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Abstract

An important open problem of computational neuroscience is the generic organization of computations in networks of
neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking
neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors,
enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In
particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (‘‘explaining
away’’) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking
neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational
organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of
probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been
carried out so far in networks of spiking neurons.
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Introduction

We show in this article that noisy networks of spiking neurons are in

principle able to carry out a quite demanding class of computations:

probabilistic inference in general graphical models. More precisely,

they are able to carry out probabilistic inference for arbitrary

probability distributions over discrete random variables (RVs) through

sampling. Spikes are viewed here as signals which inform other

neurons that a certain RV has been assigned a particular value for a

certain time period during the sampling process. This approach had

been introduced under the name ‘‘neural sampling’’ in [1]. This article

extends the results of [1], where the validity of this neural sampling

process had been established for the special case of distributions p with

at most 2nd order dependencies between RVs, to distributions p with

dependencies of arbitrary order. Such higher order dependencies,

which may cause for example the explaining away effect [2], have

been shown to arise in various computational tasks related to

perception and reasoning. Our approach provides an alternative to

other proposed neural emulations of probabilistic inference in

graphical models, that rely on arithmetical methods such as belief

propagation. The two approaches make completely different demands

on the underlying neural circuits: the belief propagation approach

emulates a deterministic arithmetical computation of probabilities,

and is therefore optimally supported by noise-free deterministic

networks of neurons. In contrast, our sampling based approach shows

how an internal model of an arbitrary target distribution p can be

implemented by a network of stochastically firing neurons (such

internal model for a distribution p, that reflects the statistics of natural

stimuli, has been found to emerge in primary visual cortex [3]). This

approach requires the presence of stochasticity (noise), and is

inherently compatible with experimentally found phenomena such

as the ubiquitous trial-to-trial variability of responses of biological

networks of neurons.

Given a network of spiking neurons that implements an internal

model for a distribution p, probabilistic inference for p, for example

the computation of marginal probabilities for specific RVs, can be

reduced to counting the number of spikes of specific neurons for a

behaviorally relevant time span of a few hundred ms, similarly as in

previously proposed mechanisms for evidence accumulation in

neural systems [4]. Nevertheless, in this neural emulation of

probabilistic inference through sampling, every single spike conveys

information, as well as the relative timing among spikes of different

neurons. The reason is that for many of the neurons in the model

(the so-called principal neurons) each spike represents a tentative

value for a specific RV, whose consistency with tentative values of

other RVs, and with the available evidence (e.g., an external

stimulus), is explored during the sampling process. In contrast,

currently known neural emulations of belief propagation in general

graphical models are based on firing rate coding.

The underlying mathematical theory of our proposed new

method provides a rigorous proof that the spiking activity in a

network of neurons can in principle provide an internal model for

an arbitrary distribution p. It builds on the general theory of

Markov chains and their stationary distribution (see e.g. [5]), the
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general theory of MCMC (Markov chain Monte Carlo) sampling

(see e.g. [6,7]), and the theory of sampling in stochastic networks of

spiking neurons - modelled by a non-reversible Markov chain [1].

It requires further theoretical analysis for elucidating under what

conditions higher order factors of p can be emulated in networks

of spiking neurons, which is provided in the Methods section of

this article. Whereas the underlying mathematical theory only

guarantees convergence of the spiking activity to the target

distribution p, it does not provide tight bounds for the convergence

speed to p (the so-called burn–in time in MCMC sampling). Hence

we complement our theoretical analysis by computer simulations

for three Bayesian networks of increasing size and complexity. We

also address in these simulations the question to what extent the

speed or precision of the probabilistic inference degrades when

one moves from a spiking neuron model that is optimal from the

perspective of the underlying theory to a biologically more realistic

neuron model. The results show, that in all cases quite good

probabilistic inference results can be achieved within a time span

of a few hundreds ms. In the remainder of this section we sketch

the conceptual and scientific background for our approach. An

additional discussion of related work can be found in the

discussion section.

Probabilistic inference in Bayesian networks [2] and other

graphical models [8,9] is an abstract description of a large class of

computational tasks, that subsumes in particular many types of

computational tasks that the brain has to solve: The formation of

coherent interpretations of incomplete and ambiguous sensory

stimuli, integration of previously acquired knowledge with new

information, movement planning, reasoning and decision making

in the presence of uncertainty [10–13]. The computational tasks

become special cases of probabilistic inference if one assumes

that the previously acquired knowledge (facts, rules, constraints,

successful responses) is encoded in a joint distribution p over

numerous RVs z1, . . . ,zK , that represent features of sensory

stimuli, aspects of internal models for the environment, environ-

mental and behavioral context, values of carrying out particular

actions in particular situations [14], goals, etc. If the values of

some of these RVs assume concrete values e (e.g. because of

observations, or because a particular goal has been set), the

distribution of the remaining variables changes in general (to the

conditional distribution given the values e). A typical computation

that needs to be carried out for probabilistic inference for some

joint distribution p(z1, . . . ,zl ,zlz1, . . . ,zK ) involves in addition

marginalization, and requires for example the evaluation of an

expression of the form

p(z1je)~
X

all possible values
n2,...,nl for z2,...,zl

p(z1,v2, . . . ,vl je), ð1Þ

where concrete values e (the ‘‘evidence’’or ‘‘observations’’ have

been inserted for the RVs zlz1, . . . , zK . These variables are then

often called observable variables, and the others latent variables.

Note that the term ‘‘evidence’’ is somewhat misleading, since the

assignment e represents some arbitrary input to a probabilistic

inference computation, without any connotation that it represents

correct observations or memories. The computation of the

resulting marginal distribution p(z1je) requires a summation

over all possible values v2, . . . ,vl for the RVs z2, . . . ,zl that are

currently not of interest for this probabilistic inference. This

computation is in general quite complex (in fact, it is NP-complete

[9]) because in the worst case exponentially in l many terms need

to be evaluated and summed up.

There exist two completely different approaches for solving

probabilistic inference tasks of type (1), to which we will refer in the

following as the arithmetical and the sampling approach. In the

arithmetical approach one exploits particular features of a

graphical model, that captures conditional independence proper-

ties of the distribution p, for organizing the order of summation

steps and multiplication steps for the arithmetical calculation of the

r.h.s. of (1) in an efficient manner. Belief propagation and message

passing algorithms are special cases of this arithmetical approach.

All previously proposed neural emulations of probabilistic

inference in general graphical models have pursued this

arithmetical approach. In the sampling approach, which we

pursue in this article, one constructs a method for drawing samples

from the distribution p (with fixed values e for some of the RVs,

see (1)). One can then approximate the l.h.s. of (1), i.e., the desired

value of the probability p(z1je), by counting how often each

possible value for the RV z1 occurs among the samples. More

precisely, we identify conditions under which each current firing

state (which records which neuron has fired within some time

window) of a network of stochastically firing neurons can be

viewed as a sample from a probability distribution that converges

to the target distribution p. For this purpose the temporal

dynamics of the network is interpreted as a (non-reversible)

Markov chain. We show that a suitable network architecture and

parameter choice of the network of spiking neurons can make sure

that this Markov chain has the target distribution p as its stationary

distribution, and therefore produces after some ‘‘burn–in time’’-

samples (i.e., firing states) from a distribution that converges to p.

This general strategy for sampling is commonly referred to as

Markov chain Monte Carlo (MCMC) sampling [6,7,9].

Before the first use of this strategy in networks of spiking

neurons in [1], MCMC sampling had already been studied in the

context of artificial neural networks, so-called Boltzmann ma-

chines [15]. A Boltzmann machine consists of stochastic binary

neurons in discrete time, where the output of each neuron has the

value 0 or 1 at each discrete time step. The probability of each

Author Summary

Experimental data from neuroscience have provided
substantial knowledge about the intricate structure of
cortical microcircuits, but their functional role, i.e. the
computational calculus that they employ in order to
interpret ambiguous stimuli, produce predictions, and
derive movement plans has remained largely unknown.
Earlier assumptions that these circuits implement a logic-
like calculus have run into problems, because logical
inference has turned out to be inadequate to solve
inference problems in the real world which often exhibits
substantial degrees of uncertainty. In this article we
propose an alternative theoretical framework for examin-
ing the functional role of precisely structured motifs of
cortical microcircuits and dendritic computations in
complex neurons, based on probabilistic inference
through sampling. We show that these structural details
endow cortical columns and areas with the capability to
represent complex knowledge about their environment in
the form of higher order dependencies among salient
variables. We show that it also enables them to use this
knowledge for probabilistic inference that is capable to
deal with uncertainty in stored knowledge and current
observations. We demonstrate in computer simulations
that the precisely structured neuronal microcircuits enable
networks of spiking neurons to solve through their
inherent stochastic dynamics a variety of complex
probabilistic inference tasks.

Sampling in Graphical Models with Spiking Neurons
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value depends on the output values of neurons at the preceding

discrete time step. For a Boltzmann machine a standard way of

sampling is Gibbs sampling. The Markov chain that describes

Gibbs sampling is reversible, i.e., stochastic transitions between

states do not have a preferred direction in time. This sampling

method works well in artificial neural networks, where the effect of

each neural activity lasts for exactly one discrete time step. But it is

in conflict with basic features of networks of spiking neurons,

where each action potential (spike) of a neuron triggers inherent

temporal processes in the neuron itself (e.g. refractory processes),

and postsynaptic potentials of specific durations in other neurons

to which it is synaptically connected. These inherent temporal

processes of specific durations are non-reversible, and are

therefore inconsistent with the mathematical model (Gibbs

sampling) that underlies probabilistic inference in Boltzmann

machines. [1] proposed a somewhat different mathematical model

(sampling in non-reversible Markov chains) as an alternative

framework for sampling, that is compatible with these basic

features of the dynamics of networks of spiking neurons.

We consider in this article two types of models for spiking

neurons (see Methods for details):

N stochastic leaky integrate –and –fire neurons with absolute and

relative refractory periods, formalized in the spike–response

framework of [16] (as in [1]), and

N simplified stochastic multi–ompartment neuron models with

dendritic spikes.

A key step for interpreting the firing activity of networks of

neurons as sampling from a probability distribution (as proposed in

[3]) in a rigorous manner is to define a formal relationship between

spikes and samples. As in [1] we relate the firing activity in a

network N of K spiking neurons n1, . . . ,nK to sampling from a

distribution p(z1, . . . ,zK ) over binary variables z1, . . . ,zK by setting

zk tð Þ~1 if and only if neuron nk has fired within the

preceding time interval t{t,t�ð of length t,
ð2Þ

(we restrict our attention here to binary RVs; multinomial RVs

could in principle be represented by WTA circuits –see Discussion).

The constant t models the average length of the effect of a spike on

the firing probability of other neurons or of the same neuron, and

can be set for example to t~20ms.

However with this definition of its internal state (z1(t), . . . ,zK (t))
the dynamics of the neural network N can not be modelled by a

Markov chain, since knowledge of this current state does not

suffice for determining the distribution of states at future time

points, say at time tz5ms. This distribution requires knowledge

about when exactly a neuron nk with zk(t)~1 had fired. Therefore

auxiliary RVs f1, . . . ,fK with multinomial or analog values were

introduced in [1], that keep track of when exactly in the preceding

time interval of length t a neuron nk had fired, and thereby restore

the Markov property for a Markov chain that is defined over an

enlarged state set consisting of all possible values of z1, . . . ,zK and

f1, . . . ,fK . However the introduction of these hidden variables

f1, . . . ,fK , that keep track of inherent temporal processes in the

networkN of spiking neurons, comes at the price that the resulting

Markov chain is no longer reversible (because these temporal

processes are not reversible). But it was shown in [1] that one can

prove nevertheless for any distribution p(z1, . . . ,zK ) for which the

so-called neural computability condition (NCC), see below, can be

satisfied by a network N of spiking neurons, that N defines a non-

reversible Markov chain whose stationary distribution is an

expanded distribution p(z1, . . . ,zK ,f1, . . . ,fK ), whose marginal

distribution over z1, . . . ,zK (which results when one ignores the

values of the hidden variables f1, . . . ,fK ) is the desired distribution

p(z1, . . . ,zK ). Hence a network N of spiking neurons can sample

from any distribution p(z1, . . . ,zK ) for which the NCC can be

satisfied. This implies that any neural system that contains such

network N can carry out the probabilistic inference task (1): The

evidence e could be implemented through external inputs that

force neuron nk to fire at a high rate if zk~1 in e, and not to fire if

zk~0 in e. In order to estimate p(z1je), it suffices that some

readout neuron estimates (after some initial transient phase) the

resulting firing rate of the neuron n1 that represents RV z1.

In contrast to most of the other neural implementations of

probabilistic inference (with some exceptions, see for example [17]

and [18]) where information is encoded in the firing rate of the

neurons, in this approach the spike times, rather than the firing

rate, of the neuron nk carry relevant information as they define the

value of the RV zk at a particular moment in time t according to

(2). In this spike-time based coding scheme, the relative timing of

spikes (which neuron fires simultaneously with whom) receives a

direct functional interpretation since it determines the correlation

between the corresponding RVs.

The NCC requires that for each RV zk the firing probability

density rk(t) of its corresponding neuron nk at time t satisfies, if the

neuron is not in a refractory period,

rk(t)~
1

t
: p(zk~1jz\k)

p(zk~0jz\k)
, ð3Þ

where z\k denotes the current value of all other RVs, i.e., all zi

with i=k. We use in this article the same model for a stochastic

neuron as in [1] (continuous time case), which can be matched

quite well to biological data according to [19]. In the simpler

version of this neuron model one assumes that it has an absolute

refractory period of length t, and that the instantaneous firing

probability rk(t) satisfies outside of its refractory period

rk(t)~
1

t
exp (uk(t)), where uk(t) is its membrane potential (see

Methods for an account of the more complex neuron model with a

relative refractory period from [1], that we have also tested in our

simulations). The NCC from (3) can then be reformulated as a

condition on the membrane potential of the neuron

uk(t)~ log
p(zk~1jz\k)

p(zk~0jz\k)
: ð4Þ

Let us consider a Boltzmann distribution p of the form

p(z1, . . . ,zK )~
1

Z
exp

X
i,j

1

2
Wijzizjz

X
i

bizi

 !
ð5Þ

with symmetric weights (i.e., Wij~Wji) that vanish on the

diagonal (i.e., Wii~0). In this case the NCC can be satisfied by

a uk(t) that is linear in the postsynaptic potentials that neuron nk

receives from the neurons ni that represent other RVs zi:

uk(t)~bkz
XK

i~1

Wkizi(t), ð6Þ

where bk is the bias of neuron nk (which regulates its excitability),

Wki is the strength of the synaptic connection from neuron ni to

Sampling in Graphical Models with Spiking Neurons
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nk, and zi(t) approximates the time course of the postsynaptic

potential caused by a firing of neuron ni at some time t
f
i vt (zi(t)

assumes value 1 during the time interval ½tf
i ,t

f
i zt), otherwise it

has value 0).

