively quite high

(e.g., a multimodal likelihood).

Figure 2. Selection error rate and the Laplace-Chernoff risk. The
(univariate) prior predictive density of two generative models m1 (blue)
and m2 (green) are plotted as a function of data y, given an arbitrary
design u. The dashed grey line shows the marginal predictive density
p y ujð Þ that captures the probabilistic prediction of the whole
comparison set M~ m1,m2f g. The area under the curve (red) measures
the model selection error rate p êe~1 ujð Þ, which depends upon the
discriminability between the two prior predictive density p y m1,ujð Þ and
p y m2,ujð Þ. This is precisely what the Laplace-Chernoff risk bLC uð Þ is a
measure of.
doi:10.1371/journal.pcbi.1002280.g002

Optimal Design for Model Comparison
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Tightness of the Laplace-Chernoff bounds
We now examine the tightness of the Laplace-Chernoff bounds

on the selection error rate. More precisely, we look at the influence

of the moments gm and ~QQm of the prior predictive densities

p y m,ujð Þ, the dimension of the data (i.e. the sample size n) and the

number of models ��MM�MM in the comparison set (see Figure 3).

We will first focus on the comparison of two models m1 and m2,

whose respective prior predictive densities were assumed to be

univariate Gaussian (n~1), with mean g1~0 and variance ~QQ1~1
for m1 and varying moments for m2 (see below). For this low-

dimensional case, solving Equation 7 with numerical integration is

possible and yields the exact selection error rate p êe~1 ujð Þ for each

model comparison. The left column in Figure 3 depicts the

Laplace-Chernoff bounds as a function of the first order moment

g2[ 0,1,2,3,4,5,6,7,8f g (bottom inset) and as a function of the

second order moment ~QQ2[ 1,5,9,13,17,21,25,29,33f g (upper inset)

of p y m2jð Þ, when comparing m1 versus m2. One can see that the

error rate p êe~1 ujð Þ decreases as the moment contrast (either a

mean shift or a variance scaling) increases. In addition, the

Laplace-Chernoff risk bLC uð Þ is related monotonically to the error

rate p êe~1 ujð Þ. However, there is a moment contrast above which

the upper bound breaks down, in the sense that the condition

p êe~1 ujð ÞƒbLC uð Þ=2 is not satisfied.

Second, we varied the number of models ��MM�MM[ 2,3,4,5,f
6,7,8,9,10g in the comparison set, where each model was

characterized by a univariate Gaussian prior predictive density

(n~1). The middle column in Figure 3 depicts the Laplace-

Chernoff bounds as a function of ��MM�MM, where p y m1jð Þ had mean

g1~0 and variance ~QQ1~1, and any new model mi§2 had a mean

shift of 1 (bottom inset) or a variance scaling of 4 (upper inset), with

respect to the preceding one. This ensured that the discriminability

between two neighbouring models was comparable. One can see

that the error rate p êe~1 ujð Þ increases as the number of models ��MM�MM
increases and that the Laplace-Chernoff risk bLC uð Þ follows

monotonically. However, there may be a number of models above

which the upper bound becomes vacuous, in the sense that the

condition bLC uð Þ=2ƒ1 is not satisfied (although the bounding

condition seems to be preserved).

Finally, we varied the sample size n[ 1,2,3,4f g, when comparing

models m1 and m2. The right column in Figure 3 depicts the

Laplace-Chernoff bounds as a function of n, where p y m1jð Þ had

mean g1~0n and variance ~QQ1~In and model m2 had a mean shift

Figure 3. Tightness of the Laplace-Chernoff bounds. The figure depicts the influence of a moment contrast between two prior predictive
densities (left column), the number of models (middle column) and the data dimension (right column) onto the exact error rate p êe~1 ujð Þ (green) and
the Laplace-Chernoff risk bLC uð Þ (upper bound: solid red, lower bound: dashed red). This is assessed in terms of a mean shift (left inset) and a variance
scaling (right inset). The blue lines depict the approximate Jensen-Shannon density DJS uð Þ (see equations 8, 9 and 11 in the main text and equation
A1.5 in Text S1).
doi:10.1371/journal.pcbi.1002280.g003
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of 1 in each dimension; i.e., g2~1n2(bottom inset) or a variance

scaling of 4 – i.e. ~QQ2~4In2(upper inset). This ensured that the

discriminability increased monotonically with the sample size. One

can see that the error rate p êe~1 ujð Þ decreases as the sample size n
increases and that the Laplace-Chernoff risk bLC uð Þ again changes

monotonically. However, again, there is a sample size above which

the upper bound breaks down; in the sense that the condition

p êe~1 ujð ÞƒbLC uð Þ=2 is not satisfied. This situation is very similar

to increasing the mean or variance contrast; i.e., increasing the

sample size can be thought of as increasing the discriminability of

models in the comparison set.

Taken together, these results suggest that the Laplace-Chernoff

risk bLC uð Þ is a good proxy for the model selection error rate; in

that there is a monotonic mapping between the two quantities.

Furthermore, the upper bound becomes tightest for the worst (least

decisive) model comparisons. This is important, because this

means that the approximation by the Laplace-Chernoff risk is best

when we most need it most. However, the Laplace-Chernoff risk

can become more liberal than the true error probability. The

subtle point here is that the model number and their discrimina-

bility have an opposite effect on the tightness of the bound. We will

further examine the quality of the Laplace-Chernoff bounds in the

context of effective connectivity analysis with DCM in the next

section.

Results

Design risk for DCM: preliminary considerations
In Dynamic Causal Modelling (DCM), hemodynamic (fMRI)

signals arise from a network of functionally segregated sources; i.e.,

brain regions or neuronal sources. More precisely, DCMs rely on

two processes:

N DCMs describe how experimental manipulations (u) influence

the dynamics of hidden (neuronal and hemodynamic) states of

the system (x). This is typically written in terms of the following

ordinary differential equation (the evolution equation):

_xx~f x,u,hð Þ, ð18Þ

where _xx is the rate of change of the system’s states x, f
summarizes the biophysical mechanisms underlying the

system’s temporal evolution and h is a set of unknown

evolution parameters. In particular, the system states include

‘neural’ states, which are driven by the experimental stimuli

and cause variations in the fMRI signal. Their evolution

function is given by [4,24]:

_xx~ Az
X

j

ujB
(j)z

X
i

xi
(n)D(i)

 !
xzCu ð19Þ

The parameters of this neural evolution function include a

between-region coupling (matrix A), input-dependent coupling

modulation (matrices B(j)), input driving gains (matrix C) and

gating effects (matrices D(i)).

