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Abstract

The enteric bacterium Proteus mirabilis, which is a pathogen that forms biofilms in vivo, can swarm over hard surfaces and
form a variety of spatial patterns in colonies. Colony formation involves two distinct cell types: swarmer cells that dominate
near the surface and the leading edge, and swimmer cells that prefer a less viscous medium, but the mechanisms
underlying pattern formation are not understood. New experimental investigations reported here show that swimmer cells
in the center of the colony stream inward toward the inoculation site and in the process form many complex patterns,
including radial and spiral streams, in addition to previously-reported concentric rings. These new observations suggest that
swimmers are motile and that indirect interactions between them are essential in the pattern formation. To explain these
observations we develop a hybrid model comprising cell-based and continuum components that incorporates a
chemotactic response of swimmers to a chemical they produce. The model predicts that formation of radial streams can be
explained as the modulation of the local attractant concentration by the cells, and that the chirality of the spiral streams
results from a swimming bias of the cells near the surface of the substrate. The spatial patterns generated from the model
are in qualitative agreement with the experimental observations.
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Introduction

A variety of spatial patterns in growing bacterial colonies are

found both in nature and in the lab [1–10]. When inoculated on

semi-solid agar with succinate or other TCA cycle intermediates,

motile Escherichia coli cells grow, divide, and self-organize into

patterns ranging from outward-moving rings of high cell density

to chevron patterns, depending on the initial concentration of the

nutrient [1,2]. When grown or simply placed in static liquids, cells

quickly reorganize into networks of high cell density comprised of

bands and/or aggregates, following exposure to succinate and

other compounds. Chemotactic strains of Salmonella typhimurium, a

closely-related species, can also form concentric rings and other

complex patterns in similar conditions [3,4], and it has been

shown that pattern formation in both species is driven by

chemotactic interactions between the cells and a self-produced

attractant [1–3]. The gram-positive bacterium Bacillus subtilis

forms patterns ranging from highly branched fractal-like patterns

to compact forms, depending on the agar and nutrient

concentrations [5,6,11]. In all these systems proliferation,

metabolism and movement of individual cells, as well as direct

and indirect interactions between cells, are involved in the

patterning process, but the mutual influences and balances

between them that lead to the different types of patterns is

difficult to dissect experimentally, and is best explored with a

mathematical model. Understanding these balances would

advance our understanding of the formation of more complex

biofilms and other multicellular assemblies [12].

Proteus mirabilis is an enteric gram-negative bacterium that causes

urinary tract infections, kidney stones and other diseases [13–16].

Pattern formation by Proteus was described over 100 years ago

[17], and the nature of these patterns has since been discussed in

many publications. When grown in a liquid nutrient medium, the

dominant phenotype of P. mirabilis is a vegetative swimmer cell

that is 1–2 mm long, has 1–10 flagella and moves using a ‘‘run-

and-tumble strategy’’, similar to that used by E. coli [4]. Swimmers

respond chemotactically to several amino acids, and can adapt

perfectly to external signals [18].

When grown on hard agar Proteus forms spectacular patterns of

concentric rings or spirals. Swimmers differentiate into highly

motile, hyperflagellated, multi-nucleated, non-chemotactic swarm-

er cells that may be as long as 50–100 mm, and that move

coordinately as ‘‘rafts’’ in the slime they produce [19,20]. During

pattern formation on hard surfaces swarmer cells are found mainly

at the leading edge of the colony, while swimmers dominate in the

interior of the colony [8,17,19,21]. While much effort has been

directed toward understanding the mechanism of swarming, to

date little is known about how cells swarm and how cells undergo

transitions between swimmers and swarmers [19,20,22–26], but

understanding these processes and how they affect colonization

could lead to improved treatments of the diseases caused by P.

mirabilis.
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Traditionally, formation of periodic cell-density patterns in

Proteus colonies has been interpreted as a result of periodic changes

in the velocity of the colony’s front, caused by the cyclic process of

differentiation and de-differentiation of swimmers into swarmers

(see [8]). Douglas and Bisset described in [21] a regime for some

strains of P. mirabilis in which swarmers form a continuously

moving front, while concentric rings of high cell density form well

behind that front. This suggests that pattern formation can occur

in the absence of cycles of differentiation and de-differentiation.