However, it is well known that probabilistic inference for

distributions of the form (5) is too weak to model various important

computational tasks that the brain is obviously able to solve, at

least without auxiliary variables. While (5) only allows pairwise

interactions between RVs, numerous real world probabilistic

inference tasks require inference for distributions with higher order

terms. For example, it has been shown that human visual

perception involves ‘‘explaining away’’, a well known effect in

probabilistic inference, where a change in the probability of one

competing hypothesis for explaining some observation affects the

probability of another competing hypothesis [20]. Such effects can

usually only be captured with terms of order at least 3, since 3 RVs

(for 2 hypotheses and 1 observation) may interact in complex ways.

A well known example from visual perception is shown in Fig. 1,

for a probability distribution p over 4 RVs z1, . . . ,z4, where z1 is

defined by the perceived relative reflectance of two abutting 2D

areas, z2 by the perceived 3D shape of the observed object, z3 by

the observed shading of the object, and z4 by the contour of the

2D image. The difference in shading of the two abutting surfaces

in Fig. 1A could be explained either by a difference in reflectance

of the two surfaces, or by an underlying curved 3D shape. The two

different contours (RV z4) in the upper and lower part of Fig. 1A

influence the likelihood of a curved 3D shape (RV z3). In

particular, a perceived curved 3D shape ‘‘explains away’’ the

difference in shading, thereby making a uniform reflectance more

likely. The results of [21] and numerous related results suggest that

the brain is able to carry out probabilistic inference for more

complex distributions than the 2nd order Boltzmann distribution

(5).

We show in this article that the neural sampling method of [1]

can be extended to any probability distribution p over binary RVs,

in particular to distributions with higher order dependencies

among RVs, by using auxiliary spiking neurons in N that do not

directly represent RVs zk, or by using nonlinear computational

processes in multi-compartment neuron models. As one can

expect, the number of required auxiliary neurons or dendritic

branches increases with the complexity of the probability

distribution p for which the resulting network of spiking neurons

has to carry out probabilistic inference. Various types of graphical

models [9] have emerged as convenient frameworks for charac-

terizing the complexity of distributions p from the perspective of

probabilistic inference for p.

Figure 1. The visual perception experiment of [21] that demonstrates ‘‘explaining away’’ and its corresponding Bayesian network
model. A) Two visual stimuli, each exhibiting the same luminance profile in the horizontal direction, differ only with regard to their contours, which
suggest different 3D shapes (flat versus cylindrical). This in turn influences our perception of the reflectance of the two halves of each stimulus (a step
in the reflectance at the middle line, versus uniform reflectance): the cylindrical 3D shape ‘‘explains away’’the reflectance step. B) The Bayesian
network that models this effect represents the probability distribution p(z1,z2,z3,z4)~p(z1)p(z2)p(z3jz1,z2)p(z4jz2). The relative reflectance (z1) of the
two halves is either different (z1 = 1) or the same (z1 = 0). The perceived 3D shape can be cylindrical (z2 = 1) or flat (z2 = 0). The relative reflectance and
the 3D shape are direct causes of the shading (luminance change) of the surfaces (z3), which can have the profile like in panel A (z3 = 1) or a different
one (z3 = 0). The 3D shape of the surfaces causes different perceived contours, flat (z4 = 0) or cylindrical (z4 = 1). The observed variables (evidence) are
the contour (z4) and the shading (z3). Subjects infer the marginal posterior probability distributions of the relative reflectance p(z1jz3,z4) and the 3D
shape p(z2jz3,z4) based on the evidence. C) The RVs zk are represented in our neural implementations by principal neurons nk . Each spike of nk sets
the RV zk to 1 for a time period of length t. D) The structure of a network of spiking neurons that performs probabilistic inference for the Bayesian
network of panel B through sampling from conditionals of the underlying distribution. Each principal neuron employs preprocessing to satisfy the
NCC, either by dendritic processing or by a preprocessing circuit.
doi:10.1371/journal.pcbi.1002294.g001

Sampling in Graphical Models with Spiking Neurons
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We will focus in this article on Bayesian networks, a common

type of graphical model for probability distributions. But our

results can also be applied for other types of graphical models. A

Bayesian network is a directed graph (without directed cycles),

whose nodes represent RVs z1, . . . ,zK . Its graph structure

indicates that p(z1, . . . ,zK ) admits a factorization of the form

p(z1, . . . ,zk)~ P
K

k~1
p(zkjpa(zk)), ð7Þ

where pa(zk) is the set of all (direct) parents of the node indexed by

zk. For example, the Bayesian network in Fig. 1B implies that the

factorization p(z1,z2,z3,z4)~p(z1)p(z2)p(z3jz1,z2)p(z4jz2) is possi-

ble.

We show that the complexity of the resulting network of spiking

neurons for carrying out probabilistic inference for p can be

bounded in terms of the graph complexity of the Bayesian network

that gives rise to the factorization (7). More precisely, we present

three different approaches for constructing such networks of

spiking neurons:

N through a reduction of p to a Boltzmann distribution (5) with

auxiliary RVs

N through a Markov blanket expansion of the r.h.s. of the NCC

(4)

N through a factorized expansion of the r.h.s. of the NCC (4)

We will show that there exist two different neural implemen-

tation options for each of the last two approaches, using either

specific network motifs or dendritic processing for nonlinear

computation steps. This yields altogether 5 different options for

emulating probabilistic inference in Bayesian networks through

sampling via the inherent stochastic dynamics of networks of

spiking neurons. We will exhibit characteristic differences in the

complexity and performance of the resulting networks, and relate

these to the complexity of the underlying Bayesian network. All 5

of these neural implementation options can readily be applied to

Bayesian networks where several arcs converge to a node (giving

rise to the ‘‘explaining away’’ effect), and to Bayesian networks

with undirected cycles (‘‘loops’’). All methods for probabilistic

inference from general graphical models that we propose in this

article are from the mathematical perspective special cases of

MCMC sampling. However in view of the fact that they expand

the neural sampling approach of [1], we will refer to them more

specifically as neural sampling.

We show through computer simulations for three different

Bayesian networks of different sizes and complexities that neural

sampling can be carried quite fast with the help of the second and

third approach, providing good inference results within a

behaviorally relevant time span of a few hundred ms. One of

these Bayesian networks addresses the previously described

classical ‘‘explaining away’’ effect in visual perception from

Fig. 1. The other two Bayesian networks not only contain

numerous ‘‘explaining away’’ effects, but also undirected cycles.

Altogether, our computer simulations and our theoretical analyses

demonstrate that networks of spiking neurons can emulate

probabilistic inference for general Bayesian networks. Hence we

propose to view probabilistic inference in graphical models as a

generic computational paradigm, that can help us to understand

the computational organization of networks of neurons in the

brain, and in particular the computational role of precisely

structured cortical microcircuit motifs.

Results

We present several ways how probabilistic inference for a given

joint distribution p(z1, . . . ,zK ), that is not required to have the

form of a 2nd order Boltzmann distribution (5), can be carried out

through sampling from the inherent dynamics of a recurrent

network N of stochastically spiking neurons. All these approaches

are based on the idea that such network N of spiking neurons can

be viewed –for a suitable choice of its architecture and parameters

–as an internal or ‘‘physical model’’ for the distribution p, in the

sense that its distribution of network states converges to p, from

any initial state. Then probabilistic inference for p can be easily

carried out by any readout neuron that observes the resulting

network states, or the spikes from one or several neurons in the

network. This holds not only for sampling from the prior

distribution p, but also for sampling from the posterior after some

evidence e has become available (see (1)). The link between

network states of N and the RVs z1, . . . ,zK is provided by

assuming that there exists for each RV zk a neuron nk such that

each time when nk fires, it sets the associated binary RV zk to 1 for

a time period of some length t (see Fig. 1C). We refer to neurons

nk that represent in this way a RV zk as principal neurons. All

other neurons are referred to as auxiliary neurons.

The mathematical basis for analyzing the distribution of

network states, and relating it to a given distribution p, is

provided by the theory of Markov chains. More precisely, it was

shown in [1] that by introducing for each principal neuron nk an

additional hidden analog RV fk, that keeps track of time within

the time interval of length t after a spike of nk, one can model the

dynamics of the network N by a non-reversible Markov chain.

This Markov chain is non-reversible, in contrast to Gibbs

sampling or other Markov chains that are usually considered in

Machine Learning and in the theory of Boltzmann machines,

because this facilitates the modelling of the temporal dynamics of

spiking neurons, in particular refractory processes within a

spiking neuron after a spike and temporally extended effects of

its spike on the membrane potential of other neurons to which it

is synaptically connected (postsynaptic potentials). The underly-

ing mathematical theory guarantees that nevertheless the

distribution of network states of this Markov chain converges

(for the ‘‘original’’ RVs zk) to the given distribution p, provided

that the NCC (4) is met. This theoretical result reduces our goal,

to demonstrate ways how a network of spiking neurons can carry

out probabilistic inference in general graphical models, to the

analysis of possibilities for satisfying the NCC (4) in networks of

spiking neurons. The networks of spiking neurons that we

construct and analyze build primarily on the model for neural

sampling in continuous time from [1], since this continuous time

version is the more satisfactory model from the biological

perspective. But all our results also hold for the mathematically

simpler version with discrete time.

We exhibit both methods for satisfying the NCC with the help

of auxiliary neurons in networks of point neurons, and in networks

of multi-compartment neuron models (where no auxiliary neurons

are required). All neuron models that we consider are stochastic,

where the probability density function for the firing of a neuron

at time t (provided it is currently not in a refractory state) is

proportional to exp(u(t)), where u(t) is its current membrane

potential at the soma. We assume (as in [1]) that in a point neuron

model the membrane potential u(t) can be written as a linear

combination of postsynaptic potentials. Thus if the principal

neuron nk is modelled as a point neuron, we have

Sampling in Graphical Models with Spiking Neurons
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uk(t)~bkz
XK

i~1

Wkizi(t), ð8Þ

where bk is the bias of neuron nk (which regulates its excitability),

Wki is the strength of the synaptic connection from neuron ni to

nk, and zi(t) approximates the time course of the postsynaptic

potential in neuron nk caused by a firing of neuron ni. The ideal

neuron model from the perspective of the theory of [1] has an

absolute refractory period of length t, which is also the assumed

length of a postsynaptic potential (EPSP or IPSP). But it was

shown there through computer simulations that neural sampling

can be carried out also with stochastically firing neurons that have

a relative refractory period, i.e. the neuron can fire with some

probability with an interspike interval of less than t. In particular,

it was shown there in simulations that the resulting neural network

samples from a slight variation of the target distribution p, that is

in most cases practically indistinguishable.

Before we describe two different theoretical approaches for

satisfying the NCC, we first consider an even simpler method for

extending the neural sampling approach from [1] to arbitrary

distributions p: through a reduction to 2nd order Boltzmann

distributions (5) with auxiliary RVs.

Second Order Boltzmann Distributions with Auxiliary
Random Variables (Implementation 1)

It is well known [15] that any probability distribution

p(z1, . . . ,zK ), with arbitrarily large factors in a factorization such

as (7), can be represented as marginal distribution

p(z)~
X
x[X

p(z,x) ð9Þ

of an extended distribution p(z,x) with auxiliary RVs x, that can

be factorized into factors of degrees at most 2. This can be seen

as follows. Let p(z) be an arbitrary probability distribution over

binary variables with higher order factors wc(zc). Thus

p(z)~
1

Z
P
C

c~1
wc(zc), ð10Þ

where zc is a vector composed of the RVs that the factor wc

depends on and Z is a normalization constant. We additionally

assume that p(z) is non-zero for each value of z. The simple idea is

to introduce for each possible assignment v to the RVs zc in a

higher order factor wc(zc) a new RV xc
v, that has value 1 only if v is

the current assignment of values to the RVs in zc. We will illustrate

this idea through the concrete example of Fig. 1. Since there is

only one factor that contains more than 2 RVs in the probability

distribution of this example (see caption of Fig. 1), the conditional

probability p(z3jz1,z2), there will be 8 auxiliary RVs x000, x001, …,

x111 for this factor, one for each of the 8 possible assignments to

the 3 RVs in p(z3jz1,z2). Let us consider a particular auxiliary RV,

e.g. x001. It assumes value 1 only if z1~0, z2~0, and z3~1. This

constraint for x001 can be enforced through second order factors

between x001 and each of the RVs z1,z2 and z3. For example, the

second order factor that relates x001 and z1 has a value of 0 if

x001~1 and z1~1 (i.e., if z1 is not compatible with the assignment

001), and value 1 otherwise. The individual values of the factor

p(z3jz1,z2) for different assignments to z1, z2 and z3 are introduced

in the extended distribution p(z,x) through first order factors, one

for each auxiliary RV xc
v. Specifically, the first order factor that

depends on x001 has value mp(z3~1jz1~0,z2~0){1 (where m is a

constant that rescales the values of the factors such that

mp(z3jz1,z2)w1 for all assignments to z1, z2 and z3) if x001~1,

and value 1 otherwise. Further details of the construction method

for p(z,x) are given in the Methods section, together with a proof

of (9).

The resulting extended probability distribution p(z,x) has the

property that, in spite of deterministic dependencies between the

RVs z and x, the state set of the resulting Markov chain realized

through a network N of spiking neurons according to [1]

(that consists of all non-forbidden value assignments to z and

x) is connected. In the previous example a non-forbidden

value assignment is x001~1 and z1~0,z2~0,z3~1. But

x001~0,z1~0,z2~0,z3~1 is also a non-forbidden value assign-

ment. Such non-forbidden value assignments to the auxiliary RVs

xc corresponding to one higher order factor, where all of them

assume value of 0 regardless of the values of the zc RVs provide

transition points for paths of probability w0 that connect any two

non-forbidden value assignments (without requiring that 2 or more

RVs switch their values simultaneously). The resulting connectivity

of all non-forbidden states (see Methods for a proof) implies that

this Markov chain has p(z,x) as its unique stationary distribution.