N DCMs map the system’s hidden states (x) to experimental

measures (y). This is typically written as the following static

observation equation:

y~g x,Q,uð Þze, ð20Þ

where g is the instantaneous non-linear mapping from system’s

states to observations, Q is a set of unknown observation

parameters and e are model residuals.

Note that the ensuing dynamic causal model includes the effect

of the hemodynamic response function that can change over

brain regions. Equations 18 and 20 can be compiled into a

nonlinear Gaussian generative model (similar in form to equation

10), which, given experimental data y, can then be inverted using

a variational Bayesian approach. This scheme provides an

approximate posterior density q qð Þ over the unknown model

parameters q6 h,Qf g and a lower bound F (free energy) to the

models log-evidence or marginal likelihood ln p y m,ujð Þ. The free

energy is used for comparing DCMs that represent competing

hypotheses about network mechanisms, specified in terms of

network structure and the modulation of specific connections. See

[14] for a critical review of the biophysical and statistical

foundations of DCM.

In brief, DCMs belong to the class of generative models for

which we have derived the Laplace-Chernoff design risk (Equation

11). In what follows, we will evaluate the proposed method in the

context of network discovery with DCM. First, we will evaluate the

quality of the Laplace-Chernoff bound. Having established the

conditions for this bound to hold, we will then focus on optimal

designs for some canonical questions. These two steps will be

performed using Monte-Carlo simulations. Finally, we will turn to

an empirical validation of the simulation results, using data

acquired from two subjects performing a simple finger-tapping

experiment in the fMRI scanner.

Evaluation of the model selection error bounds
In this section, we ask whether the Laplace-Chernoff bounds on

the error rate p êe~1 ujð Þ are consistent. This can be addressed by

comparing the predicted bounds to the observed model selection

error rate across repetitions of the same experiment. We have

conducted a series of Monte-Carlo simulations, which reproduced

the main characteristics of the finger-tapping task used in the

section on empirical validation. Specifically, we considered two

candidate DCMs (m1 and m2) that consist of two (reciprocally

connected) regions, each driven by a different experimentally

controlled input (u1 and u2, respectively). The two models differed

in which of the two inputs drove which region. We then examined

Bayesian model comparison (m1 versus m2) under three designs

u(1), u(2) and u(3), which differed in the temporal dynamics of the

two inputs they affect. More precisely, we increase the correlations

between the two stimuli: 0~corr u
(1)
1 ,u

(1)
2

� �
vcorr u

(2)
1 ,u

(2)
2

� �
vcorr u

(3)
1 ,u

(3)
2

� �
&1. This makes it increasingly difficult to

disambiguate the respective impact of each input on network

dynamics. In turn, we expect these three designs to be increasingly

risky when discriminating among the two candidate DCMs.

Figure 4 summarizes the structure of the two DCMs and shows the

time course of the three designs’ stimulation paradigms (experi-

mental inputs).

To explore a range of plausible scenarios, we varied the

following four factors to simulate 16|2|2|2~128 datasets y:

N Sixteen random realisations of the residuals e, which were

sampled according to their prior density e*N 0,s{1I
� �

, where

s is the residuals’ precision (see below).

N Two levels of effective connectivity A12~A21[ e{1=2,e{3=2
� �

.

This factor was used to manipulate the discriminability of the

two models. This is because it is more difficult to determine the

respective contribution of the two inputs to the responses in

each region as the effective connectivity increases.
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N Two generative models (m1 and m2). This factor is required

because the selection error probability is symmetric with

respect to the model that generated the data.

N Two levels of noise, i.e.: s[ 0:1,0:05f g, which correspond to

realistic signal-to-noise ratios. This factor controls the overall

discriminability of the two models, by scaling non-specific

processes contributing to the data. Note that the approximate

error probability bounds are conditional on the expected noise

precision.

Each dataset was inverted (fitted) under both models (m1 and

m2), using a variational Laplace scheme [25], and Bayesian model

selection was performed using the free energy approximation to

the log evidence. We used shrinkage i.i.d. Gaussian priors for

evolution and observation parameters (p q mjð Þ~N 0,10{2I
� �

),

and weakly informative Gamma priors for the precision (scale

parameter equal to the simulated noise precision and unit shape

parameter). The same priors were used to derive the Laplace-

Chernoff bounds. Figure 5 depicts a typical simulation and model

inversion.

We counted the number of times the selected model m̂m yð Þ was

different from the simulated ground truth. Averaging over the first

three factors, this yielded a Monte-Carlo estimate p̂p+ŝsp of the

selection error rate p êe~1 ujð Þ, where ŝsp is the standard deviation of

the Monte-Carlo estimate, for each of the three designs

u(1),u(2),u(3)
� �

and each of the two noise levels s[ 0:1,0:05f g.
Figure 6 presents a graphical comparison between the Monte-

Carlo confidence interval p̂p+ŝsp on the error rate with the Laplace-

Chernoff bounds. First, one can see that the average selection

error probability (both predicted and estimated) decreases with the

residual precision s. This is expected: as signal-to-noise ratio

increases, the more discriminative evidence favouring one model

or another exists in the data. Second, one can see that both

estimated and predicted intervals on the selection error probability

agree quantitatively: more precisely, the Monte-Carlo confidence

intervals p̂p+ŝsp always intersect with the Laplace-Chernoff bounds;

and for both residual precision levels, both the Monte-Carlo

Figure 4. Evaluation of the Laplace-Chernoff bounds: DCM
comparison set and candidate designs. This figure summarizes the
Monte-Carlo simulation environment of section ‘‘Evaluation of the
model selection error bounds’’ we used for evaluating the Laplace-
Chernoff bounds in the context of network identification. The
comparison set is shown on the left. It consists of two models that
differ in terms of where the two inputs u1 and u2 enter the network. The
three candidate designs are shown on the right. They consist of three
different stimulation sequences, with different degrees of temporal
correlation between the two inputs.
doi:10.1371/journal.pcbi.1002280.g004

Figure 5. Evaluation of the Laplace-Chernoff bounds: simulated data and VB inversion. Upper-left: simulated (neural and hemodynamic)
states dynamics x tð Þ as a function of time under model 1 and design 1 (two regions, five states per region). Lower-left: simulated fMRI data (blue:
region 1, green: region 2). Solid lines show the observable BOLD changes g xð Þ (without noise) and dashed lines show the actual noisy time series y
that are sent to the VB inversion scheme. Upper-middle: the iterative increase in the lower bound to the model evidence p y m1,u1jð Þ (free energy) as
the VB inversion scheme proceeds (from the prior to the final posterior approximation), under model 1. Lower-middle: Posterior correlation matrix
between the model parameters. Red or blue entries indicate a potential non-identifiability issue and grey entries are associated with fixed model
parameters. Upper-right: approximate posterior density over (neural and hemodynamic) states p x y,m1,u1jð Þ. The first two moments of the density are
shown (solid line: mean, shaded area: standard deviation). Lower-right: approximate posterior predictive density p g xð Þ y,m1,u1jð Þ and data time series.
doi:10.1371/journal.pcbi.1002280.g005
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estimate of the error rate and the Laplace-Chernoff risk equally

rank the three designs: bLC u(1)
� �

vbLC u(2)
� �

vbLC u(3)
� �

and

p̂p u(1)
� �

vp̂p u(2)
� �

vp̂p u(3)
� �

. This means that for these levels of

noise and sample sizes, the Laplace-Chernoff bound is in good

agreement with the design risk. However, this quantitative

agreement might break down for higher sample sizes or noise

precision (cf. section ‘‘Tightness of the Laplace-Chernoff bounds’’

and Figure 3).