The similarity between this mode of pattern formation and that of

Salmonella led us to ask whether the underlying mechanism for

pattern formation in P. mirabilis might also be chemotactic

aggregation of the actively moving swimmers behind the colony

front.

A number of mathematical models of colony front movement

have been proposed, and in all of them swimmer cells are non-

motile and swarming motility is described as a degenerate

diffusion, in that swarmers only diffuse when their density exceeds

a critical value [27–31]. The dependence of the front propagation

patterns on various parameters in one of these models is given in

[29], and while models can reproduce the colony front dynamics,

it remains to justify treating the swarming motility as a degenerate

diffusion process, since it is likely that the cell-substrate interaction

is important. To replicate a periodically propagating front, Ayati

showed that swarmers must de-differentiate if and only if they have

a certain number of nuclei [30,31]. It was shown that this may

result from diffusion limitations of intracellular chemicals, but

biological evidence supporting this assumption is lacking, and

further investigation is needed to understand the mechanism of

front propagation.

Here we report new experimental results for a continuously-

expanding front and show that after a period of growth, swimmer

cells in the central part of the colony begin streaming inward and

form a number of complex multicellular structures, including

radial and spiral streams as well as concentric rings. These

observations show that swimmer cells are also motile, and that

communication between them may play a crucial role in the

formation of the spatial patterns. However, additional questions

raised by the new findings include: (1) what induces the inward

movement of swimmer cells, (2) why do they move in streams, (3)

why do radial streams quickly evolve into spiral streams, and (4)

quite surprisingly, why do all the spirals wind counterclockwise

(CCW) when viewed from above. To address these questions we

developed a hybrid model comprised of a cell-based component

for cell dynamics and a continuum component for nutrients and

the chemoattractant secreted by swimmer cells. The model has

provided biologically-based answers to the questions above and

guided new experiments. Previous models, including a continuum

chemotaxis model for patterning we developed earlier [32], have

limitations discussed later that are not inherent in the hybrid

model.

Results

Experimental findings
Previous experimental work focused on expansion of the colony

front and neglected the role of movement of swimmers in the

pattern formation process in the interior of the colony [8,19,21],

and the experimental results reported here represent a first step

toward understanding their role. After a drop of P. mirabilis culture

is inoculated on a hard agar-like surface containing rich nutrient,

the colony grows and expands. Under the conditions used here,

the colony front expands continuously (see Video S1 and Figure

S1) - initially as a disc of uniform density. The swarmers exist at

the periphery of the colony, and the mean length of the cells

decreases towards the center, as observed by others [33]. For the

first 5–7 hours, swarmers migrate out the inoculation site, the

slime layer gradually builds up and swarmers de-differentiate into

swimmer cells behind the leading edge. Later we observe that

swimmer cells in the colony stream inward, forming a number of

complex patterns (Figure 1). The swimmer population first forms a

radial spoke-like pattern in an annular zone on a time scale of

minutes, and then cells follow these radial streams inward (1A).

The radial streams soon evolve into spirals streams, with

aggregates at the inner end of each arm (1B). A characteristic

feature of this stage is that the spirals always wind CCW when

viewed from above. Different aggregates may merge, forming

more complex attracting structures such as rotating rings and

traveling trains (1B, C). Eventually the motion stops and these

structures freeze and form the stationary elements of the pattern

(1B, C). Later, this dynamic process repeats at some distance from

the first element of the pattern, and sometimes cells are recruited

from that element. In this way, additional elements of the

permanent pattern are laid down (1C). On a microscopic level, the

transition to the aggregation phase can be recognized as

transformation of a monolayer of cells into a complex multi-

layered structure. Not every pattern is observable in repeated

experiments, (for example, no observable rotating rings can be

identified in (1D), probably due to sensitivity to noise in the system

and other factors that require further investigation, variations in

nutrient availability, etc., but the formation of radial and spiral

streams always appear in repeated experiments.