The given distribution p(z) arises as marginal distribution of this

stationary distribution of N , hence one can use N to sample from

p(z) (just ignore the firing activity of neurons that correspond to

auxiliary RVs xc
v).

Since the number of RVs in the extended probability

distribution p(z,x) can be much larger than the number of RVs

in p(z), the corresponding spiking neural network samples from a

much larger probability space. This, as well as the presence of

deterministic relations between the auxiliary and the main RVs in

the expanded probability distribution, slow down the convergence

of the resulting Markov chain to its stationary distribution. We

show however in the following, that there are several alternatives

for sampling from an arbitrary distribution p(z) through a network

of spiking neurons. These alternative methods do not introduce

auxiliary RVs x, but rather aim at directly satisfying the NCC (4)

in a network of spiking neurons. Note that the principal neurons in

the neural network that implements neural sampling through

introduction of auxiliary RVs x also satisfy the NCC, but in the

extended probability distribution with second order relations

p(z,x), whereas in the neural implementations introduced in the

following the principal neurons satisfy the NCC in the original

distribution p(z). In Computer Simulation I we have compared

the convergence speed of the methods that satisfy the NCC with

that of the previously described method via auxiliary RVs. It turns

out that the alternative strategy provides an about 10 fold speed-up

for the Bayesian network of Fig. 1B.

Using the Markov Blanket Expansion of the Log-odd
Ratio

Assume that the distribution p for which we want to carry out

probabilistic inference is given by some arbitrary Bayesian network

B. There are two different options for satisfying the NCC for p,

which differ in the way by which the term on the r.h.s. of the NCC

(4) is expanded. The option that we will analyze first uses from the

structure of the Bayesian network B only the information about

which RVs are in the Markov blanket of each RV zk. The Markov

blanket Bk of the corresponding node zk in B (which consists of the

parents, children and co-parents of this node) has the property that

zk is independent from all other RVs once any assignment v of

values to the RVs zBk in the Markov blanket has been fixed. Hence

p(zkjz\k) = p(zkjzBk ), and the term on the r.h.s. of the NCC (4) can

be expanded as follows:
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log
p(zk~1jzBk ~zBk (t))

p(zk~0jzBk ~zBk (t))
~
X

v[Z
Bk

wk
v
:½zBk (t)~v�, ð11Þ

where

wk
v ~ log

p(zk~1jzBk~v)

p(zk~0jzBk~v)
: ð12Þ

The sum indexed by v runs over the set ZBk of all possible

assignments of values to zBk , and ½zBk (t)~v� denotes a predicate

which has value 1 if the condition in the brackets is true, and to 0

otherwise. Hence, for satisfying the NCC it suffices if there are

auxiliary neurons, or dendritic branches, for each of these v, that

become active if and only if the variables zBk currently assume the

value v. The current values of the variables zBk are encoded in the

firing activity of their corresponding principal neurons. The

corresponding term wk
v can be implemented with the help of the

bias bk (see (8)) of the auxiliary neuron that corresponds to the

assignment v, resulting in a value of its membrane potential equal

to the r.h.s. of the NCC (4). We will discuss this implementation

option below as Implementation 2. In the subsequently discussed

implementation option (Implementation 3) all principal neurons

will be multi-compartment neurons, and no auxiliary neurons are

needed. In this case wk
v scales the amplitude of the signal from a

specific dendritic branch to the soma of the multi-compartment

principal neuron nk.

Implementation with auxiliary neurons (Implementation

2). We illustrate the implementation of the Markov blanket

expansion approach through auxiliary neurons for the concrete

example of the RV z1 in the Bayesian network of Fig. 1B (see

Methods for a discussion of the general case). Its Markov blanket

B1 consists here of the RVs z2 and z3. Hence the resulting neural

circuit (see Fig. 2) for satisfying the NCC for the principal neuron

n1 uses 4 auxiliary neurons a00,a01,a10 and a11, one for each of the

4 possible assignments v of values to the RVs z2 and z3. Each firing

of one of these auxiliary neurons should cause an immediately

subsequent firing of the principal neuron n1. Lateral inhibition

among these auxiliary neurons can make sure that after a firing of

an auxiliary neuron no other auxiliary neuron fires during the

subsequent time interval of length t, thereby implementing the

required absolute refractory period of the theoretical model from

[1]. The presynaptic principal neuron n2(n3) is connected to the

auxiliary neuron av directly if v assumes that z2(z3) has value 1,

otherwise via an inhibitory interneuron v (see Fig. 2). In case of a

synaptic connection via an inhibitory interneuron, a firing of n2(n3)
prevents a firing of this auxiliary neuron during the subsequent

time interval of length t. The direct excitatory synaptic

connections from n2 and n3 raise the membrane potential of that

auxiliary neuron av, for which v agrees with the current values of

the RVs z2(t) and z3(t), so that it reaches the value wk
v , and fires

with a probability equal to the r.h.s. of the NCC (4) during the

time interval within which the value assignment v remains valid.

The other 3 auxiliary neurons are during this period either

inhibited by the inhibitory interneurons, or do not receive enough

excitatory input from the direct connections to reach a significant

firing probability. Hence, the principal neuron n1 will always be

driven to fire just by a single auxiliary neuron av corresponding to

the current value of the variables z2(t) and z3(t), and will fire

immediately after av fires.

As av has a firing probability that satisfies the r.h.s. of the NCC

(4) temporally during the time interval while z2(t) and z3(t) are

consistent with v, the firing of the principal neuron n1 satisfies the

r.h.s. of the NCC (4) at any moment in time.

Computer Simulation I: Comparison of two methods for

emulating ‘‘explaining away’’ in networks of spiking

neurons. In our preceding theoretical analysis we have

exhibited two completely different methods for emulating in

networks of spiking neurons probabilistic inference in general

graphical models through sampling: either by a reduction to 2nd

order Boltzmann distributions (5) through the introduction of

auxiliary RVs (Implementation 1), or by satisfying the NCC (3) via

the Markov blanket expansion. We have tested the accuracy and

convergence speed of both methods for the Bayesian network of

Fig. 1B, and the results are shown in Fig. 3. The approach via the

NCC converges substantially faster.

Implementation with dendritic computation

(Implementation 3). We now show that the Markov blanket

expansion approach can also be implemented through dendritic

branches of multi-compartment neuron models (see Methods) for

the principal neurons, without using auxiliary neurons (except for

inhibitory interneurons). We will illustrate the idea through the

same Bayesian network example as discussed in Implementation 2,

and refer to Methods for a discussion of the case of arbitrary

Bayesian networks. Fig. 4 shows the principal neuron n1 in the

spiking neural network for the Bayesian network of Fig. 1B.

It has 4 dendritic branches d00,d01,d10 and d11, each of them

Figure 2. Implementation 2 for the explaining away motif of
the Bayesian network from Fig. 1B. Implementation 2 is the neural
implementation with auxiliary neurons, that uses the Markov blanket
expansion of the log-odd ratio. There are 4 auxiliary neurons, one for
each possible value assignment to the RVs z2 and z3 in the Markov
blanket of z1 . The principal neuron n2 (n3) connects to the auxiliary
neuron av directly if z2 (z3) has value 1 in the assignment v, or via an
inhibitory inter-neuron iv if z2 (z3) has value 0 in v. The auxiliary neurons
connect with a strong excitatory connection to the principal neuron n1,
and drive it to fire whenever any one of them fires. The larger gray circle
represents the lateral inhibition between the auxiliary neurons.
doi:10.1371/journal.pcbi.1002294.g002
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corresponding to one assignment v of values to the variables z2 and

z3 in the Markov blanket of z1. The input connections from the

principal neurons n2 and n3 to the dendritic branches of n1 follow

the same pattern as the connections from n2 and n3 to the auxiliary

neurons in Implementation 2. Let v be an assignment that

corresponds to the current values of the variables z2(t) and z3(t).
The efficacies of the synapses at the dendritic branches and their

thresholds for initiating a dendritic spike are chosen such that the

total synaptic input to the dendritic branch dv is then strong

enough to cause a dendritic spike in the branch, that contributes

to the membrane potential at the soma a component whose

amplitude is equal to the parameter w1
v in (11). This amplitude

could for example be controlled by the branch strength of this

dendritic branch (see [22,23]). The parameters can be chosen so

that all other dendritic branches do not receive enough synaptic

input to reach the local threshold for initiating a dendritic spike,

and therefore do not affect the membrane potential at the soma.

Hence, the membrane potential at the soma of n1 will be equal to

the contribution from the currently active dendritic branch w1
v ,

implementing thereby the r.h.s of (11).

Since the parameters wk
v in (11) can have both positive and

negative values and the amplitude of the dendritic spikes and the

excitatory synaptic efficacy are positive quantities, in this, and the

following neural implementations we always add a positive

constant to wk
v to shift it into the positive range. We subtract the

same constant value from the steady state of the membrane

potential.

Using the Factorized Expansion of the Log-odd Ratio
The second strategy to expand the log-odd ratio on the r.h.s. of

the NCC (4) uses the factorized form (10) of the probability

distribution p(z). This form allows us to rewrite the log-odd ratio in

(4) as a sum of log terms, one for each factor wc, c[Ck, that contains

the RV zk (we write Ck for this set of factors). One can write each of

these terms as a sum over all possible assignments v of values of the

variables zc the factor wc depends on (except zk). This yields

log
p(zk~1jz\k~z\k(t))

p(zk~0jz\k~z\k(t))
~
X
c[Ck

X
v[Zc

\k

wc,k
v
:½zc

\k(t)~v�

0B@
1CA, ð13Þ

where zc
\k is a vector composed of the RVs zc that the factor c

depends on –without zk, and zc
\k(t) is the current value of this vector

Figure 3. Results of Computer Simulation I. Performance comparison between an ideal version of Implementation 1 (use of auxiliary RVs, results
shown in green) and an ideal version of implementations that satisfy the NCC (results shown in blue) for probabilistic inference in the Bayesian
network of Fig. 1B (‘‘explaining away’’. Evidence e (see (1)) is entered for the RVs z3 and z4 , and the marginal probability p(z1je) is estimated. A) Target
values of p(z1je) for e~(1,1) and e~(1,0) are shown in black, results from sampling for 0:5s from a network of spiking neurons are shown in green
and blue. Panels C) and D) show the temporal evolution of the Kullback-Leibler divergence between the resulting estimates through neural sampling
p̂p(z1je) and the correct posterior p(z1je), averaged over 10 trials for e~(1,1) in C) and for e~(1,0) in D). The green and blue areas around the green
and blue curves represent the unbiased value of the standard deviation. The estimated marginal posterior is calculated for each time point from the
samples (number of spikes) from the beginning of the simulation (or from t~3s for the second inference query with e~(1,0)). Panels A, C, D show
that both approaches yield correct probabilistic inference through neural sampling, but the approach via satisfying the NCC converges about 10
times faster. B) The firing rates of principal neuron n1 (solid line) and of the principal neuron n2 (dashed line) in the approach via satisfying the NCC,

estimated with a sliding window (alpha kernel K(t)~
t

t
exp({

t

t
),t~0:1s). In this experiment the evidence e was switched after 3 s (red vertical line)

from e~(1,1) to e~(1,0). The ‘‘explaining away’’effect is clearly visible from the complementary evolution of the firing rates of the neurons n1 and n2 .
doi:10.1371/journal.pcbi.1002294.g003
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at time t. Zc
\k denotes the set of all possible assignments to the RVs

zc
\k. The parameters wc,k

v are set to

wc,k
v ~ log

wc(zc
\k~v,zk~1)

wc(zc
\k~v,zk~0)

: ð14Þ

The factorized expansion in (13) is similar to (11), but with the

difference that we have another sum running over all factors that

depend on zk. Consequently, in the resulting Implementation 4 with

auxiliary neurons and dendritic branches there will be several

groups of auxiliary neurons that connect to nk, where each group

implements the expansion of one factor in (13). The alternative

model that only uses dendritic computation (Implementation 5) will

have groups of dendritic branches corresponding to the different

factors. The number of auxiliary neurons that connect to nk in

Implementation 4 (and the corresponding number of dendritic

branches in Implementation 5) is equal to the sum of the exponents

of the sizes of factors that depend on zk:
P

c[Ck 2
D(zc

\k
)
, where D(zc

\k)

denotes the number of RVs in the vector zc
\k. This number is never

larger than 2jBk j (where jBkj is the size of the Markov blanket of zk),

which gives the corresponding number of auxiliary neurons or

dendritic branches that are required in the Implementation 2 and 3.

These two numbers can considerably differ in graphical models

where the RVs participate in many factors, but the size of the factors

is small. Therefore one advantage of this approach is that it requires

in general fewer resources. On the other hand, it introduces a more

complex connectivity between the auxiliary neurons and the

principal neuron (compare Fig. 5 with Fig. 2).

Implementation with auxiliary neurons and dendritic

branches (Implementation 4). A salient difference to the

Markov blanket expansion and Implementation 2 arises from the

fact that the r.h.s. of the factor expansion (13) contains an

additional summation over all factors c that contain the RV zk.