Laplace-Chernoff risk for canonical network identification
questions

The aim of this section is twofold: to investigate the sensitivity of

the Laplace-Chernoff risk to the prior densities, and to

demonstrate the importance of the model comparison set. We

thus chose three ‘‘canonical network identification questions’’, i.e.

three simple model comparison sets that represent typical

questions addressed by DCM. Figure 7 shows these model sets,

each of which is composed of two variants of a two-region

network:

N Driving input: the two DCMs differ in terms of where the input

u1 enters the network.

N Modulatory input: the two DCMs differ in terms of whether or

not the experimental manipulation u2 modulates the feedfor-

ward connection from node 1 to node 2.

N Feedback connection: the two DCMs differ in terms of whether or

not there is a feedback connection from node 2 to node 1.

We then compared different experimental designs, considering

blocked on/off (square wave) designs, and varying the epoch

duration within the range Dt[ 2,4,8,15,32,64f g. Comparing the

Laplace-Chernoff risk of such designs allows one to identify the

optimal epoch duration for each network identification question.

In addition, we varied the first-order moment of the prior densities

over neural evolution parameters h within the range

mm[ 0,10{21,10{11,1
� �

, where p h mjð Þ~N mm,10{2I
� �

. As

above, we used i.i.d. shrinkage priors for the hemodynamic

evolution and observation parameters (p Q mjð Þ~N 0,10{2I
� �

) and

non-informative Gamma priors for the noise precision (with scale

parameter equal to 1021 and unit shape parameter). This allowed

us to evaluate the influence of the expected coupling strength on

design optimisation. The average time interval between two blocks

was held at Dt, but a random jitter was added to this average inter-

block time interval. For each Dt,mmð Þ pair, we randomly drew

sixteen stimulation sequences u. Figure 8 depicts the average

(across random jitters) Laplace-Chernoff risk as a function of both

epoch duration and prior mean of the evolution parameters, for

the three canonical network identification questions.

First, one can see that the main effect of the prior mean is to

increase the discriminability among the models in the comparison

set, except in the ‘driving input’ case. This means that, in general,

the discriminative power of the design increases with the expected

effect size. This does not work for the ‘driving input’ case,

however, because of the feedback connections, which tend to

synchronize the two regions of the network and thus blur the

distinction between the predictions of the two models.

Second, the optimal epoch duration depends on the question

of interest. For example, the optimal epoch duration is

Dt �&16 seconds, when asking whether there is a modulatory

input or where the driving input enters the network, which is

close to the optimal epoch duration for classical (SPM) activation

studies [19]. Strictly speaking, note that in the ‘‘driving input’’

case, the optimal epoch duration additionally depends upon the

expected coupling strength: about Dt �&16 seconds for low

coupling and Dt �&8 seconds for high coupling. On average

however, the optimal epoch duration is much shorter when trying

to disclose the feedback connection (Dt �&8 seconds). This

might be due to the fact that a feedback connection mostly

expresses itself during the transient dynamics of the network’s

response to stimulation (moving from or returning to steady-

state). Decreasing the epoch duration increases the number of

repetitions of such transitions, thus increasing the discriminative

power of the design. To test this, we looked at the difference

between the covariance matrices of the prior predictive densities

of a model with and without feedback, respectively. This

difference is depicted on Figure 9, for the highest prior mean

of evolution parameters: i.e., highest coupling strength.

One can see that a feedback connection expresses itself when

the system goes back to steady-state and increases the correlations

between the nodes. This specific contribution to the statistical

structure of the fMRI data is what DCM uses to infer the presence

of a feedback connection.

Figure 6. Evaluation of the Laplace-Chernoff bounds: Monte-
Carlo results. This figure depicts the comparison between the
Laplace-Chernoff bounds (red lines) and the observed model selection
error rate (black crosses) for the three candidate designs and two levels
of noise. Left: high precision (s{1~0:1) and right: low precision
(s{1~0:05). The grey areas around the black crosses show the
uncertainty (one standard deviation) around the Monte-Carlo estimate
of the error rate.
doi:10.1371/journal.pcbi.1002280.g006

Figure 7. Canonical network identification questions: DCM
comparison sets. This figure depicts the three canonical DCM
comparison sets, each of which consists of two variants of a simple
two-region network. Upper-row: driving input; middle-row: modulatory
input; Lower-row: feedback connection.
doi:10.1371/journal.pcbi.1002280.g007
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Finally, one can see that there is a clear difference in the average

Laplace-Chernoff risk between the three canonical network

identification questions. This speaks to the overall discriminability

of the models, within each comparison set. For example, it is

easier to decide where the driving input enters the network

(bLC u�ð Þ&{2) than to detect a modulatory effect (bLC u�ð Þ&0:4)

or a feedback connection (bLC u�ð Þ&0:95). However, when

optimizing other design parameters unrelated to epoch duration

(e.g., sampling rate), this ranking could change.

Investigating psycho-physiological interactions with
DCM

In the context of DCM for fMRI, there are many design

parameters one may want to control. These include, but are not

limited to: (i) the physics of MRI acquisition (e.g., sampling rate

versus signal-to-noise ratio), (ii) sample size, (iii) stimulus design

and timing (e.g., categorical versus parametric, epoch duration,

inter-stimulus time interval), and (iv) the use of biophysical

interventions (e.g., transcranial magnetic stimulation, TMS).

Assessing all these design parameters is well beyond the scope of

the present article, and will be the focus of forthcoming

publications. In this section, we demonstrate the use of the

Laplace-Chernoff risk in the context of (iii) or (iv). This is

addressed by two simulations that recapitulate common experi-

mental questions of interest: characterizing psycho-physiological

interactions (PPI) and using TMS for network analysis, respec-

tively.