These new findings pose challenges to the existing theories of

concentric ring formation in which swimmer cells are believed to

be non-motile. Additional questions arise regarding the mecha-

nism(s) underlying the formation of radial and spiral streams, rings

and trains by swimmers, and what determines the chirality of the

spiral streams. The macroscopic patterns are very different and

more dynamic than the patterns formed in E. coli or Salmonella

typhimurium colonies [1–3], where cells interact indirectly via a

secreted attractant, but the fact that swimmers move up the cell

density gradient is quite similar. The non-equilibrium dynamics

Author Summary

Bacteria frequently colonize surfaces and grow as biofilm
communities embedded in a gel-like polysaccharide
matrix, and when this occurs on catheters, heart valves
and other medical implants, it can lead to serious, hard-to-
treat infections. Proteus mirabilis is an enteric bacterium
that forms biofilms on urinary catheters, but in laboratory
experiments it can swarm over hard surfaces and form a
variety of spatial patterns. Understanding these patterns is
a first step toward understanding biofilm formation, and
here we describe new experimental results and mathe-
matical models of pattern formation in Proteus. The
experiments show that swimmer cells in the center of
the colony stream inward toward the inoculation site and
in the process form many complex patterns, including
radial and spiral streams, in addition to concentric rings. To
explain these observations we develop a model that
incorporates a chemotactic response of swimmers to a
chemical they produce. The model predicts that formation
of radial streams can be explained as the modulation of
the local attractant concentration by the cells, and that the
chirality of the spiral streams can be predicted by
incorporating a swimming bias of the cells near the
surface of the substrate.

Radial and Spiral Stream Formation
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suggests intercellular communication between individual swimmer

cells, and we determined that swimmer cells extracted from these

patterns are chemotactic towards several amino acids, including

Aspartate, Methionine and Serine (see Table 1). In the following

we provide an explanation of the radial and spiral streams using a

hybrid cell-based model, by assuming that cells secrete to a

chemoattractant that they respond to.

The hybrid cell-based model
The spatial patterns of interest here are formed in the center of

the colony where cells are primarily swimmers, while the role of

swarmers is mainly to advance the front and to affect the swimmer

population by differentiation and de-differentiation. Thus we first

focus on modeling the dynamics in the patterning zone in the

colony center (Figure 2A), and later we incorporate the colony

front as a source of swimmers. This enables us to avoid

unnecessary assumptions on the poorly-understood biology of

swarming and the transition between the two phenotypes. As

noted earlier, swimmer cells are chemotactic to certain factors in

the medium, and we assume that they communicate via a

chemoattractant that they secrete, and to which they respond.

Therefore the minimal mathematical model involves equations for

the signal transduction and movement of individual cells, and for

the spatio-temporal evolution of the extracellular attractant and

the nutrient in the domain shown in Figure 2B. We first focus on

understanding the radial and spiral stream formation, which

occurs rapidly, and during which the nutrient is not depleted and

cells grow exponentially. During this period the nutrient equation

is uncoupled from the cell equations and can be ignored. In the

radial and spiral streams, cell density is relatively low and cells are

still well separated, so we ignore the mechanical interactions

between cells.

It has been known for many years that the chemotaxis signal

transduction pathway in P. mirabilis is very similar to that of E. coli

[34–36]. Recently all the chemotaxis-related genes of E. coli have

been found in the Proteus genome [18], and in view of the genetic

similarity between P. mirabilis and E. coli, we describe motility and

signal transduction in the former using the key ideas from the

latter.