This entails that the principal neuron nk has to sum up inputs

from several groups of auxiliary neurons, one for each factor

c[Ck. Hence in contrast to Implementation 2, where the

principal neuron fired whenever one of the associated auxiliary

neurons fired, we now aim at satisfying the NCC by making sure

that the membrane potential of nk approximates at any moment

in time the r.h.s. of the NCC (4). One can achieve this by making

sure that each auxiliary neuron ak
v fires immediately when the

presynaptic principal neurons assume state v and by having a

synaptic connection between ak
v and nk with a synaptic efficacy

equal to wc,k
v from (13). Some imprecision of the sampling may

Figure 4. Implementation 3 for the same explaining away motif
as in Fig. 2. Implementation 3 is the neural implementation with
dendritic computation that uses the Markov blanket expansion of the
log-odd ratio. The principal neuron n1 has 4 dendritic branches, one for
each possible assignment of values v to the RVs z2 and z3 in the Markov
blanket of z1. The dendritic branches of neuron n1 receive synaptic
inputs from the principal neurons n2 and n3 either directly, or via an
interneuron (analogously as in Fig. 2). It is required that at any moment
in time exactly one of the dendritic branches (that one, whose index v
agrees with the current firing states of n2 and n3) generates dendritic
spikes, whose amplitude at the soma determines the current firing
probability of n1 .
doi:10.1371/journal.pcbi.1002294.g004

Figure 5. Implementation 4 for the same explaining away motif
as in Fig. 2 and 4. Implementation 4 is the neural implementation
with auxiliary neurons and dendritic branches, that uses the factorized
expansion of the log-odd ratio. As in Fig. 2 there is one auxiliary neuron
av for each possible value assignment v to z2 and z3 . The connections
from the neurons n2 and n3 (that carry the current values of the RVs z2

and z3) to the auxiliary neurons are the same as in Fig. 2, and when
these RVs change their value, the auxiliary neuron that corresponds to
the new value fires. Each auxiliary neuron av connects to the principal
neuron n1 at a separate dendritic branch dv , and there is an inhibitory
neuron îiv connecting to the same branch. The rest of the auxiliary
neurons connect to the inhibitory interneuron îiv. The function of the
inhibitory neuron îiv is to shunt the active EPSP caused by a recent spike
from the auxiliary neuron av when the value of the z2 and z3 changes
from v to another value.
doi:10.1371/journal.pcbi.1002294.g005
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arise when the value of variables in zc
\k changes, while EPSPs

caused by an earlier value of these variables have not yet

vanished at the soma of nk. This problem can be solved if the

firing of the auxiliary neuron caused by the new value of zc
\k

shunts such EPSP, that had been caused by the preceding value

of zc
\k, directly in the corresponding dendrite. This shunting

inhibition should have minimal effect on the membrane potential

at the soma of nk. Therefore excitatory synaptic inputs from

different auxiliary neurons av (that cause a depolarization by an

amount wc,k
v at the soma) should arrive on different dendritic

branches dv of nk (see Fig. 5), that also have connections from

associated inhibitory neurons îiv.

Fig. 5 shows the resulting implementation for the same

explaining away motif of Fig. 1B as the preceding figures 2 and

4. Note that the RV z1 occurs there only in a single factor

p(z3jz1,z2), such that the previously mentioned summation of

EPSPs from auxiliary neurons that arise from different factors

cannot be demonstrated in this example.

Implementation with dendritic computation (Implemen-

tation 5). The last neural implementation that we consider is an

adaptation of Implementation 3 (the implementation with

dendritic computation, that uses the Markov blanket expansion

of the log-odd ratio) to the factorized expansion of the log-odd

ratio. In this case each principal neuron, instead of having all its

dendritic branches corresponding to different value assignments to

the RVs of the Markov blanket, has several groups of dendritic

branches, where each group corresponds to the linear expansion of

one factor in the log-odd ratio in (13). Fig. 6 shows the complete

spiking neural network that samples from the Bayesian network of

Fig. 1B. The principal neuron n1 has the same structure and

connectivity as in Implementation 3 (see Fig. 4), since the RV z1

participates in only one factor, and the set of variables other than

z1 in this factor constitute the Markov blanket of z1. The same is

true for the principal neurons n3 and n4. As the RV z2 occurs in

two factors, the principal neuron n2 has two groups of dendritic

branches, 4 for the factor p(z3jz1,z2) with synaptic input from the

principal neurons n1 and n3, and 2 for the factor p(z4jz2) with

synaptic inputs from the principal neuron n4. Note for comparison,

that this neuron nk needs to have 8 dendritic branches in

Implementation 3, one for each assignment of values to the

variables z1, z3 and z4 in the Markov blanket of z2.

The number of dendritic branches of a principal neuron nk in

this implementation is the same as the number of auxiliary

neurons for nk in Implementation 4, and is never larger than the

number of dendritic branches of the neuron nk in Implementa-

tion 3. Although this implementation is more efficient with

respect to the required number of dendritic branches, when

considering the possible application of STDP for learning in

Implementation 3, it has the advantage that it could learn an

approximate generative model of the probability distribution of

the inputs without knowing apriori the factorization of the

probability distribution.

The amplitude of the dendritic spikes from the dendritic branch

dc,2
v of the principal neuron n2 should be equal to the parameter

wc,2
v from (13). The index c identifies the two factors that depend

on z2. The membrane voltage at the soma of the principal neuron

n2 is then equal to the sum of the contributions from the dendritic

spikes of the active dendritic branches. At time t there is exactly

one active branch in each of the two groups of dendritic branches.

The sum of the contributions from the two active dendritic

Figure 6. Implementation 5 for the Bayesian network shown in Fig. 1B. Implementation 5 is the implementation with dendritic computation
that is based on the factorized expansion of the log-odd ratio. RV z2 occurs in two factors, p(z3jz1,z2) and p(z4jz2), and therefore n2 receives synaptic
inputs from n1,n3 and n4 on separate groups of dendritic branches. Altogether the synaptic connections of this network of spiking neurons implement
the graph structure of Fig. 1D.
doi:10.1371/journal.pcbi.1002294.g006
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branches results in a membrane voltage at the soma of the

principal neuron that corresponds to the r.h.s of the (13). In the

Methods section we provide a general and detailed explanation of

this approach.

Probabilistic Inference through Neural Sampling in
Larger and More Complex Bayesian Networks

We have tested the viability of the previously described

approach for neural sampling by satisfying the NCC also on two

larger and more complex Bayesian networks: the well-known

ASIA-network [24], and an even larger randomly generated

Bayesian network. The primary question is in both cases, whether

the convergence speed of neural sampling is in a range where a

reasonable approximation to probabilistic inference can be

provided within the typical range of biological reaction times of

a few 100 ms. In addition, we examine for the ASIA-network the

question to what extent more complex and biologically more

realistic shapes of EPSPs affect the performance. For the larger

random Bayesian network we examine what difference in

performance is caused by neuron models with absolute versus

relative refractory periods.

Computer Simulation II: ASIA Bayesian network. The

ASIA-network is an example for a larger class of Bayesian

networks that are of special interest from the perspective of

Cognitive Science [25]. Networks of this type, that consist of 3

types of RVs (context information, true causes, observable

symptoms) with directed edges only from one class to the next,

capture the causal structure behind numerous domains of human

reasoning. The ASIA-network (see Fig. 7A) encodes knowledge

about direct influences between environmental factors, 3 specific

diseases, and observable symptoms. A concrete distribution p that

is compatible with this Bayesian network was specified through

conditional probabilities for each node as in [24] (with one small

change to avoid deterministic relationship among RVs, see

Methods). The binary RVs of the network encode whether a

person had a recent visit to Asia (A), whether the person smokes

(S), the presence of diseases tuberculosis (T), lung cancer (C), and

bronchitis (B), the presence of the symptom dyspnoea (D), and the

result of a chest x-ray test (X). This network not only contains

multiple ‘‘explaining away’’ effects (i.e., nodes with more than one

parent), but also a loop (i.e., undirected cycle) between the RVs S,

B, D, C. Hence no probabilistic inference approach based on

belief propagation executed directly on this ASIA Bayesian

network is guaranteed to work.

A typical example for probabilistic inference in this network

arises when one enters as evidence the facts that the patient visited

Asia (A = 1) and has Dyspnoea (D = 1), and asks what is the

likelihood of each of the RVs T, C, B that represent the diseases,

and how the result of a positive x-ray test would affects these

likelihoods.

We tested this probabilistic inference in a network of spiking

neurons according to Implementation 2 with three different shapes

of the EPSPs: an alpha EPSP, a plateau EPSP and the optimal

rectangular EPSP (See Fig. 7B). These shapes match qualitatively

the shapes of EPSPs recorded in the soma of pyramidal neurons

for synaptic inputs that arrive on dendritic branches (see Fig. 1 in

[26]). The neurons in the spiking neural network had an absolute

refractory period. Fig. 7C, D show that the network provides for

all three shapes of the EPSPs within 800 ms of simulated biological

time quite accurate answers to the tested probabilistic inference

query. Fig. 7E, F show that also with smoother shapes of the

EPSPs the networks arrive at good heuristic answers within several

hundreds of milliseconds. The Kullback-Leibler divergence

converges in this case to a small non-zero value, indicating an

error caused by the non-ideal sampling process.

Fig. 8 shows the spiking activity of the neural network with

alpha shaped EPSPs in one of the simulation trials. During the first

3 seconds of the simulation the network alternated between two

different modes of spiking activity, that correspond to two different

modes of the posterior probability distribution. There are time

periods when the principal neuron for the RV X (positive X-ray),

T (tuberculosis) and C (lung c.) had a higher firing rate, with time

periods in between where they were silent. After t~3s, when the

evidence that the x-ray test is positive was introduced, the activity

of the network remained in the first mode.

Computer Simulation III: Randomly generated Bayesian

network. In order to test the performance of neural sampling

for an ‘‘arbitrary’’ less structured, and larger graphical model, we

generated a random Bayesian network according to the method

proposed in [27] (the details of the generation algorithm are given

in the Methods section). We added an additional constraint, that

the maximum in-degree of the nodes should be not larger than 8.

A resulting randomly generated network is shown in Fig. 9. It

contains nodes with up to 8 parents, and it also contains numerous

loops. For the RVs z13 to z20 we fixed a randomly chosen

assignment e. Neural sampling was tested for an ideal neural

network that satisfies the NCC with a variety of random initial

states, using spiking neurons with an absolute, and alternatively

also with a relative refractory period.

Fig. 10A shows that in most of our 10 simulations (with different

randomly chosen initial states and different random noise

throughout the simulation) the sum of Kullback-Leibler diver-

gences for the 12 RVs z1, . . . ,z12 becomes quite small within a

second. Only in a few trials several seconds were needed for that.

Fig. 10C and 10D show the spiking activity of the neural network

from t~0s to t~8s in one of the 10 trials. It is interesting to

observe that the network went through a number of network

states, each of them characterized by a high firing rate of a

particular subset of the neurons.

Similarly spontaneous switchings between internal network

states have been reported in numerous biological experiments (see

e.g. [28,29]), but their functional role has remained unknown. In

the context of Computer Simulation III these switchings between

network states arise because this is the only way how this network

of spiking neurons can sample from a multi-modal target

distribution p.

Discussion

We have shown through rigorous theoretical arguments and

computer simulations that networks of spiking neurons are in

principle able to emulate probabilistic inference in general

graphical models. The latter has emerged as a quite suitable

mathematical framework for describing those computational tasks

that artificial and biological intelligent agents need to solve. Hence

the results of this article provide a link between this abstract

description level of computational theory and models for networks

of neurons in the brain. In particular, they provide a principled

framework for investigating how nonlinear computational opera-

tions in network motifs of cortical microcircuits and in the

dendritic trees of neurons contribute to brain computations on a

larger scale. Altogether we view our approach as a contribution to

the solution of a fundamental open problem that has been raised

in Cognitive Science:

‘‘What approximate algorithms does the mind use, how do they

relate to engineering approximations in probabilistic AI, and how

are they implemented in neural circuits? Much recent work points
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Figure 7. Results of Computer Simulation II. Probabilistic inference in the ASIA network with networks of spiking neurons that use different
shapes of EPSPs. The simulated neural networks correspond to Implementation 2. The evidence is changed at t~3s from e~(A~1,D~1) to
e~(A~1,D~1,X~1) (by clamping the x-ray test RV to 1). The probabilistic inference query is to estimate marginal posterior probabilities p(T~1je),
p(C~1je, and p(B~1je). A) The ASIA Bayesian network. B) The three different shapes of EPSPs, an alpha shape (green curve), a smooth plateau
shape (blue curve) and the optimal rectangular shape (red curve). C) and D) Estimated marginal probabilities for each of the diseases, calculated from
the samples generated during the first 800 ms of the simulation with alpha shaped (green bars), plateau shaped (blue bars) and rectangular (red bars)
EPSPs, compared with the corresponding correct marginal posterior probabilities (black bars), for e~(A~1,D~1) in C) and e~(A~1,D~1,X~1) in
D). The results are averaged over 20 simulations with different random initial conditions. The error bars show the unbiased estimate of the standard
deviation. E) and F) The sum of the Kullback-Leibler divergences between the correct and the estimated marginal posterior probability for each of the
diseases using alpha shaped (green curve), plateau shaped (blue curve) and rectangular (red curve) EPSPs, for e~(A~1,D~1) in E) and
e~(A~1,D~1,X~1) in F). The results are averaged over 20 simulation trials, and the light green and light blue areas show the unbiased estimate of
the standard deviation for the green and blue curves respectively (the standard deviation for the red curve is not shown). The estimated marginal
posteriors are calculated at each time point from the gathered samples from the beginning of the simulation (or from t~3s for the second inference
query with e~(A~1,D~1,X~1)).
doi:10.1371/journal.pcbi.1002294.g007
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to Monte Carlo or stochastic sampling–based approximations as a

unifying framework for understanding how Bayesian inference

may work practically across all these levels, in minds, brains, and

machines ’’ [13].

We have presented three different theoretical approaches for

extending the results of [1], such that they yield explanations how

probabilistic inference in general graphical models could be

carried out through the inherent dynamics of recurrent networks

of stochastically firing neurons (neural sampling). The first and

simplest one was based on the fact that any distribution can be

represented as marginal distribution of a 2nd order Boltzmann

distribution (5) with auxiliary RVs. However, as we have

demonstrated in Fig. 3, this approach yields rather slow

convergence of the distribution of network states to the target

distribution. This is a natural consequence of the deterministic

definition of new RVs in terms of the original RVs, which reduces

the conductance [9,30] (i.e., the probability to get from one set of

network states to another set of network states) of the Markov

chain that is defined by the network dynamics. Further research is

needed to clarify whether this deficiency can be overcome through

other methods for introducing auxiliary RVs.