In the first simulation, we examined how different interpreta-

tions of a PPI could be disambiguated by comparing DCMs. One

demonstrates a PPI by showing that the activity in region 2 can be

explained by the interaction between the activity of region 1 and a

psychological factor u2 [26–27]. There are two qualitatively

different interpretations of such effects: either region 1 modulates

the response of region 2 to u2, or u2 modulates the influence region

1 exerts on region 2. A standard activation analysis of PPI cannot

disambiguate these interpretations. However, they correspond to

different DCMs. Figure 10 depicts six DCMs that are compatible

with the same PPI. This is a 362 factorial model comparison set,

with the following factors (see Table 1):

N Class of PPI. A DCM compatible with the notion that region 1

modulates the region 2 response to u2 would be such that

C22=0 and D
(1)
22 =0 (model m1.). In contradistinction, one

could think of at least two DCMs compatible with u2

modulating the influence of region 1 onto region 2:

A21=0,B
(2)
21 =0 and A21=0,B

(2)
22 =0 (models m2. and m3.,

respectively).

N Presence of a feedback connection. In addition, one could include or

omit a feedback connection from region 2 to region 1. We will

denote m.z models with such a feedback (A12=0) and m.{

without (A12~0).

We first ask whether we can find the optimal epoch duration

that discriminates among the PPI comparison set, either at the

model level or at the family level [23]. We considered two

partitions of the comparison set (see Figure 10): (i) partition 1

separates the two qualitatively different interpretations of PPIs and

(ii) partition 2 separates models with and without feedback

connections. We then adapted the analysis of section ‘‘Laplace-

Chernoff risk for canonical network identification questions’’, as

follows:

We considered blocked on/off (square wave) designs, and

varied the epoch duration within the range Dt[ 2,4,8,15,32,64f g.

Figure 8. Canonical network identification questions: optimal epoch duration. This figure shows plots of the average (across jitters)
Laplace-Chernoff risk as a function of epoch duration (in seconds) and prior expectation mm of neural evolution parameters, for the three canonical
comparison sets (left: driving input, middle: modulatory input, right: feedback connection). Blue: mm~0, green: mm~10{2 , red: mm~10{1 and
magenta: mm~1. Error bars depict the variability (one standard deviation) induced by varying jitters in the stimulation sequence.
doi:10.1371/journal.pcbi.1002280.g008
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In addition, we varied the first-order moment of the prior

densities over evolution parameters h within the range mm[
0,10{21,10{11,1
� �

, where p h mjð Þ~N mm,10{2I
� �

. In other

respects, the simulation parameters were as above. For all

stimulation paradigms, the fMRI session was assumed to last for

five minutes. Note that the experimental designs that were

balanced in terms of the number of repetitions of factorial

conditions ( u1~1,u2~1f g, u1~1,u2~0f g, u1~0,u2~1f g and

u1~0,u2~0f g). Figure 11 depicts the average (across random

jitters) Laplace-Chernoff risk as a function of both epoch duration

and the prior mean of the evolution parameters, for the three

comparisons, i.e. at the model level and for the two above

partitions.

One can see that for strong coupling strengths, the optimal

block length seems to be about Dt~8 seconds, irrespective of the

level of inference. Note that this is slightly smaller than the optimal

block length in activation studies [10]. In addition, one can see

that the level of inference impacts upon the absolute Laplace-

Chernoff risk. For example, it is easier to discriminate between the

two qualitative interpretations of the PPI (i.e., family level

inference, between the two subsets of partition 1), than to perform

an inference at the model level. Interestingly, the most risky

inference is about the presence of feedback connections, which

reproduces the results in section ‘‘Laplace-Chernoff risk for

canonical network identification questions’’.

In a second simulation, we demonstrate how the Laplace-

Chernoff risk could be optimized with respect to the use of TMS.

More precisely, we addressed the question of choosing the

intervention site, i.e. either on region 1 or on region 2. This

defines three possible designs: TMS1 (intervenes on region 1),

TMS2 (intervenes on region 2) and no TMS.

We assumed TMS was used ‘on-line’, using brief stimulation

pulses grouped in epochs of 8 seconds duration. We used balanced

on/off designs and 5 minutes scanning sessions. To distinguish the

physiological effect of TMS from other experimental stimuli, we

chose prior densities on evolution parameters that emulated

comparatively weak effects; i.e., p h mjð Þ~N 10{21,10{2I
� �

. Priors

on the observation parameters and the precision hyperparameter

were set as above. We draw 16 samples with different random

jitters (standard deviation: 2 seconds). Figure 12 depicts the

average Laplace-Chernoff risk for the three TMS designs, for

two comparison sets: (i) the first subset of partition 2 (only the

models without feedback) and (ii) the full comparison set (with and

without feedback connections).

One can see that using on-line TMS generally improves the

discriminability over models, irrespective of the comparison set

Figure 9. The signature of feedback connections. The figure
depicts the difference in the data correlation matrices induced by two
network structures (model fbk-: without feedback, model fbk+: with
feedback). Red (respectively, blue) entries indicate an increase
(respectively, a decrease) in the correlation induced by adding a
feedback connection from node 2 to node 1. Each block within the
matrix corresponds to a node-to-node temporal correlation structure
(upper-left: node 1 to node 1, lower-right: node 2 to node 2, upper-
right/lower-left: node 1 to node 2). For example, the dashed back box
reads as follows: adding the feedback connection increases between
activity in node 2 at the end of the block and node 1 during the whole
block. The solid black box indicates the time interval, during which
input u to node 1 was ‘on’. Note that its effect onto the two-region
network dynamics is delayed, due to the hemodynamic response
function.
doi:10.1371/journal.pcbi.1002280.g009

Figure 10. PPI: the 362 factorial DCM comparison set. The figure
depicts the set of DCMs that are compatible with a PPI (correlation
between region 2 and the interaction of region 1 and manipulation u2).
This comparison set is constructed in a factorial way: (i) three PPI classes
and (ii) with/without a feedback connection from node 2 to node 1. It
can be partitioned into two partitions of two families each. Partition 1
corresponds to the two qualitatively different interpretations of a PPI
(‘‘region 1 modulates the response of region 2 to u2 ’’ versus ‘‘u2

modulates the influence of region 1 onto region 2’’). Partition 2 relates
to the presence versus absence of the feedback connection.
doi:10.1371/journal.pcbi.1002280.g010

Table 1. 362 factorial comparison set for PPI.

u2 modulates 1R2
1 modulates
u2R2

A21=0,B
(2)
21 =0 A21=0,B

(2)
22 =0 C22=0,D

(1)
22 =0

A12~0 (no feedback) m1{ m2{ m2{

A12=0 (feedback) m1z m2z m3z

doi:10.1371/journal.pcbi.1002280.t001
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(the Laplace-Chernoff risk of the ‘no TMS’ design is systematically

higher than those of ‘TMS1’ and ‘TMS2’). However, the optimal

intervention site (region 1 or region 2) does depend upon the

comparison set: one should stimulate region 1 if one is only

interested into discriminating between the ‘no-feedback’ models,

and region 2 if one wants to select the best among all models. This

makes intuitive sense, since stimulating region 2 (orthogonally to

the other experimental manipulations u1 and u2) will disclose the

presence of the feedback connection more readily.