E. coli cells swim using a run-and-tumble strategy, which consists

of more-or-less straight runs punctuated by random turns. In the

absence of an attractant gradient the result is an unbiased random

walk, with mean run time *1 s and mean tumble time *0.1 s. In

the presence of an attractant gradient, runs in a favorable direction

are prolonged, and by ignoring the tumbling time, which is much

shorter than the run time, the movement of each cell can be

treated as an independent velocity jump process with a random

turning kernel and a turning rate determined by intracellular

variables that evolve in response to extracellular signals [37]. The

Figure 1. The evolution of a P. mirabilis colony. Time after
inoculation: (A) 8.5 hours, (B) 9 hours, and (C) 11 hours. (A) initially
homogeneous bacterial lawn breaks into radial spokes in the central
region of the colony, then bacteria and bacterial aggregates stream
inwards following the radial spokes. (B) the radial streams gradually
transform into CCW spirals, and the inner ends of each arm join
together to form a solid toroidal mass. (C) a second rotating ring forms
with spirals that arise further from the center, and a moving train of
high cell density forms at some distance from the ring. In (A) and (B),
the colony front is highlighted in blue, and a few arms of the streams
are highlighted in red. In (C) the colony has covered the entire plate. (D)
A different experiment that shows only stream formation without the
structure of ring elements.
doi:10.1371/journal.pcbi.1002332.g001

Table 1. Chemotaxis analysis of swimmer cells using the
amino acid drop assay.

.1 M 10 mM 1 mM 10 mm 1 mm

Ala + + 2 2 2

Arg 2 2 2 2 2

Asn 2 + 2 2 2

Asp + 2 + + +

Cys 2 2 + + 2

Glu + + 2 2 2

GIn 2 2 2 2 2

Gly + + 2 2 2

His + + 2 2 2

Ile 2 2 2 2 2

Leu 2 2 2 2 2

Lys 2 2 2 2 2

Met + + 2 2 2

Phe 2 + + 2 2

Pro 2 2 2 2 2

Ser + + + + 2

Thr + 2 2 2 2

Trp 2 2 2 2 2

Val 2 2 2 2 2

Method used: Proteus cells were collected from the inner area of a growing
colony, approximately 1 hr before a projected onset of a streaming phase.
Microscopic examination revealed that 90% of cells were 1 to 2 cell length. Cells
were resuspended in a minimal growth medium to the OD = .1 to .15 (similar
results were obtained with the cells grown in a liquid culture) Drop Assay.
500 mL minimal growth medium, 200 mL of cell culture (OD = .1 to .15), and
240 mL of 1% Methyl cellulose were combined in a 10635 mm culture dish and
mixed until a homogenous state. 4 mL of a respective amino acid solution was
added to the center. Cell density distribution in the dish was analyzed after 20–
25 minutes. Addition of H2O was used as a control. Increase in the cell density
in the center indicates that a respective amino acid is an attractant.
doi:10.1371/journal.pcbi.1002332.t001
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signal transduction pathway for chemotaxis is complex and has

been studied extensively both experimentally and mathematically

[34–36,38–40]. However the main processes are relatively simple,

and consist of fast excitation in response to signal changes,

followed by adaptation that subtracts out the background signal.

These major processes are embedded in the following description

of cell behavior.

N Each swimmer cell (with index i) is treated as a point and

characterized by its location xi, velocity vi, cell-cycle clock Ai

and intracellular variables yi.

N Signal transduction in each cell is described by the simple

model used in [37], which captures the main features of the

signal transduction network. The model involves two variables

that evolve according to

dyi
1

dt
~

G(S(x,t)){(yi
1zyi

2)

te

, ð1Þ

dyi
2

dt
~

G(S(x,t)){yi
2

ta

, ð2Þ

where te, ta with te%ta are constants characterizing the

excitation and adaptation time scales, S is the local attractant

concentration and G(S(x,t)) models detection and transduc-

tion of the signal. Here y1 may be identified as the negative of

the deviation of CheYp from its steady state, and y2 as a

measure of the methylation level of the receptors.

N The turning rate and turning kernel of the i-th cell are

li~l0 1{
yi

1

gzjyi
1j

� �
, T(v,v’)~

1

jV j , ð3Þ

Here l0 represents the baseline turning rate when there is no

external signal gradient, and g a parameter which indicates

how sensitive the turning rate is to the internal variable y1.