We have furthermore presented two approaches for satisfying

the NCC (3) of [1], which is a sufficient condition for sampling

from a given distribution. These two closely related approaches

rely on different ways of expanding the term on the r.h.s. of the

NCC (4). The first approach can be used if the underlying

graphical model implies that the Markov blankets of all RVs are

relatively small. The second approach yields efficient neural

emulations under a milder constraint: if each factor in a

factorization of the target distribution is rather small (and if there

Figure 8. Spike raster of the spiking activity in one of the simulation trials described in Fig. 7. The spiking activity is from a simulation
trial with the network of spiking neurons with alpha shaped EPSPs. The evidence was switched after 3 s (red vertical line) from e~(A~1,D~1) to
e~(A~1,D~1,X~1) (by clamping the RV X to 1). In each block of rows the lowest spike train shows the activity of a principal neuron (see left hand
side for the label of the associated RV), and the spike trains above show the firing activity of the associated auxiliary neurons. After t~3s the activity
of the neurons for the x-ray test RV is not shown, since during this period the RV is clamped and the firing rate of its principal neuron is induced
externally.
doi:10.1371/journal.pcbi.1002294.g008
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are not too many factors). Each of these two approaches provides

the theoretical basis for two different methods for satisfying the

NCC in a network of spiking neurons: either through nonlinear

computation in network motifs with auxiliary spiking neurons (that

do not directly represent a RV of the target distribution), or

through dendritic computation in multi-compartment neuron

models. This yields altogether four different options for satisfying

the NCC in a network of spiking neurons. These four options are

demonstrated in Fig. 2, 4–6 for a characteristic explaining away

motif in the simple Bayesian network of Fig. 1B, that had

previously been introduced to model inference in biological visual

processing [21]. The second approach for satisfying the NCC

never requires more auxiliary neurons or dendritic branches than

the first approach.

Each of these four options for satisfying the NCC would be

optimally supported by somewhat different features of the

interaction of excitation and inhibition in canonical cortical

microcircuit motifs, and by somewhat different features of

dendritic computation. Sufficiently precise and general experi-

mental data are not yet available for many of these features, and

we hope that the computational consequences of these features

that we have exhibited in this article will promote further

experimental work on these open questions. In particular, the

neural circuit of Fig. 5 uses an implementation strategy that

requires for many graphical models (those where Markov blankets

are substantially larger than individual factors) fewer auxiliary

neurons. But it requires temporally precise local inhibition in

dendritic branches that has negligible effects on the membrane

potential at the soma, or in other dendritic branches that are used

for this computation. Some experimental results in this direction

are reported in [31], where it was shown (see e.g. their Fig. 1) that

IPSPs from apical dendrites of layer 5 pyramidal neurons are

drastically attenuated at the soma. The options that rely on

dendritic computation (Fig. 4 and 6) would be optimally supported

if EPSPs from dendritic branches that are not amplified by

dendritic spikes have hardly any effect on the membrane potential

at the soma. Some experimental results which support this

assumption for distal dendritic branches of layer 5 pyramidal

neurons had been reported in [26], see e.g. their Fig. 1. With

regard to details of dendritic spikes, these would optimally support

the ideal theoretical models with dendritic computation if they

would have a rather short duration at the soma, in order to avoid

that they still affect the firing probability of the neuron when the

state (i.e., firing or non-firing within the preceding time interval of

length t) of presynaptic neurons has changed. In addition, the

ideal impact of a dendritic spike on the membrane potential at the

soma would approximate a step function (rather than a function

with a pronounced peak at the beginning).

Another desired property of the dendritic spikes in context of

our neural implementations is that their propagation from the

dendritic branch to the soma should be very fast, i.e. with short

delays that are much smaller than the duration of the EPSPs. This

is in accordance with the results reported in [32] where they found

(see their Fig. 1) that the fast active propagation of the dendritic

spike towards the soma reduces the rise time of the voltage at the

soma to less than a millisecond, in comparison to the 3 ms rise

time during the propagation of the individual EPSPs when there is

no dendritic spike. Further, in [22] it is shown that the latency of

an action potential evoked by a strong dendritic spike, calculated

with respect to the time of the activation of the synaptic input at

the dendritic branch, is slightly below 2 ms, supporting the

assumption of fast propagation of the dendritic spike to the soma.

We have focused in this article on the description of ideal neural

emulations of probabilistic inference in general graphical models.

These ideal neural implementations use a complete representation

of the conditional odd-ratios, i.e. have a separate auxiliary neuron

or dendritic branch for each possible assignment of values to the

RVs in the Markov blanket in implementations 2 and 3, or in the

factor in implementations 4 and 5. Hence, the required number of

neurons (or dendritic branches) scales exponentially with the sizes

of the Markov blankets and the factors in the probability

distribution, and it would quickly become unfeasible to represent

probability distributions with larger Markov blankets or factors.

One possible way to overcome this limitation is to consider an

approximate implementation of the NCC with fewer auxiliary

neurons or dendritic branches. In fact, such an approximate

implementation of the NCC could be learned. Our results provide

the basis for investigating in subsequent work how approximations

to these ideal neural emulations could emerge through synaptic

plasticity and other adaptive processes in neurons. First explora-

tions of these questions suggest that in particular approximations

to Implementations 1,2 and 4 could emerge through STDP in a

ubiquitous network motif of cortical microcircuits [33]: Winner-

Take-All circuits formed by populations of pyramidal neurons with

lateral inhibition. This learning-based approach relies on the

observation that STDP enables pyramidal neurons in the presence

of lateral inhibition to specialize each on a particular pattern of

presynaptic firing activity, and to fire after learning only when this

presynaptic firing pattern appears [34]. These neurons would then

assume the role of the auxiliary neurons, both in the first option

with auxiliary RVs, and in the options shown in Fig. 2 and 5.

Furthermore, the results of [23] suggest that STDP in combination

with branch strength potentiation enables individual dendritic

branches to specialize on particular patterns of presynaptic inputs,

similarly as in the theoretically optimal constructions of Fig. 4 and

6. One difference between the theoretically optimal neural

emulations and learning based approximations is that auxiliary

Figure 9. The randomly generated Bayesian network used in
Computer Simulation III. It contains 20 nodes. Each node has up to 8
parents. We consider the generic but more difficult instance for
probabilistic inference where evidence e is entered for nodes z13, . . . ,z20

in the lower part of the directed graph. The conditional probability
tables were also randomly generated for all RVs.
doi:10.1371/journal.pcbi.1002294.g009
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neurons or dendritic branches learn to represent only the most

frequently occurring patterns of presynaptic firing activity, rather

than creating a complete catalogue of all theoretically possible

presynaptic firing patterns. This has the advantage that fewer

auxiliary neurons and dendritic branches are needed in these

biologically more realistic learning-based approximations.

Other ongoing research explores neural emulations of

probabilistic inference for non-binary RVs. In this case a

stochastic principal neuron nk that represents a binary RV zk is

replaced by a Winner-Take-All circuit, that encodes the value of

a multinomial or analog RV through population coding, see

[34].

Figure 10. Results of Computer Simulation III. Neural emulation of probabilistic inference through neural sampling in the fairly large and
complex randomly chosen Bayesian network shown in Fig. 9. A) The sum of the Kullback-Leibler divergences between the correct and the estimated
marginal posterior probability for each of the unobserved random variables (z1,z2, � � � ,z12), calculated from the generated samples (spikes) from the
beginning of the simulation up to the current time indicated on the x-axis, for simulations with a neuron model with relative refractory period.
Separate curves with different colors are shown for each of the 10 trials with different initial conditions (randomly chosen). The bold black curve
corresponds to the simulation for which the spiking activity is shown in C) and D). B) As in A) but the mean over the 10 trials is shown, for simulations
with a neuron model with relative refractory period (solid curve) and absolute refractory period (dashed curve.). The gray area around the solid curve
shows the unbiased estimate of the standard deviation calculated over the 10 trials. C) and D) The spiking activity of the 12 principal neurons during
the simulation from t~0s to t~8s, for one of the 10 simulations (neurons with relative refractory period). The neural network enters and remains in
different network states (indicated by different colors), corresponding to different modes of the posterior probability distribution.
doi:10.1371/journal.pcbi.1002294.g010
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Related Work
There are a number of studies proposing neural network

architectures that implement probabilistic inference [15,17,18,35–

48]. Most of these models propose neural emulations of the

belief propagation algorithm, where the activity of neurons or

populations of neurons encodes intermediate values (called

messages or beliefs) needed in the arithmetical calculation of the

posterior probability distribution. With some exceptions [17], most

of the approaches assume rate-based coding of information and

use rate-based neuron models or mean-field approximations.

In particular, in [37] a spiking neural network model was

developed that performs the max-product message passing

algorithm, a variant of belief propagation, where the necessary

maximization and product operations were implemented by

specialized neural circuits. Another spiking neural implementation

of the sum-product belief propagation algorithm was proposed in

[36], where the calculation and passing of the messages was

achieved in a recurrent network of interconnected liquid state

machines [49]. In these studies, that implemented probabilistic

inference with spiking neurons through emulation of the belief

propagation algorithm on tree factor graphs, the beliefs or the

messages during the calculation of the posterior distributions were

encoded in an average firing rate of a population of neurons.

Regarding the complexity of these neural models, as the number

of required computational operations in belief propagation is

exponential in the size of the largest factor in the probability

distribution, in the neural implementations this translates to a

number of neurons in the network that scales exponentially with

the size of the largest factor. This complexity corresponds to the

required number of neurons (or dendritic branches) in implemen-

tations 1, 3 and 5 in our approach, whereas implementations 2

and 4 require a larger number of neurons that scales exponentially

with the size of the largest Markov blanket in the distribution.

Additionally, note that the time of convergence to the correct

posterior differs in both approaches: in the belief propagation

based models it scales in the worst case linearly with the number of

RVs in the probability distribution, whereas in our approach it can

vary depending on the probability distribution.

Although the belief propagation algorithm can be applied to

graphical models with undirected loops (a variant called loopy

belief propagation), it is not always guaranteed to work, which

limits the applicability of the neural implementations based on this

algorithm. The computation and the passing of messages in belief

propagation uses, however, equivalent computations as the

junction tree algorithm [24,50], a message passing algorithm that

operates on a junction tree, a tree structure derived from the

graphical model. The junction tree algorithm performs exact

probabilistic inference in general graphical models, including those

that have loops. Hence, the neural implementations of belief

propagation could in principle be adapted to work on junction

trees as well. This however comes at a computational cost

manifested in a larger required size of the neural network, since

the number of required operations for the junction tree algorithm

scales exponentially with the width of the junction tree, and the

width of the junction tree can be larger than the size of the largest

factor for graphical models that have loops (see [9], chap. 10 for a

discussion). The analysis of the complexity and performance of

resulting emulations in networks of spiking neurons is an

interesting topic for future research.

Another interesting approach, that adopts an alternative spike-

time based coding scheme, was described in [17]. In this study a

spiking neuron model estimates the log-odd ratio of a hidden

binary state in a hidden Markov model, and it outputs a spike only

when it receives new evidence from the inputs that causes a shift in

the estimated log-odd ratio that exceeds a certain threshold, that

is, only when new information about a change in the log-odd ratio

is presented that cannot be predicted by the preceding spikes of the

neuron. However, this study considers only a very restricted class

of graphical models: Bayesian networks that are trees (where for

example no explaining away can occur). The ideas in [17] have

been extended in [18], where the neural model is capable of

integration of evidence from multiple simultaneous cues (the

underlying graphical model is a hidden Markov model with

multiple observations). It uses a population code for encoding the

log-posterior estimation of the time varying hidden stimulus, which

is modeled as a continuous RV instead of the binary hidden state

used in [17]. In these studies, as in ours, spikes times carry relevant

information, although there the spikes are generated determinis-

tically and signal a prediction error used to update and correct the

estimated log-posterior, whereas in our approach the spikes are

generated by a stochastic neuron model and define the current

values of the RVs during the sampling.

The idea that nonlinear dendritic mechanisms could account for

the nonlinear processing that is required in neural models that

perform probabilistic inference has been proposed previously in

[39] and [41], albeit for the belief propagation algorithm. In [39]

the authors introduce a neural model that implements probabi-

listic inference in hidden Markov models via the belief propagation

algorithm, and suggest that the nonlinear functions that arise in

the model can be mapped to the nonlinear dendritic filtering. In

[41] another rate-based neural model that implements the loopy

belief propagation algorithm in general graphical models was

described, where the required multiplication operations in the

algorithm were proposed to be implemented by the nonlinear

processing in individual dendritic trees.

While there exist several different spiking neural network

models in the literature that perform probabilistic inference based

on the belief propagation algorithm, there is a lack of spiking

neural network models that implement probabilistic inference

through Markov chain Monte Carlo (MCMC sampling). To the

best of our knowledge, the neural implementations proposed in

this article are the only spiking neural networks for probabilistic

inference via MCMC in general graphical models. In [35] a non-

spiking neural network composed of stochastic binary neurons was

introduced called Boltzmann machine, that performs probabilistic

inference via Gibbs sampling. The neural network in [35]

performs inference via sampling in probability distributions that

have only pairwise couplings between the RVs. An extension was

proposed in [51], that can perform Gibbs sampling in probability

distributions with higher order dependencies between the

variables, which corresponds to the class of probability distribu-

tions that we consider in this article. A spiking neural network

model based on the results in [35] had been proposed in [52], for a

restricted class of probability distributions that only have second

order factors, and which satisfy some additional constraints on the

conditional independencies between the variables. To the best of

our knowledge, this approach had not been extended to more

general probability distributions.

A recent study [53] showed that as the noise in the neurons

increases and their reliability drops, the optimal couplings between

the neurons that maximize the information that the network

conveys about the inputs become larger in magnitude, creating a

redundant code that reduces the impact of noise. Effectively, the

network learns the input distribution in its couplings, and uses this

knowledge to compensate for errors due to the unreliable neurons.

These findings are consistent with our models, and although we

did not consider learning in this article, we expect that the

introduction of learning mechanisms that optimize a mutual
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information measure in our neural implementations would yield

optimal couplings that obey the same principles as the ones

reported in [53]. While stochasticity in the neurons represents a

crucial property that neural implementations of probabilistic

inference through sampling rely on, this study elucidates an

important additional effect it has in learning paradigms that use

optimality principles like information maximization: it induces

redundant representation of information in a population of

neurons.

The existing gap between abstract computational models of

information processing in the brain that use MCMC algorithms

for probabilistic inference on one hand, and neuroscientific data

about neural structures and neural processes on the other hand,

has been pointed out and emphasized by several studies

[12,13,54,55]. The results in [1] and in this article propose

neural circuit models that aim to bridge this gap, and thereby

suggest new means for analyzing data from spike recordings in

experimental neuroscience, and for evaluating the more abstract

computational models in light of these data. For instance,

perceptual multistability in ambiguous visual stimuli and several

of its related phenomena were explained through abstract

computational models that employ sequential sampling with the

Metropolis MCMC algorithm [55]. In our simulations (see

Fig. 10) we showed that a spiking neural network can exhibit

multistability, where the state changes from one mode of the

posterior distribution to another, even though the Markov chain

defined by the neural network does not satisfy the detailed

balance property (i.e. it is not a reversible Markov chain) like the

Metropolis algorithm.