Empirical validation
In this section, we apply the above approach to empirical fMRI

data acquired during a simple finger-tapping (motor) task.

Figure 13 reports the structure of the task.

Figure 11. PPI: optimal epoch duration. This figure shows plots of the average (across jitters) Laplace-Chernoff risk as a function of epoch
duration (in seconds) and prior expectation mm of neural evolution parameters, for the three inference levels defined in relation to the PPI comparison
set of Fig. 10. It uses the same format as Fig. 8. Left: model comparison, middle: family comparison (partition 1), right: family comparison (partition 2).
doi:10.1371/journal.pcbi.1002280.g011

Figure 12. PPI: optimal TMS intervention site. This figure shows
plots of the average (across jitters) Laplace-Chernoff risk as a function of
the TMS design (TMS1, TMS 2 or no TMS), for two different PPI
comparison sets. Left: the two TMS ‘on’ designs (TMS1: target region 1,
TMS2: target region 2). Upper-right: average Laplace-Chernoff risk for
the first family of partition 2 (three models, no feedback connection
from node 2 to node 1). Lower-right: average Laplace-Chernoff risk for
the whole PPI comparison set (six models, with and without a feedback
connection from node 2 to node 1).
doi:10.1371/journal.pcbi.1002280.g012

Figure 13. Finger-tapping task: paradigm and classical SPM.
Left: inner stimulation sequence of one trial of the finger-tapping task
(fixation cross, then motor pacing – left or right or both- and the final
recording of the subject’s response – button press-). Right: SPM t-
contrast (right.left) thresholded at p = 0.05 (FWE corrected) for subject
KER under the blocked design.
doi:10.1371/journal.pcbi.1002280.g013
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Each trial consisted of a fixation period and a pacing stimulus

(‘right’, ‘left’, ‘right and left’ or null) that ended with the subject’s

motor response (button press). The whole fMRI session comprised

400 events (100 left, 100 right, 100 left & right, 100 null events).

The average inter-trial interval was two seconds. Each subject

participated in two sessions, corresponding to two variants of the

experimental design, i.e., blocked (ten consecutive identical trials

per block) and event-related (randomized trials). There were two

subjects in total (but see above).

About 700 T2*-weighted single-shot gradient echo echo-planar

images (TE = 40 ms, TR = 1.3 s, 24 interleaved axial slices of

4.4 mm thickness, FOV = 24624 cm2, 80680 matrix) were

acquired over a 35-min session on a 3 Tesla MRI scanner. FMRI

data were pre-processed using SPM8 (http://www.fil.ion.ucl.ac.

uk/spm/). EPI time series were realigned, spatially smoothed with

an 8 mm FWHM isotropic Gaussian kernel and normalized. A

GLM was constructed to assess the presence of regional BOLD

changes related to the motor responses. The design matrix

contained two pacing regressors (‘left’ and ‘right’), as well as

realignment parameters to correct for motion-related changes.

Left and right motor cortices (MC) were identified by means of

subject-specific t-contrasts testing for the difference between the

‘left’ and ‘right’ pacing conditions (p,0.05, whole-brain FWE

corrected, see Figure 13). A summary time series was derived for

each ROI by computing the first eigenvariate of all suprathreshold

voxel time series within 10 mm of the ROI centres.

Four models were included in the comparison set, which is

depicted in Figure 14:

N Full model (F): the left (respectively, right) MC is driven by the

‘right’ (respectively, ‘left’) pace. Feedback connections between

both MC are included.

N Inverted full (F): the driving effects of the pacing stimuli are

inverted, when compared to model F.

N No feedback (NF): similar to F, but without the feedback

connections.

N No feedback 2 (NF2): each pacing stimulus is allowed to drive

both motor cortices.

We know that motor action is associated with activity in the

contralateral motor cortex. This establishes a point of reference for

our model comparisons (akin to the ‘‘ground truth’’ scenario used

for validating models by simulated data). We therefore assume that

models F or NF best capture the motor preparation processes

during the finger-tapping task. We will thus place the inference at

the family level, with two families: (i) family 1: models F and NF

and (ii) family 2: models IF and NF2. A selection error thus arises

whenever the posterior family comparison selects family 2.

We can now derive the Laplace-Chernoff risk for the two

designs (blocked versus event-related). This is summarized in

Table 2 above, as a function of the first-order moment of the prior

densities over neural evolution parameters h within the range

mm[ 0,10{21,10{11,1
� �

, where p h mjð Þ~N mm,10{2I
� �

. As in the

simulations, we used i.i.d. shrinkage priors for the hemodynamic

evolution and observation parameters (p Q mjð Þ~N 0,10{2I
� �

) and

the expected noise precision was 0.05.

One can see that the Laplace-Chernoff risk is smaller for the

blocked-design than for the event-related design, irrespective of the

first-order moment mm of the neural evolution parameters prior

density. In addition, it seems that the event-related design is much

less sensitive to a change in mm than the blocked design.

We then inverted the four models using the variational Bayesian

approach under standard shrinkage priors (see section ‘‘Laplace-

Chernoff risk for canonical network identification questions’’

above), for both subjects and both designs. Figure 15 summarizes

the inversion of model F for subject KER, under the blocked

design.

One can see that the observed BOLD responses are well fitted

by the model. Not surprisingly, inspection of the first-order

Volterra kernels [28] shows that the average response of the left

MC to the ‘right’ pacing stimuli is positive and bigger in amplitude

than that of the right MC (and reciprocally). Also, there are very

small posterior correlations between the hemodynamic and the

neuronal parameters, which reflect their identifiability. However,

further inspection of the posterior correlation matrix shows that,

for this particular dataset and model, the feedback connections

and the driving effects of the pacing stimuli are not perfectly

separable. This means that the design is not optimal for a precise

estimation of these parameters. However, one can still compare

the two designs in terms of how well they can discriminate the four

DCMs included in the comparison set. This is summarized in

Figure 16, which plots the free energies of the four models, for

both subjects and both designs.