Further, T(v,v’) is the turning kernel that appears in the

transport equation that describes the velocity jump process

[32]: it gives the probability density of turning from v0 to v0

after making the decision to turn. The cell speed s0 is about

10{30mm=s [41], and we assume that it equals 20mm=s. We

also assume that there is no directional persistence of cells thus

T is a constant [42].

N Since the slime layer is very thin, typically *10mm, we restrict

cell movement to two dimensions.

N Each cell divides every 2 h and is replaced by two identical

daughter cells of age A~0.

We assume that cells secrete attractant at a constant rate c and

that it is degraded by a first-order process. Since we neglect cell

volume, the attractant is secreted at the center of each cell. The

resulting evolution equation for the attractant is

LS

Lt
~DsDSzc

XN

i~1

d(x{xi){mS, ð4Þ

where d is the Dirac delta function, N is the total number of cells,

and Ds is the diffusion coefficient of the attractant. For simplicity,

we also restrict reaction and diffusion of the attractant to two space

dimensions, which is justified as follows. Since no attractant is

added to the substrate initially, which is much thicker than the

slime layer, we assume that the attractant level is always zero in the

substrate. We further assume that the flux of the attractant at the

interface of the two layers is linear in the difference of its

concentration between the two layers. Thus the loss of attractant

due to diffusion to the agar can be modeled as a linear

degradation, and the degradation constant m in (4) reflects the

intrinsic degradation rate and the flux to the substrate.

In the numerical investigations described below, (4) is solved on

a square domain using the ADI method with no-flux boundary

conditions, while cells move off-grid. For each time step Dt (%
mean run time), (1), (2) are integrated for each cell and the velocity

and position are updated by Monte Carlo simulation. Transfer of

variables to and from the grid is done using bilinear interpolating

operators. A detailed description of the numerical scheme as

applied to pattern formation in E. coli is given in Appendix A of

[32], and for convenience we also included it in the Methods

section. After the positions of cells are obtained at each time point,

we count the number of cells in each grid and normalize to get the

cell density profile in the domain.

Radial streams result from an instability of the uniform
cell distribution

Before the emergence of radial streams, the colony expands with

a continuous moving front (Video S1 and Figure S1) due to the

movement of swarmers, and the cell density is uniform except at

the inoculation site, where cells may become non-motile or

dormant. During this period of time, the attractant and slime build

up and the swarmers de-differentiate to form a population of

swimmers. Thus by the end of this period, the attractant

Figure 2. (A) The colony front and the patterning zone. (B) A
vertical cross-section of the system. The lower layer is hard agar
that contains nutrients, and the top layer is slime generated during
colony expansion. Swimmers move in the layer of slime, absorb
nutrients that diffuse upward, and secrete attractant. Bacterial flagella
are not shown.
doi:10.1371/journal.pcbi.1002332.g002

Radial and Spiral Stream Formation
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concentration can be approximated by a cone-like profile centered

at the inoculation site, with a uniform lawn of swimmers laid

down. Here we show that starting from this initial condition, the

mechanism introduced above can explain radial stream formation

on the correct time scale, which is 5–15 minutes. The excitation

time scale te is a fraction of a second, while the adaptation time

scale ta can range from several seconds to several minutes [43,44].

We assume quasi-steady state for the fast excitation by taking

te~0 in the numerical investigations below. For simplicity we also

assume G(S)~S, and the intracellular dynamics become

dyi
2

dt
~

S(x,t){yi
2

ta

,

yi
1~S(x,t){yi

2:

We specify an initial attractant gradient of 4|10{3mM=cm in a

disk of radius 1.5 cm, centered at the center of the domain, with

zero attractant at the boundary of the disk. For compatibility with

later computations on a growing disk, we initially distribute

104cells=cm2 randomly within the disk. (If cells are initially

distributed throughout the square domain cells near the four

corners, outside the influence of the initial gradient, aggregate into

spots, as is observed in E. coli as well [32].) Figure 3 shows how this

distribution evolves into radial streams that terminate in a high-

density region at the center on a time scale of minutes as expected

in the experiments. If we double the cell density at the inoculation

site, we obtain a qualitatively similar result.