Experimentally Testable Predictions of our Models
Our models postulate that knowledge is encoded in the brain in

the form of probability distributions p, that are not required to

be of the restricted form of 2nd order Boltzmann distributions (5).

Furthermore they postulate that these distributions are encoded

through synaptic weights and neuronal excitabilities, and possibly

also through the strength of dendritic branches. Finally, our

approach postulates that these learnt and stored probability

distributions p are activated through the inherent stochastic

dynamics of networks of spiking neurons, using nonlinear features

of network motifs and neurons to represent higher order

dependencies between RVs. It also predicts that (in contrast to

the model of [1]) synaptic connections between neurons are in

general not symmetric, because this enables the network to encode

higher order factors of p.

The postulate that knowledge is stored in the brain in the form

of probability distributions, sampled from by the stochastic

dynamics of neural circuits, is consistent with the ubiquitous trial-

to-trial variability found in experimental data [56,57]. It has been

partially confirmed through more detailed analyses, which show

that spontaneous brain activity shows many characteristic

features of brain responses to natural external stimuli

([3,58,59]). Further analysis of spontaneous activity is needed in

order to verify this prediction. Beyond this prediction regarding

spontaneous activity, our approach proposes that fluctuating

neuronal responses to external stimuli (or internal goals) represent

samples from a conditional marginal distribution, that results

from entering evidence e for a subset of RVs of the stored

distribution p (see (1)). A verification of this prediction requires an

analysis of the distributions of network responses –rather than just

averaging –for repeated presentations of the same sensory

stimulus or task. Similar analyses of human responses to repeated

questions have already been carried out in cognitive science [60–

62], and have been interpreted as evidence that humans respond

to queries by sampling from internally stored probability

distributions.

Our resulting model for neural emulations of probabilistic

inference predicts, that even strong firing of a single neuron

(provided it represents a RV whose value has a strong impact on

many other RVs) may drastically change the activity pattern of

many other neurons (see the change of network activity after 3 s in

Fig. 8, which results from a change in value of the RV that

represents ‘‘x-ray’’). One experimental result of this type had been

reported in [63]. Fig. 8 also suggests that different neurons may

have drastically different firing rates, where a few neurons fire a

lot, and many others fire rarely. This is a consequence both of

different marginal probabilities for different RVs, but also of the

quite different computational role and dynamics of neurons that

represent RVs (‘‘principal neurons’’), and auxiliary neurons that

support the realization of the NCC, and which are only activated

by a very specific activation patterns of other presynaptic neurons.

Such strong differences in the firing activity of neurons has already

been found in some experimental studies, see [64,65]. In addition,

Fig. 10 predicts that recordings from multiple neurons can

typically be partitioned into time intervals, where a different firing

pattern dominates during each time interval, see [28,29] for some

related experimental data.

Apart from these more detailed predictions, a central prediction

of our model is, that a subset of cortical neurons (the ‘‘principal

neurons’’) represent through their firing activity the current value

of different salient RVs. This could be tested, for example, through

simultaneous recordings from large numbers of neurons during

experiments, where the values of several RVs that are relevant for

the subject, and that could potentially be stored in the cortical area

from which one records, are changed in a systematic manner.

It might potentially be more difficult to test, which of the

concrete implementations of computational preprocessing for

satisfying the NCC that we have proposed, are implemented in

some neural tissue. Both the underlying theoretical framework and

our computer simulations (see Fig. 8) predict that the auxiliary

neurons involved in these local computations are rarely active.

More specifically, the model predicts that they only become active

when some specific set of presynaptic neurons (whose firing state

represents the current value of the RVs in z\k) assumes a specific

pattern of firing and non-firing. Implementation 3 and 5 make

corresponding predictions for the activity of different dendritic

branches of pyramidal neurons, that could potentially be tested

through Cazz-imaging.

Conclusion
We have proposed a new modelling framework for brain

computations, based on probabilistic inference through sampling.

We have shown through computer simulations, that stochastic

networks of spiking neurons can carry out demanding computa-

tional tasks within this modelling framework. This framework

predicts specific functional roles for nonlinear computations in

network motifs and dendritic computation: they support repre-

sentation of higher order dependencies between salient random

variables. On the micro level this framework proposes that local

computational operations of neurons superficially resemble logical

operations like AND and OR, but that these atomic computa-

tional operations are embedded into a stochastic network

dynamics. Our framework proposes that the functional role of

this stochastic network dynamics can be understood from the

perspective of probabilistic inference through sampling from

complex learnt probability distributions, that represent the

knowledge base of the brain.
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Methods

Markov Chains
A Markov chain M~SS,TT in discrete time is defined by a set

S of states s (we consider for discrete time only the case where S

has a finite size, denoted by jSj) together with a transition

operator T . T is a conditional probability distribution T(sjs’) for

the next state s of M, given its preceding state s’. The Markov

chain M is started in some initial state s(0), and moves through a

trajectory of states s(t) via iterated application of the stochastic

transition operator T (more precisely, if s(t{1) is the state at

time t{1, then the next state s(t) is drawn from the conditional

probability distribution T(sjs(t{1)). A powerful theorem from

probability theory (see e.g. p. 232 in [5]) states that if M is

irreducible (i.e., any state in S can be reached from any other

state in S in finitely many steps with probability w0) and

aperiodic (i.e., its state transitions cannot be trapped in

deterministic cycles), then the probability p(s(t)~sjs(0) was the

initial state) converges for t?? to a probability p(s) that does not

depend on s(0). This state distribution p is called the stationary

distribution of M. The irreducibility of M implies that p is the

only distribution over the states S that is invariant under the

transition operator T , i.e.

p(s)~
X
s’[S

T(sjs’):p(s’): ð15Þ

Thus, in order to generate samples from a given distribution p, it

suffices to construct an irreducible and aperiodic Markov chain

M that leaves p invariant, i.e., satisfies (15). This Markov chain

can then be used to carry out probabilistic inference of posterior

distributions of p(s) given an evidence for some of the variables

in the state s. Analogous results hold for Markov chains in

continuous time [5], on which we will focus in this article.

Neuron Models
We use two types of neurons, a stochastic point neuron model as

in [1], and a multi-compartment neuron model.

Point neuron model. We use the same point neuron model

as in [1], i.e. stochastic neurons that are formalized in terms of the

spike response model [16]. In [1] rigorous proofs of the validity of

neural sampling were only given for spiking neurons with an

absolute refractory period of length t (the length of a PSP). The

same holds for our results. But it was already shown in [1] that

practically also a variation of the neurons model with a relative

refractory period can be used. In this variation of the model one

can have a quite arbitrary refractory mechanism modeled with a

refractory function g(t), that represents the readiness of the neuron

to fire within the refractory period. The firing probability of the

neuron model is then

r(t)~f (u(t))g(t{t̂t), ð16Þ

where t̂t is the time of the last firing of the neuron before time t.

The g(t) function usually has value 0 for g(0), meaning that the

neuron cannot fire a second spike immediately after it has fired,

and its value rises until g(s)~1 for swt, indicating that after time

interval of duration t the neuron fully recovers from its refractory

period (this is a slight variation of the definition of g in [1]).

For a given g(t) function that models the refractory mechanism,

the function f (u) in (16) can be obtained as a solution from the

equation

Vu[R : f (u)

ð1

0

exp f (u)

ðr

0

g(t)dt

� �
dr~ exp (u): ð17Þ

It can be shown that for any continuous function g(t) there is a

unique continuous function f (u) that satisfies this equation (see

[1]). The multiplicative refractory function g(t) together with a

modified firing probability function f (u) were derived in [1] to

ensure that each neuron performs correct local computations and

generates correct samples from the desired probability distribution

if one assumes that the other neurons do not change their state.

This does not guarantee in the general case that the global

computation of the network when all neurons operate simulta-

neously generates correct samples. Nevertheless, as in [1], we

observed no significant deviations from the correct posteriors in

our simulations.

Multi-compartment neuron model. For the neural

implementations with dendritic computation (Implementations 3

and 5) we used a multi-compartment neuron model which is a

modified version of the neuron model introduced in [23]. It

extends the stochastic point neuron model described above (with

separate compartments that represent the dendritic branches) in

order to capture the nonlinear effects in the integration of synaptic

inputs at the dendritic branches of CA1 pyramidal neurons

reported in [22] for radial oblique dendrites.

The local membrane voltage Ai(t) of the branch i has a passive

component ai(t) equal to the summation of the PSPs elicited by

the spikes at the local synaptic inputs

ai tð Þ~
X

j

wij Eij tð Þ ð18Þ

where wij is the synaptic efficacy of input j to branch i and wijEij(t)

is the postsynaptic potential elicited in the branch i by the spikes

from input j. We model Eij(t) as

Eij(t)~
1 if t{t̂tijvt

0 otherwise,

�
ð19Þ

where t̂tij is the time of the last spike before t that arrived at input j.

If a synchronous synaptic input from many synapses at one branch

exceeds a certain threshold, the membrane voltage at the branch

exhibits a sudden jump due to regenerative integration processes

resulting in a dendritic spike [22]. This nonlinearity is modeled by

a second active component âai(t)

âai(t)~biH(ai(t){hi) ð20Þ

where H(:) denotes the Heaviside step function, and hi is the

threshold of branch i. The branch potential Ai(t) is equal to the

sum of the passive component and the active component caused

by the dendritic spike

Ai(t)~ai(t)zâai(t): ð21Þ

The passive and active components contribute with a different

weighting factor to the membrane potential at the soma. The

passive component is conducted passively with a weighting factor

viv1 that models the attenuation of the passive signal. We assume

in the neural implementations that the attenuation of the passive

signal is strong, i.e. that vi%1. The dendritic spike is scaled by the
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branch strength v̂vi. The membrane potential at the soma of the

neuron is a sum of the active and passive contributions from all

branches

u(t)~bz
X

i

viai(t)zv̂viâai(t) ð22Þ

The firing probability in this neuron model and its refractory

mechanism are the same as for the point neuron model described

above. It also can have an arbitrary refractory mechanism defined

with the ‘‘eadiness to fire’’multiplicative function g(t) and a

modified firing probability f (u).

Details to Second Order Boltzmann Distributions with
Auxiliary Variables (Implementation 1)

Let p(z) be a probability distribution

p(z)~
1

Z
P
F

f ~1
cf (z

f
v3) P

C

c~1
wc(zc) ð23Þ

that contains higher order factors, where z~(z1,z2, . . . ,zK ) is a

vector of binary RVs. cf (zf ) are the factors that depend on one or

two RVs, and wc(zc) are the higher order factors that depend on

more than 2 RVs. zc is the vector of the RVs zi in the factor wc(zc),

z
f
v3 is the vector of RVs zi that the factor cf (z

f
v3) depends on, and

Z is the normalization constant. F is the number of first and

second order factors, and C is the total number of factors of order

3 or higher. To simplify the notation, in the following we set

c(z) : ~PF
f ~1 cf (z

f
v3), since this set of factors in p(z) will not be

changed in the extended probability distribution.

Auxiliary RVs are introduced for each of the higher order

factors. Specifically, the higher order relation of factor wc is

represented by a set of auxiliary binary RVs xc~fxc
vjv [Zcg,

where we have a RV xc
v for each possible assignment v [Zc to the

RVs in zc (Zc is the domain of values of the vector zc). With the

additional sets of RVs xc we define a probability distribution

p(z,x) as

p(z,x)~
1

Z
c(z)P

c
P

v[Zc
yc

v(xc
v) P

i[Ic
bc

v,i(x
c
v,zi)

� �
: ð24Þ

We denote the ordered set of indices of the RVs that compose the

vector zc as Ic, i.e.

Ic~(i1,i2, . . . ,ijIcj)uzc~(zi1
,zi2

, . . . ,zijIc j
), ð25Þ

where jIcj denotes the number of indices in Ic.

The second order factors bc
v,i(x,z) are defined as

bc
v,i(x,z)~xdv(i),zz(1{x), ð26Þ

where v(i) denotes the component of the assignment v to zc that

corresponds to the variable zi, and dv(i),z is the Kronecker-delta

function. The factors bc
v,i(x

c
v,zi) represent a constraint that if the

auxiliary RV xc
v has value 1, then the values of the RVs in the

corresponding factor zc must be equal to the assignment v that xc
v

corresponds to. If all components of xc are zero, then there is not

any constraint on the zc variables. This implies another property:

at most one of the RVs xc
v in the vector xc, the one that

corresponds to the state of zc, can have value 1. Hence, the vector

xc can have two different states. Either all its RVs are zero, or

exactly one component xc
v is equal to 1, in which case one has

zc~v. The probability p(z,x) for values of x and z that do not

satisfy these constraints is 0.

The values of the factors wc in p(z) for various assignments of zc

are represented in p(z,x) by first order factors that depend on a

single one of the RVs xc
v. For each xc

v we have a new factor with

value yc
v(xc

v)~wc(v){1 if xc
v~1, and yc

v(xc
v)~1 otherwise. We

assume that the original factors are first rescaled, such that

wc(zc)w1 for all values of c and zc. We had to modify the values of

the new factors by subtracting 1 from the original value wc(v),
because we introduced an additional zero state for xc that is

consistent with any of the possible assignments of zc.

The resulting probability distribution p(z,x) consists of first and

second order factors.

Proposition. The distribution p(z,x) defined in (24) has p(z) as a

marginal distribution, i.e. satisfies (9).

Proof. If p(z,x)=0, then for each c either xc~0 (where 0 denotes

the zero vector), or xc has one component xc
zc~1, and xc

v~0 for

all v=zc. The latter value of xc we denote as x̂xc
zc . For all other

values of xc we have p(z,x)~0. Hence

X
x

p(z,x)~
X

x1[f0,x̂x1

z1
g

X
x2[f0,x̂x2

z2
g

. . .
X

xC[f0,x̂xC

zC
g

p(z,x): ð27Þ

Further, if we substitute the definition of the factors yc in (24), for

pairs of vectors x and z such that p(z,x)=0 (i.e. when xc [ f0,x̂xc
zcg

for all c) we have

p(z,x)~
1

Z
c(z)P

c
yc

zc (xc
zc )~

1

Z
c(z)P

c
(wc(zc){1)

xc
zc : ð28Þ

Hence we can rewrite (27) as

X
x

p(z,x)~
X

x1[f0,x̂x1

z1
g

X
x2[f0,x̂x2

z2
g

. . .
X

xC[f0,x̂xC

zC
g

p(z,x)~

~
X

x1

z1
[f0,1g

X
x1

z1
[f0,1g

. . .
X

x1

z1
[f0,1g

1

Z
c(z)P

c
(wc(zc){1)

xc
zc ~

~
1

Z
c(z)P

c
wc(zc)~p(z),

ð29Þ

yielding a proof of (9).