One can see that no model selection error was made under the

blocked design, whereas there was one model selection error for

subject JUS under the event-related design. Deriving the posterior

probabilities of model families shows exactly the same result. Thus,

as predicted by the Laplace-Chernoff risk (c.f. Table 2), the

observed error selection rate is higher for the event-related design

than for the blocked design.

Figure 14. Finger-tapping task: DCM comparison set. The figure
depicts the DCM comparison set we used to analyze the finger-tapping
task fMRI data. This set can be partitioned into two families of models.
Family 1 gathers two plausible network structures for the finger-
tapping task (left pace drives right motor cortex and right pace drives
left motor cortex, with and without feedback connections). Family 2
pools over two implausible motor networks subtending the finger-
tapping task (allowing the left pace to drive the left motor cortex, and
reciprocally).
doi:10.1371/journal.pcbi.1002280.g014

Table 2. Laplace-Chernoff risks for the event-related versus
blocked design (when comparing family 1 versus family 2).

event-related design blocked design

mm~0 21.26 21.63

mm~10{21 21.21 21.61

mm~10{11 20.92 21.70

mm~1 20.96 23.74

doi:10.1371/journal.pcbi.1002280.t002
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One may wonder how reliable this result is, given that only two

subjects were used to derive the selection error rate. This is

because a solid validation of the Laplace-Chernoff risk necessitates

an estimate of the model selection error rate in terms of the

frequency of incorrect model selections (as in section ‘‘Evaluation

of the model selection error bounds’’). We thus performed the

following analysis:

For each subject and each design, we first split the data (and the

stimulation sequence) into ns[ 5,10f g consecutive segments (see

Figure 17). This allows us to artificially inflate the number of

subjects (by five and ten, respectively), at the cost of reducing the

effective sample size for each ‘subject’. We can then derive the

Laplace-Chernoff risks for the splitting procedure, i.e.: (i) no split

(as above), (ii) split into ns~5 segments and (iii) split into ns~10
segments. In addition, we can conduct a complete analysis for each

segment independently of each other; i.e., invert the four DCMs

included in the comparison set, derive the posterior probabilities

over model families, and perform the comparison. The cost of this

procedure is a loss of total degrees of freedom (and thus model

discriminability power), since we allow the model parameters to

vary between each data segment. However, this allows us to

artificially increase the number of model selections, by considering

each segment as a dummy subject. Note that the posterior

probability of family 2 p family2 y,ujð Þ measures the objective

probability of making a model selection error (see Equation 6).

Averaging p family2 y,ujð Þ across segments and subjects thus

provides an approximation to the true selection error rate under

both designs (see Equation 7). This serves as sampled reference for

the Laplace-Chernoff risk. Figure 17 summarizes the results of this

analysis.

First, one can see that the Laplace-Chernoff risk of the blocked

design is always smaller than that of the event-related design,

irrespective of the number of splits. Second, this difference

decreases as the number of splits increases. The average selection

error rate exactly reproduces this pattern. First, the observed error

rate is higher for the event-related design than for the blocked

design, irrespective of the number of splits. Second, this difference

decreases as the number of splits increases. However, in this

example, the Laplace-Chernoff risks increases as the number of

splits increases, irrespective of the particular design used. This is in

Figure 15. Finger-tapping task: VB inversion of model F under the blocked design (subject KER). Upper-left: estimated coupling
strengths of model F, under the blocked design (subject KER). These are taken from the first-order moment of the approximate posterior density over
evolution parameters. Lower-left: parameter posterior correlation matrix. Upper-right: observed versus fitted data in the right motor cortex. Lower-
right: linearised impulse responses (first-order Volterra kernels) to the ‘right’ pace in both motor cortices as a function of time.
doi:10.1371/journal.pcbi.1002280.g015

Figure 16. Finger-tapping task: DCM comparison results. This
figure plots the log-model evidences of the four DCMs included in the
comparison set for both subjects (orange bars: subject KER, green bars:
subject JUS) and both designs (left: event-related, right: blocked
design). Green (respectively, rose) shaded areas indicate the models
belonging to family 1 (respectively, family 2). Black dots show the four
winning models (one per subject and per design). Note that the free
energies are relative to the minimal free energy within the comparison
set, for each subject and design.
doi:10.1371/journal.pcbi.1002280.g016
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contradiction with the observed selection error rate, which seems

to increase as the number of splits increases, only for the blocked

design (as opposed to the event-related design). This might be due

to a different optimal balance between number of subjects and

sample size per subject for the two designs. We will comment on

these issues in the discussion. Nevertheless, this splitting procedure

provides further evidence that the Laplace-Chernoff risk is a

reliable predictor of the average selection error rate, and hence a

useful metric for comparing experimental designs.

Discussion

In this article, we have proposed a general method for

optimizing the experimental design to maximise the sensitivity of

subsequent Bayesian model selection. We have examined design

optimization in the specific context of effective connectivity

methods for fMRI and have focused on how to best decide

among hypotheses about network structure and the contextual

modulation of specific connections therein. We reiterate, however,

that our method is very general and is applicable to any generative

model of observed data (e.g., brain activity or behavioural

responses, c.f., e.g., [29]).

Our method relies upon the definition of a statistical risk, in

terms of an approximate information theoretic bound on the

model selection error rate. Theoretical and numerical evaluations

of the proposed Laplace-Chernoff risk demonstrate its reliability.

This optimality criterion was then applied to the problem of

optimising design when identifying the structure of brain networks

using DCM for fMRI data. Using both numerical evaluations and

empirical fMRI data, we examined the impact of the priors (on

model parameters), the level of inference (model versus family) and

the specific question about network structure (the model

comparison set) on the optimal experimental design. For example,

we have shown that asking whether a feedback connection exists

requires shorter epoch durations than when asking whether there

is a contextual modulation of a feedforward connection. In

addition, our empirical results suggest that the method has good

predictive validity (as established with the splitting analysis). In the

following, we discuss the strengths and limitations of the approach

as well as potential extensions.

First, one may wonder how general the proposed design

optimality criterion for (Bayesian) model comparison is. In other

words, one could start from a completely different perspective and

ask whether it would be possible to derive another design

optimality criterion that would eventually yield another optimal

design for the same model comparison set. A first response to this

question draws on the equivalence with the classical design

efficiency (c.f. section ‘‘Tightness of the Laplace-Chernoff

bounds’’), which shows that in specific circumstances (flat priors,

nested linear models); the Laplace-Chernoff risk is monotonically

related to frequentist statistical power. We conjecture this to be a

very general statement that applies whenever Bayesian model

comparison can be reduced to classical hypothesis testing (in the

frequentist limit). This is important, since it means that the

Laplace-Chernoff optimal design would be no different from

established classical designs. Interestingly, it seems that the use of

the Jensen-Shannon divergence DJS for design optimality can be

justified from purely information theoretic considerations, without

reference to the model selection error rate [30–31]. The degree to

which the two approaches are similar (and/or generalize other

schemes such as classical design efficiency) will be the focus of

subsequent publications, in collaboration with these authors

(evidence in favour of the equivalence between the two

frameworks arose from a very recent informal meeting with Dr.