The resulting spiking neural network N consists of principal

neurons nk, one for each of the original RVs zk, and one principal

neuron n̂nc
v for each of the auxiliary RVs xc

v. If we assume that the

factor wc depends on zk, then the deterministic constraint that

governs the relation between z and x is implemented by very

strong excitatory connections Mexc (ideally equal to z?) between

the principal neuron nk and all principal neurons n̂nc
v for which zk is

1 in the assignment v to zc. If for the principal neuron n̂nc
v in the

corresponding assignment v to zc the value of zk is 0, then there

are strong inhibitory connections Minh (ideally equal to {?)

through an inhibitory interneuron between neuron nk and neuron

n̂nc
v. Additionally, each of the principal neurons n̂nc

v has a bias

bc
v~ log (wc(v){1){g(v)Mexc, ð30Þ

where the function g(v) denotes the number of coordinates of the

vector v that have value 1. The biases of the principal neurons nk

and the efficacies of the direct synaptic connections between the

principal neurons nk that correspond to the second order factors in
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p(z) are determined in the same way as for the spiking neural

network structure in [1] and depend only on the first and second

order factors of p(z).
Proposition. The Markov chain represented by the spiking neural

network that performs neural sampling in the Boltzmann distribution p(z,x) is

irreducible.

Proof. We designate a state of the neural network with the vector

(z,f,x,j). Here f~(f1,f2, . . . ,fK ), where fk is the refractory

variable of the principal neuron nk, and j is a vector of all

refractory variables jc
v for the principal neurons n̂nc

v that correspond

to the auxiliary RVs xc
v. The latter are defined as in [1]. At each

spike of a neuron its refractory variable is set to t (t in neural

sampling in discrete time is an integer number, that denotes the

duration of the PSP in terms of discrete time steps). It decreases by

1 at each subsequent time step, until it reaches 0. We denote the

transition operators for the refractory variables fk changing from

state iz1 to i with Tk
i,iz1, and changing from state 0 to t with Tk

t,0.

For the refractory variables jc
v the transition operators are T v,c

i,iz1

and T v,c
t,0 . In the proof we consider the ideal case where

Mexc?z? and Minh?{?, which can result in infinitely large

membrane potentials equal to z? or {?. These values of the

membrane potentials forbid the neuron to change the value of its

RV, because if uk~z? then Tk
0,1~0, and if uk~{? then

Tk
t,0~0 (see [1] for details), and the neuron is locked to one value

of the RV. In all other cases, when the value of the membrane

potential remains finite, we have Tk
t,0w0 and Tk

0,1w0. In this case

the principal neuron can reach any value of fk from any other

value in at most t time steps. The same holds for the principal

neurons n̂nc
v.

If we consider now an initial arbitrary non-forbidden state

(�zz,f,�xx,j), then each refractory variable jc
v with v=�zzc is equal to 0,

and jc
v with v~�zzc can be either non-zero or 0. If jc

�zzc is non-zero

then, since the membrane potential of the principal neuron n̂nc
�zzc is

log (wc(�zzc){1), which is finite, there is a non-vanishing probability

for the network state (�zz,f,�xx,j) to change to another state in which

jc
�zzc~0 in at most t time steps. Therefore we can conclude, that

from the state (�zz,f,�xx,j) we can reach the state (�zz,f,0,0) that has

x~0 and j~0 in at most t time steps with a non-vanishing

probability. In this new state all principal neurons nk are allowed

to change the value of their RV, because their membrane

potentials have finite values determined by the sum of their biases

and the efficacies of the synaptic connections from the second

order factors. Hence each non-zero fk can change its value to 0 in

at most t time steps. From this it follows that from any non-

forbidden state (�zz,f,�xx,j) we can reach the zero state (0,0,0,0) in at

most 2t time steps with non-vanishing probability.

We proceed in a similar manner to prove that from the zero

state we can reach any other non-forbidden state (~zz,eff,~xx,ejj). First

we observe that from the zero state the principal neurons nk can

change their states fk to ~ffk in at most t time steps, since they all

have finite membrane potentials, i.e. we can reach the state

(~zz,eff,0,0). From the state (~zz,eff,0,0) there is non-vanishing

probability that the Markov chain goes in the next t time steps

through a sequence of subsequent states that all have z~~zz. If the

Markov chain follows such a sequence, then the state after exactly

t time steps has also f~eff. Additionally, if the Markov chain goes

through such a sequence of states, at each of the t time steps after

the state (~zz,eff,0,0) the principal neurons n̂nc
v with v~~zzc will have

finite membrane potentials equal to log (wc(~zzc){1). Therefore,

there is non-vanishing probability that they change their states jc
~zzc

to ~jjc
~zzc in exactly t steps. Hence, we have shown that we can reach

the state (~zz,eff,~xx,ejj) from the state (~zz,eff,0,0) in exactly t number of

states. This concludes the proof that we can reach any non-

forbidden state (~zz,eff,~xx,ejj) from any other other non-forbidden state

(�zz,eff,�xx,ejj) in at most 4t steps with non-vanishing probability, i.e. the

Markov chain is irreducible.

Details to Implementation 2
In this neural implementation each principal neuron nk has a

dedicated preprocessing layer of auxiliary neurons with lateral

inhibition. All neurons in the network are stochastic point neuron

models.

The auxiliary neurons for the principal neuron nk receive as

inputs the outputs of the principal neurons corresponding to

all RVs in the Markov blanket of zk. The number of auxiliary

excitatory neurons that connect to the principal neuron nk is 2jBk j

(jBkj is the number of elements of Bk), and we index these neurons

with all possible assignments of values to the RVs in the vector zBk .

Thus, for each state v of values at the inputs zBk we have a

corresponding auxiliary neuron ak
v . The realization of the NCC is

achieved by a specific connectivity between the inputs and the

auxiliary neurons and appropriate values for the intrinsic

excitabilities of the auxiliary neurons, such that at each moment

in time only the auxiliary neuron ak
v corresponding to the current

state of the inputs zBk (t)~v, if it is not inhibited by the lateral

inhibition due to a recent spike from another auxiliary neuron,

fires with a probability density as demanded by the NCC (3):

rv(t)~
1

t
: p(zk~1jzBk ~v)

p(zk~0jzBk ~v)
): ð31Þ

During the time when the state v of the inputs is active, the other

auxiliary neurons are either strongly inhibited, or do not receive

enough excitatory input to reach a significant firing probability.

The inputs connect to the auxiliary neuron ak
v either with a

direct strong excitatory connection, or through an inhibitory

interneuron ikv that connects to the auxiliary neuron. The

inhibitory interneuron ikv fires whenever any of the principal

neurons of the RVs zBk that connect to it fires. The auxiliary

neuron ak
v receives synaptic connections according to the following

rule: if the assignment v assigns a value of 1 to the RV zi in the

Markov blanket zBk , then the principal neuron ni connects to

the neuron with a strong excitatory synaptic efficacy wk
v,i~Mk

v ,

whereas if v assigns a value of 0 to zi then the principal neuron ni

connects to the inhibitory interneuron ikv . Thus, whenever ni fires,

the inhibitory interneuron fires and prevents the auxiliary neuron

ak
v to fire for a time period t. We will assume that the synaptic

efficacy Mk
v is much larger than the log-odd ratio value of the RV

zk given zBk ~v according to the r.h.s. of (3). We set the bias of the

auxiliary neuron ak
v equal to

bk
v ~ log

p(zk~1jzBk~v)

p(zk~0jzBk~v)
{g(v)Mk

v , ð32Þ

where g(v) gives the number of components of the vector v that

are 1.

If the value of the inputs at time t is zBk (t), and none of the

neurons fired in the time interval ½t{t,t�, then for an auxiliary

neuron ak
v such that v=zBk (t) there are two possibilities. Either

there exists a component of v that is 0 and its corresponding input

zBk

i (t)~1, in which case the principal neuron of the RV zBk

i

connects to the inhibitory interneuron ikv and inhibits ak
v . Or one

has g(zBk (t))vg(v) in which case the number of active inputs that

connect to neuron ak
v do not provide enough excitatory input to

reach the high threshold for firing. In this case the firing

probability of the neuron ak
v is
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rk
v (t)~

1

t
exp log

p(zk~1jzBk~v)

p(zk~0jzBk~v)
{ g(v){g(zBk (t))
� �

Mk
v

� �
,ð33Þ

and because of the strong synaptic efficacies of the excitatory

connections equal to Mk
v , which are by definition much larger

than the log-odd ratio of the RV zk, it is approximately equal to 0.

Hence, only the neuron ak
v with v~zBk (t) has a non-vanishing

firing probability equal to (31).

The lateral inhibition between the auxiliary neurons is

implemented through a common inhibitory circuit to which they

all connect. The role of the lateral inhibition is to enforce the

necessary refractory period of nk after any of the auxiliary neurons

fires. When an auxiliary neuron fires, the inhibitory circuit is active

during the duration of the EPSP (equal to t), and strongly inhibits

the other neurons, preventing them from firing. The auxiliary

neurons connect to the principal neuron nk with an excitatory

connection strong enough to drive it to fire a spike whenever any

one of them fires. During the time when the state of the input

variables satisfies zBk (t)~v, the firing probability of the auxiliary

neuron ak
v satisfies the NCC (3). This implies that the principal

neuron nk satisfies the NCC as well.

Introducing an evidence of a known value of a RV in this model

is achieved by driving the principal neuron with an external

excitatory input to fire a spike train with a high firing rate when

the observed value of the RV is 1, or by inhibiting the principal

neuron with an external inhibitory input so that it remains silent

when the observed value of the RV is 0.

Details to Implementation 3
We assume that the principal neuron nk has a separate dendritic

branch dk
v for each possible assignment of values to the RVs zBk ,

and that the principal neurons corresponding to the RVs zBk in the

Markov blanket Bk connect to these dendritic branches.

It is well known that synchronous activation of several synapses

at one branch, if it exceeds a certain threshold, causes the

membrane voltage at the branch to exhibit a sudden jump

resulting from a dendritic spike. Furthermore the amplitude of

such dendritic spike is subject to plasticity [22]. We use a neuron

model according to [23], that is based on these experimental data.

The details of this multi-compartment neuron model were

presented in the preceding subsection of Methods on Neuron

Models. We assume in this model that the contribution of each

dendritic branch to the soma membrane voltage is predominantly

due to dendritic spikes, and that the passive conductance to the

soma can be neglected. Thus, according to (22), the membrane

potential at the soma is equal to the sum of the nonlinear active

components contributed from each of the branches dk
v :

uk(t)~bkz
X

v

v̂vk
v âak

v (t), ð34Þ

where âak
v (t) is the nonlinear contribution from branch dk

v , and v̂vk
v is

the strength of branch dk
v (see [22] for experimental data on

branch strengths). bk is the target value of the membrane potential

in the absence of any synaptic input. The nonlinear active

component (dendritic spike) âak
v (t) is assumed to be equal to

âak
v (t)~bk

v H(ak
v (t){hk

v ), ð35Þ

where H(:) denotes the Heaviside step function, ak
v (t) is the local

activation, and hk
v is the threshold of branch dk

v . The amplitude of

the total contribution of branch dk
v to the membrane potential at

the soma is then v̂vk
v bk

v .

As can be seen in Fig. 4, the connectivity from the inputs to the

dendritic branches is analogous as in Implementation 2 with

auxiliary neurons: from each principal neuron ni such that zi is in

the Markov blanket of zk there is a direct synaptic connection to

the dendritic branch dk
v if the assignment v assigns to zi the value

1, or a connection to the inhibitory interneuron ikv in case v assigns

the value 0 to zi. The inhibitory interneuron ikv connects to its

corresponding branch dk
v , and fires whenever any of the principal

neurons that connect to it fire. The synaptic efficacies of the direct

synaptic connections are assumed to satisfy the condition

X
i[Sk

v

wk
v,iwhk

v , ð36Þ

where Sk
v is the set of indices of principal neurons ni that directly

connect to the dendritic branch dk
v , wk

v,i is the efficacy of the

synaptic connection to the branch from ni , and hk
v is the threshold

at the dendritic branch for triggering a dendritic spike.

Additionally, each synaptic weight wk
v,i should also satisfy the

condition

wk
v,iw

X
j[Sk

v

wk
v,j{hk

v : ð37Þ

The same condition applies also for the efficacy yk
v of the synaptic

connection from inhibitory interneuron ikv to the dendritic branch

dk
v .

These conditions ensure that if the current state of the inputs is

zBk (t)~v, then the dendritic branch dk
v will have an active

dendritic spike, whereas all other dendritic branches will not

receive enough total synaptic input to trigger a dendritic spike.

The amplitude of the dendritic spike from branch dk
v at the soma is

v̂vk
v bk

v ~ log
p(zk~1jzBk ~v)

p(zk~0jzBk ~v)
zlk, ð38Þ

where lk is a positive constant that is larger than all possible

negative values of the log-odd ratio. If the steady value of the

membrane potential is equal to bk~{lk, then we have at each

moment a membrane potential that is equal to the sum of the

amplitude of the nonlinear contribution of the single active

dendritic branch and the steady value of the membrane potential,

which yields the expression for the NCC (4).

Details to the Implementation 4
In this implementation a principal neuron nk has a separate

group of auxiliary neurons for each factor c that depends on the

variable zk. The group of auxiliary neurons for the factor c
receives inputs from the principal neurons that correspond to the

set of the RVs zc
\k that factor c depends on, but without zk. For

each possible assignment of values v to the inputs zc
\k, there is an

auxiliary neuron in the group for the factor c, which we will denote

with ac,k
v . The neuron ac,k

v spikes immediately when the state of the

inputs switches to v from another state, i.e. the spike marks the

moment of the state change. This can be achieved by setting the

bias of the neuron similarly as in (32) to bk
v ~b0{g(v)Mk

v where

g(v) is the number of components of the vector v that are equal to

1, Mk
v is the efficacy of the direct synaptic connections from the

principal neurons to ac,k
v and b0 is a constant that ensures high
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firing probability of this neuron when the current value of the

inputs is v.

The connectivity from the auxiliary neurons to the principal

neuron keeps the soma membrane voltage of the principal neuron

nk equal to the log-odd ratio of zk ( = r.h.s. of (4)). From each

auxiliary neuron ac,k
v there is one excitatory connection to the

principal neuron, terminating at a separate dendritic branch dc,k
v .

The efficacy of this synaptic connection is ŵwc,k
v ~wc,k

v zlc
k, where

wc,k
v is the parameter from (13), and lc

k is a constant that shifts all

these synaptic efficacies ŵwc,k
v into the positive range.

Additionally, there is an inhibitory interneuron îic,k
v connecting

to the same dendritic branch dc,k
v . The inhibitory interneuron îic,k

v

receives input from all other auxiliary neurons in the same sub-

circuit as the auxiliary neuron ac,k
v , but not from ac,k

v . The purpose

of this inhibitory neuron is to shunt the active EPSP when the

inputs zc
\k change their state from v to another state v’. Namely, at

the time moment when the inputs change to state v’, the

corresponding auxiliary neuron ac,k
v’ will fire, and this will cause

firing of the inhibitory interneuron îic,k
v . A spike of the inhibitory

interneuron should have just a local effect: to shunt the active

EPSP caused by the previous state v at the dendritic branch dc,k
v . If

there is not any active EPSP, this spike of the inhibitory

interneuron should not affect the membrane potential at the

soma of the principal neuron nk.

At any time t, the group of auxiliary neurons for the factor c

contributes one EPSP to the principal neuron, through the

synaptic input originating from the auxiliary neuron that

corresponds to the current state of the inputs zc
\k. The amplitude

of the EPSP from the sub-circuit that corresponds to the factor c is

equal to ŵwc,k
v ~wc,k

v zlc
k. If we assume that the bias of the soma

membrane potential is bk~{
P

c[Ck lc
k, then the total membrane

potential at the soma of the principal neuron nk is equal to:

uk(t)~bkz
X
c[Ck

(wc,k
v zlc

k)~
X
c[Ck

wc,k
v , ð39Þ

which is equal to the expression on the r.h.s. of (13) when one

assumes that zc
\k(t)~v. Hence, the principal neuron nk satisfies the

NCC.

Details to the Implementation 5
In this implementation each principal neuron is a multi-

compartment neuron of the same type as in Implementation 3,

with a separate group of dendritic branches for each factor c in the

probability distribution that depends on zk. In the group c

(corresponding to factor wc) there is a dendritic branch dc,k
v for

each assignment v to the variables zc
\k that the factor c depends on

(without zk). The dendritic branches in group c receive synaptic

inputs from the principal neurons that correspond to the RVs zc
\k.

Each dendritic branch dc,k
v can contribute a component v̂vc,k

v âac,k
v (t)

to the soma membrane voltage uk(t) (where v̂vc,k
v is like in

Implementation 3 the branch strength of this branch), but only if

the local activation ac,k
v (t) in the branch exceeds the threshold for

triggering a dendritic spike. The connectivity from the principal

neurons corresponding to the RVs zc
\k to the dendritic branches of

nk in the group c is such so that at time t only the dendritic branch

corresponding to the current state of the inputs zc
\k(t) receives total

synaptic input that crosses the local threshold for generating a

dendritic spike and initiates a dendritic spike. This is realized

with the same connectivity pattern from the inputs to the branches

as in Implementation 3 depicted in Fig. 4. The amplitude of

the dendritic spike of branch dc,k
v at the soma should be

ŵwc,k
v ~wc,k

v zlc
k where wc,k

v is the parameter from (13) and lc
k is

chosen as in Implementation 3.

The membrane voltage at the soma of the principal neuron nk is

then equal to the sum of the dendritic spikes from the active

dendritic branches. At time t there is exactly one active branch in

each group of dendritic branches, the one which corresponds to

the current state of the inputs. If we additionally assume that the

bias of neuron nk is bk~{
P

c[Ck lc
k, then the membrane voltage

at the soma has the desired value (39).

Details to Computer Simulations
Details to Computer Simulation I. The simulations with

the neural network that corresponds to the approach where the

firing of the principal neurons satisfies the NCC were performed

with the ideal version of the implementations 2–5, which assumes

using rectangular PSPs and no delays in the synaptic connections.

In the simulation with the neural network that corresponds to

Implementation 1, the network was also implemented with the

ideal version of neural sampling. In both cases the duration of the

rectangular PSPs was t~20ms and the neurons had absolute

refractory period of duration t. The simulations lasted for

6 seconds biological time, where in the first 3 seconds the RV

for the contour (z4) was clamped to 1 and in the second 3 seconds

clamped to 0. For each spiking neural network 10 simulation trials

were performed, each time with different randomly chosen initial

state. The values of the synaptic efficacies Mexc and Minh in the

simulation of Implementation 1 were set to 10 times the largest

value of any of the factors in the probability distribution. This

ensures that a neuron with active input from a synapse with

efficacy Mexc will have a very high membrane potential and will

continuously stay active regardless of the state of the other inputs,

and accordingly a neuron with active input from a synapse with

efficacy Minh will remain silent regardless of the state of the other

inputs. The time step in the simulations was set to 1 ms.

The values for the conditional probabilities p(z3jz2,z1) and

p(z4jz2) in the Bayesian network from Fig. 1 used in these

simulations are given in Table 1. The prior probabilities p(z1~1)
and p(z2~1) were both equal to 0.5.

Details to Computer Simulation II. The conditional

probability tables of the ASIA-network used in the simulations

are given in Tables 2,3,4 and 5. We modified the original network

from [24] by eliminating the ‘‘tuberculosis or cancer?’’ RV in

order to get it in suitable form to be able to perform neural

sampling in it. In the original ASIA network the ‘‘tuberculosis or

cancer?’’ RV had deterministic links with the RVs ‘‘tuberculosis?’’

and ‘‘cancer?’’ which results in a Markov chain that is not

connected. The model captures the following qualitative medical

knowledge facts:

1. Shortness of breath or dyspnoea may be due to tuberculosis,

lung cancer or bronchitis, none of them or many of them at the

same time.

2. A recent visit to Asia increases the chance for tuberculosis.

Table 1. Values for the conditional probabilities in the
Bayesian network in Fig. 1B used in Computer Simulation I.

p(z3~1jz1~0,z2) p(z3~1jz1~1,z2) p(z4~1jz2)

z2 = 0 0.15 0.85 0.15

z2 = 1 0.85 0.15 0.85

doi:10.1371/journal.pcbi.1002294.t001
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3. Smoking is a risk factor for both lung cancer and bronchitis.

4. Tuberculosis and lung cancer significantly increase the chances

of a positive chest x-ray test.

We used a point neuron model as in [1] described in the

Introduction section of this article, where the membrane potential

of the neuron is a linear sum of the PSPs elicited by the input

spikes. We performed all simulations with three different shapes

for the EPSPs. The first EPSP was an alpha shaped EPSP curve

E1(t) defined as

E1(t)~
q1 e:(

t

ta
zt1): exp ({(

t

ta
zt1)){

1

2

� �
if 0vtv(t2{t1)ta,

0 otherwise:

8<: , ð40Þ

where the t1 and t2 are the points in time where the alpha kernel

e:t: exp ({t)~
1

2
, q1 = 2.3 is a scaling factor and ta~17ms is the

time constant of the alpha kernel. The second used EPSP was a

plateau shaped curve E2(t) defined with the following equation

E2(t)~

q2
: sin (

pt

2ts

) if 0vtvts,

q2 if tsvtvt{te,

q2
:(

tzte{t

2te

{
1

2p
sin (

2p(tzte{t)

2te

)) if t{tevtvtzte,

0 otherwise:

8>>>>>><>>>>>>:
,ð41Þ

where t~30ms. The ts~7ms defines the duration of the rise of

the EPSP kernel after an input spike, 2te~18ms determines the

duration of part of the EPSP curve corresponding to the fall of the

EPSP back to the baseline, modeled here with the sine function,

and q2~1:03 is a scaling factor. The third shape of the EPSP that

we used was the theoretically optimal rectangular shape with

duration t. In all simulations for each of the three different shapes

of EPSPs we used the same duration t~30ms to calculate the

generated samples from the spike times according to (2). All

neurons had an absolute refractory period of duration t. The time

step in the simulations was DT~0:1ms.

The indirect connections going through inhibitory interneurons

from the principal neurons to the auxiliary neurons were modeled

as direct connections with negative synaptic efficacies and IPSPs

that match the shape of the EPSPs described above. All

connections in the network had delays equal to dsyn~0:1ms.

The excitatory synaptic weight from the principal neuron ni to an

auxiliary neuron ak
v was set to

wk
v,i~ max log

p(zk~1jzBk ~v)

p(zk~0jzBk ~v)
z10,0

� �
, ð42Þ

and the synaptic weight for the inhibitory synaptic connection

from the principal neuron ni to an auxiliary neuron ak
v (which

models the indirect inhibitory connection through the inhibitory

interneuron ikv ) was set to

wk
v,i~ min {10{ log

p(zk~1jzBk~v)

p(zk~0jzBk~v)
,0

� �
: ð43Þ

The efficacy of the synaptic connections from the auxiliary neurons

to their principal neuron were set to wap~30. The lateral inhibition

was implemented by a single inhibitory neuron that receives excitatory

connections from all auxiliary neurons with synaptic efficacy equal to

wai~30. The inhibitory neuron connected back to all auxiliary

neurons and these synaptic connections had rectangular shaped IPSPs

with duration ti~30ms. These rectangular IPSPs approximate the

effect that a circuit of fast-spiking bursting inhibitory neurons with

short IPSPs would have on the membrane potential of the auxiliary

neurons. The efficacy of the synaptic connection from the inhibitory

neuron for the lateral inhibition to the auxiliary neuron ak
v was set

equal to wk
v,i in the previous equation. The bias of the principal

neurons were set to b~{10 and the biases of the auxiliary neurons

were set according to (32). The inhibitory interneuron for the lateral

inhibition had bias b~{10.

The evidence about known RVs in the neural network was

introduced by injected constant current in the corresponding

principal neurons of amplitude Az~50 if the value of the RV is 1

and A{~{30 if the value of the RV is 0. The simulations were

performed for Tsim~6s biological time. For the separate cases of

each EPSP shape the results were averaged over 20 simulation

trials with different initial states of the spiking neural network and

different random noise throughout the simulation. The initial

Table 2. Values for the probabilities p(A), p(S) and P(T jA) in
the ASIA Bayesian network used in Computer Simulation II.

p(A~1) p(S~1) p(T~1jA~0) p(T~1jA~1)

0.01 0.5 0.01 0.05

doi:10.1371/journal.pcbi.1002294.t002

Table 3. Values for the conditional probabilities P(BjS) and
P(CjS) in the ASIA Bayesian network used in Computer
Simulation II.

p(B~1jS) p(C~1jS)

S = 0 0.3 0.01

S = 1 0.6 0.10

doi:10.1371/journal.pcbi.1002294.t003

Table 4. Values for the conditional probabilities P(X jT ,C) in
the ASIA Bayesian network used in Computer Simulation II.

p(X~1jT,C) C = 0 C = 1

T = 0 0.05 0.98

T = 1 0.98 0.98

doi:10.1371/journal.pcbi.1002294.t004

Table 5. Values for the conditional probabilities P(DjT ,C,B)
in the ASIA Bayesian network used in Computer Simulation II.

p(D~1jT,C ,B) T = 0 T = 1

C = 0, B = 0 0.1 0.7

C = 0, B = 1 0.8 0.9

C = 1, B = 0 0.7 0.7

C = 1, B = 1 0.9 0.9

doi:10.1371/journal.pcbi.1002294.t005

(40)

(41)
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states were randomly chosen from the prior distribution of the

ASIA network which corresponds to a random state in the activity

of the spiking network when no evidence is introduced. For control

we performed the same simulations with randomly chosen initial

states from a uniform distribution, and the results showed slightly

slower convergence (data not shown). The initial states were set by

injecting constant current pulse in the principal neurons for the

unknown RVs at the beginning of the simulation, with amplitude

Az~50 ( A{~{30 ) if the value of the RV in the initial state is 1

(0), and duration equal to tinit~15ms.

The simulations in Computer Simulation II were performed

with the PCSIM simulator for neural circuits (web site: http://

www.igi.tugraz.at/pcsim) [66].
Details to Computer Simulation III. The simulations were

performed with the ideal implementation of the NCC, which

corresponds to using rectangular PSPs and zero delays in the

synaptic connections in the implementations 2–5. We performed

10 simulations with an implementation that uses the neuron model

with relative refractory period and another 10 simulations with an

implementation that uses the neuron model with absolute

refractory period. The duration of the PSPs was t~20ms: The

time step of the simulation was 1 ms.

The Bayesian network in this simulation was randomly

generated with a variation of the Markov chain Monte Carlo

sampling algorithm proposed in [27]. Instead of allowing arcs in

the Bayesian network in both directions between the nodes and

checking at each new iteration whether the generated Bayesian

network graph is acyclic like in [27], we preserved an ordering of

the nodes in the graph and allow an edge from the node zi to the

node zj only if ivj. We started with a simple connected graph

where each node zi, except for the first node z1, has connection

from node zi{1. We then performed the following MCMC

iterations.

1. Choose randomly a pair of nodes (zi,zj) where ivj;

2. If there is an edge from zi to zj then remove the edge if the

Bayesian network remains connected, otherwise keep the same

Bayesian network from the previous iteration;

3. If there is not an edge, then create an edge from zi to zj if the

node zj has less than 8 parents, otherwise keep the Bayesian

network from the previous iteration.

Similarly to the proofs in [27], one can prove that the stationary

distribution of the above Markov chain is a uniform distribution

over all valid Bayesian networks that satisfy the constraint that a

node can not have more than 8 parents. To generate the Bayesian

network used in the simulations we performed 500000 iterations of

the above Markov chain. The conditional probability distributions

for the Bayesian network were sampled from Dirichlet distribu-

tions with priors (a1,a2, . . . ,ak) where ai~0:6 for all i.
In the simulations that use a neuron model with a relative

refractory mechanism, we used the following form for the

refractory function gk(t)

g(t)~
t

t
{

sin (
2pt

t
)

2p
: ð44Þ

The corresponding function f (u) for the firing probability was

calculated by numerically solving the equation (17) for gk(t)
defined in (44).
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