A. G. Busetto, who independently derived his own approach). In

our opinion, the most relevant line of work, in this context, is to

Figure 17. Finger-tapping task: splitting analysis. This figures summarizes the results of the splitting analysis (see main text), in terms of the
relationship between the Laplace-Chernoff risk and the observed model selection error rate. Left: splitting procedure. The complete data and input
sequence (one per subject and per design) is split into ns segments, each of which is analyzed independently. Right: the average (across segments
and subjects) probability of making a model selection mistake (i.e. p family2 y,ujð Þ) is plotted as a function of the Laplace-Chernoff risk, for both
designs (blue: event-related, red: blocked). Each point corresponds to a different splitting procedure (no split, split into ns~5 segments, split into
ns~10 segments).
doi:10.1371/journal.pcbi.1002280.g017
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finesse the necessary approximations to the Jensen-Shannon

divergence. This is because different approximations to the

Chernoff bound could lead to different approximate optimal

designs. We will discuss this particular issue below.

The numerical simulations we have conducted identified general

factors that have an unambiguous influence on design efficiency,

namely: the number of models and the data dimension (see section

‘‘Tightness of the Laplace-Chernoff bounds’’), as well as the signal-

to-noise ratio (SNR, see section ‘‘Evaluation of the model selection

error bounds’’). Note that increasing the data dimension enables

two (or more) models to make distinct predictions, provided that

their respective predictive densities differ sufficiently (c.f. Figure 3).

This is because uncontrolled variability in the data can be averaged

out. In other terms, increasing the data dimension simply increases

the effective SNR. In summary, the overall discriminative power of

any design increases with the effective SNR, and decreases with the

number of models. Both the effective SNR and the typical number

of models will usually depend upon the modelling context. We have

presented numerical simulations (and empirical data analyses) that

span the realistic range of the effective SNR, when analyzing fMRI

data with DCM. Typically, one would focus on a set of two to five

regions of interest, with fifteen minutes session duration (i.e., for

typical fMRI sampling rates, the data dimension is of order 103).

The SNR may depend upon the anatomical location of the network

(e.g., lower SNR for subcortical compared to cortical structures), but

should be of the order of 1 dB. In terms of the size of the comparison

set, we have deliberately chosen to keep this small; although it can

vary from one study to the next, depending upon network

dimensionality and prior knowledge. However, we anticipate that

hypothesis-driven experiments that would benefit from design

optimization will focus on the comparison of a handful of models or

families of models (see Text S3). In other words it may be difficult to

design a study that can discriminate efficiently among a few

thousands of models (or more). This is because of the inevitable

dilution of experimental evidence across models (see, e.g., [23]).

Recall that the exact probability of making a model selection error

can be evaluated a posteriori, following Equation 6. Typically, the

winning model among a few thousand alternatives will never attain

a posterior probability of about p m̂m y,ujð Þ&10{1, which leads to an

unacceptable model selection error probability of at least 0.9!

Second, one may ask whether the Laplace-Chernoff risk is a

suitable criterion for choosing among potential designs within the

context of a group analysis. This is because we did not consider a

(more general) hierarchical scenario, which would account

explicitly for the variability of the hidden model within a group

of subjects (i.e., random effects analysis [32]). In this case, the total

variability consists of within- and between-subject sources of

variation. So far, our approach consists of optimizing the

experimental design by controlling the variability at the within-

subject level. This is done by optimizing the discriminability of

models included in the comparison set. In essence, this is similar to

design optimization for classical GLM analyses, where optimality

is defined in relation to the reliability of maximum likelihood

estimators. In this context, one can find an optimal balance

between the number of subjects and the sampling size per subject

[33]. This balance strives for a principled way of choosing, for

example, between a study with twenty subjects scanned for fifteen

minutes each versus a study with ten subjects scanned for half an

hour each. In [34], authors demonstrate how this balance depends

upon the ratio of within- and between- subject variances. Our

analysis of the empirical data seems to disclose a similar

dependency (Figure 17). In brief, the relationship between the

average error rate and the sharing of degrees of freedom (across

the within- and between-subject levels) depends upon the design

type (i.e. blocked versus event-related). The results in sections

‘‘Laplace-Chernoff risk for canonical network identification

questions’’ and ‘‘Investigating psycho-physiological interactions

with DCM’’ imply that it may depend upon the comparison set as

well. In addition, one has to consider two sorts of random effects

here: variability in the model parameters (for a fixed model), and

variability in the hidden model itself. Future work will consider

these issues when extending the present approach to a multi-level

random effects analysis for group data.

Third, the Laplace-Chernoff bound relies upon the derivation of

the prior predictive density of each model included in the

comparison set. For nonlinear models, it relies upon a local

linearization around the prior mean of the parameters; similarly to

classical procedures for design optimization (see, e.g., [35] for an

application to estimating the hemodynamic response function). We

are currently evaluating the potential benefit of using variants of the

unscented transform [22], which may yield a more accurate

approximation to the prior predictive density. We have not,

however, accounted for uncertainty on hyperparameters; e.g.,

moments of the prior density on noise precision. Note that we do not

expect this to be crucial because the contribution of the prior

uncertainty on these hyperparameters is negligible, when compared

to the variability already induced in the prior predictive densities.

Nevertheless, the above approximations induce potential

limitations for the current approach. For example, numerical

simulations in sections ‘‘Tightness of the Laplace-Chernoff

bounds’’ and ‘‘Results’’ demonstrate that the Laplace approxima-

tion might cause the bound to ‘‘break’’, i.e. the Laplace-Chernoff

risk might become an over-optimistic estimate of the model

selection error rate. More precisely, this happens in situations

where the exact model selection error rate is already very low

(typically below 0.2, see Figure 3). Having said this, the

relationship between the Laplace-Chernoff risk and the exact

model selection error rate always remained monotonic. This

means that the design that minimizes the Laplace-Chernoff risk is

the one that would have minimized the exact model selection error

rate, had we been able to quantify it. This monotonic relationship

remains to be empirically verified for classes of models that are

more complex than DCMs.

From a practical perspective, if the aim is to quantify the actual

model selection error rate (or a conservative upper bound on it),

then the Laplace-Chernoff risk will yield an accurate estimation

only for poorly discriminative designs (importantly, the upper

bound on the true model selection error rate becomes tightest for

the least decisive model comparisons, i.e., the approximation by

the Laplace-Chernoff risk is most accurate when it is most needed).

However, in most practical applications the aim is simply to select

the most discriminative design amongst several alternatives. In this

case, the Laplace-Chernoff risk can be used for any model

comparison.

Fourth, one may consider other applications for the Laplace-

Chernoff risk. For example, given an experiment whose design is

fixed or cannot be specified a priori (e.g., the presence of epileptic

spikes, or successful vs. failed retrieval of encoded memories), one

can use our approach to distinguish between statistical questions

for which the design is suitable and those for which they are not.

This can be done by evaluating the Laplace-Chernoff risk for

different comparison sets or partitions of the same comparison sets.

This could also be useful to motivate the a priori pruning of

competing hypotheses in a principled way. One could also think of

using an adaptive design strategy where the paradigm is optimized

online as the experiment progresses (see [36–37] for similar

applications to fMRI). Even though such procedures will not lead

to a major gain in efficiency for linear models, this can be quite
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different for nonlinear models of the sort employed in DCM [38].

This is because the progressive accumulation of information

corrects the predictive densities that are required to compute the

Laplace-Chernoff risk. In turn, this can be exploited to improve

the overall model discriminability [39].

Fifth, we would like to highlight some important properties of

the biophysical models when optimizing the experimental design

for identifying networks with DCM for fMRI data. Consider the

increase in selection error rate at short epoch durations. This is

likely to arise from the hemodynamic impulse response function,

which induces strong correlations in the fMRI data at fast time

scales, relative to its own (about 16 to 32 seconds). Such loss of

discriminative power in high frequencies has been discussed in the

context of design optimization for classical fMRI studies [12]. This

effect worsens at very short epoch durations, due to hemodynamic

refractoriness; i.e., the response to a second stimulus is reduced if it

follows the preceding stimulus with a short delay [40]. This

saturation effect is known to be captured by the hemodynamic

Balloon model that is part of DCM [28]. Interestingly, the effect of

these known phenomena on statistical efficiency depends on which

particular scientific question is asked. For example, the identifi-

cation of feedback connections within the network is facilitated by

epoch durations that are much shorter than required for

addressing other questions about effective connectivity or in

conventional GLM analyses (cf. Figure 8). This is because a

feedback connection expresses itself mainly when the system goes

back to steady-state, through an asymmetrical increase in node-to-

node correlation (cf. Figure 9). In other terms, a feedback

connection manifests itself by a higher reproducibility of network

decay dynamics across repetitions, which is why its detection

requires short epoch durations and thus a more frequent repetition

of the transient that discloses its effect on the data.

Sixth, our preliminary results show that the use of interventional

techniques such as TMS could be highly beneficial for reducing

the selection error rate (Figure 12). However, the expected gain is

strongly dependent upon its physiological effects, which are still

not fully known [41]. For example, different stimulation

frequencies target different populations of neurons and can

therefore either have a net excitatory or inhibitory effect. Such

effects can be modelled easily within the framework of DCM [42]

and would constitute a straightforward extension to the example

given in this paper (see [43] for related work). In the future, such

extensions could allow one to ask which TMS technique one

should use to maximally improve sensitivity in disclosing network

mechanisms by model selection. Such combinations of experi-

mental techniques and model-based analysis are starting to emerge

in the field [44] and hold great promises for the identification of

directed influences in the brain, provided that one understands the

impact of the experimental design used.

Lastly, numerical simulations showed that the optimal design

depends upon the choice of priors on the model’s parameters

p q mjð Þ. This is of course expected, because p q mjð Þ partly

determines the model’s prior predictive density over data

p y m,ujð Þ (c.f. equations 1–2). Strictly speaking, we cannot use

noninformative priors when optimizing the design for model

comparison. This is because, in most cases, this would induce flat

prior predictive densities for all models, which would prevent any

design optimization procedure. This means that we have to choose

mildly informative priors for the model’s parameters. However,

the precise way in which the priors affect the efficiency of the

design depends upon the comparison set. For example, increasing

m (the prior mean over the connectivity parameters) either

increases model discriminability (e.g., Figure 10, for the feed-

back/no feedback comparison) or decreases it (e.g., Figure 10,

when deciding where the input enters the network). Recall that a

(generative) model is defined by all the (probabilistic) assumptions

that describe how the data are generated, including the prior

p q mjð Þ. This means that when using different values for m, we are

effectively defining different models. Thus, varying both m and the

connectivity structure implicitly augments the comparison set in a

factorial way. Assuming that one is only interested in selecting the

connectivity structure (irrespective of m), one has to resort to family

inference (see Text S3), where each family is composed of

members that share the same connectivity structure but differ in

their m. This simply means deriving the Laplace-Chernoff risk after

marginalizing over m. This basically treats m as a nuisance effect,

and de-sensitizes the design parameter of interest to mathematical

variations in the implementation of the model. We have shown

examples of such a ‘‘family level’’ extension of optimal designs

when inspecting canonical PPI models (section ‘‘Investigating

psycho-physiological interactions with DCM’’) and analyzing

experimental data (section ‘‘Empirical validation’’).

Similarly, one might wonder how sensitive the optimal design is

to variations of the neuronal and biophysical state equations used

in the DCM framework. Preliminary results (not shown here)

indicate that the effects of design parameters such as epoch

duration are not very sensitive to such variations, e.g., two-state

DCM [42] or stochastic DCM [45–46]. However, the latter class

of DCM asks for a slight modification in the derivation of the prior

predictive density [47]. This is because the presence of neural

noise induces additional variability at the level of hidden states.

Typically, neural noise expresses itself through a decrease in

lagged (intra- and inter-node) covariances. This might therefore

induce noticeable changes in optimal design parameters for

specific comparison sets. A general solution to this is to include the

DCM variant as a factor in the model comparison set, and then

again, use family level inference to marginalize over it.

We envisage that the present approach will be useful for a wide

range of practical applications in neuroimaging and beyond. It

may be particularly helpful in a clinical context, where the ability

to disambiguate alternative diseases mechanisms with high

sensitivity is of great diagnostic importance. One particular

application domain we have in mind for future studies concerns

the classification of patients from spectrum diseases such as

schizophrenia using mechanistically interpretable models [48].

Another potential future application concerns model-based

prediction of individual treatment responses, based on experi-

mentally elicited physiological responses (e.g., to pharmacological

challenges [49]). Either approach will greatly benefit from

methods for optimizing experimental design, such as the one

introduced here.

Software note
All the routines and ideas described in this paper will be

implemented in the academic freeware SPM (http://www.fil.ion.

ucl.ac.uk/spm).
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