One can understand the breakup into streams as follows. By

hypothesis, cells modulate their run lengths in response to the local

concentration and the changes they measure via the perceived

Lagrangian derivative of attractant along their trajectory, whether

or not there is a macroscopic attractant gradient. Small local

variations in cell density then lead to local variations in attractant

to which the cells respond, and in the absence of a macroscopic

gradient, an initially-uniform cell density evolves into a high cell

density network, which in turn breaks into aggregates that may

then merge (not shown). This has also been found both

theoretically and experimentally in E. coli (see [1] and

Figure 4.4 in [32]). If we describe the cell motion by a 1-D

velocity jump process, a linear stability analysis of the

corresponding continuum equations predicts that the uniform

distribution is unstable, and breaks up into a well-defined spatial

pattern (see Figure 4.2, 4.3 in [32]). Numerical solutions of the

nonlinear equations confirm this, and experiments in which the

grid size is varied show that the results are independent of the

grid, given that it is fine enough [32].

In the presence of a macroscopic gradient a similar analysis,

taken along a 1D circular cross-section of the 2D aggregation field,

predicts the breakup of the uniform distribution, but in this

situation the 2D pattern of local aggregations is aligned in the

direction of the macroscopic gradient. This is demonstrated in a

numerical experiment in which cells are placed on a cylindrical

surface with constant attractant gradient (Figure S2). Thus the

experimentally-observed radial streams shown in Figure 1 and the

theoretically-predicted ones shown in Figure 3 can be understood

as the result of (i) a linear instability of the uniform cell density, and

(ii) the nonlinear evolution of the growing mode, with growth

oriented by the initial macroscopic gradient of attractant.

Spiral streams result from a surface-induced swimming
bias

In most experiments the radial streams that arise initially rapidly

evolve into spiral streams, and importantly, these spirals always

wind CCW when viewed from above. The invariance of the

chirality of these spirals indicates that there are other forces that

act either on individual cells or on the fluid in the slime layer, and

that initial conditions play no significant role. One possible

explanation, which we show later can account for the observed

chirality, stems from observations of the swimming behavior of E.

Figure 3. Simulated radial streams. The cell density profile is in unit
of 103=cm2 . Parameters used: s0~20mm=s, l0~1=s, Ds~9|10{6cm2=s,
m~10{3=s, L~3cm, ta~5s, g~5|10{5, and the secretion rate of the
attractant is 6|10{17mol=s per cell.
doi:10.1371/journal.pcbi.1002332.g003

Figure 4. Simulated spiral streams in a disk using a swimming
bias of eb~~0:04p. The initial attractant gradient is 4|10{3mM=cm,
centered as before, and all other parameters are as used for the results
in Figure 3.
doi:10.1371/journal.pcbi.1002332.g004

Radial and Spiral Stream Formation
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coli in bulk solution and near surfaces. When far from the

boundary of a container, E. coli executes the standard run and

tumble sequence, with more or less straight runs interrupted by a

tumbling phase in which a new, essentially random direction is

chosen. (There is a slight tendency to continue in the previous

direction [41]). However, observations of cell tracks near a surface

show that cells exhibit a persistent tendency to swim clockwise

(CW) when viewed from above [45–47].

Since the cells are small the Reynolds number based on the cell

length is very small (O(10{5)), inertial effects are negligible, and

the motion of a cell is both force- and torque-free. Since the

flagellar bundle rotates CCW during a run, when viewed from

behind, the cell body must rotate CW. When a cell is swimming

near a surface, the part of the cell body closer to the surface

experiences a greater drag force due to the interaction of the

boundary layer surrounding the cell with that at the immobile

substrate surface. Suppose that the Cartesian frame has the x and

y axes in the substrate plane and that z measures distance into the

fluid. When a cell runs parallel to the surface in the y direction and

the cell body rotates CW, the cell body experiences a net force in

the x direction due to the asymmetry in the drag force. Since the

flagellar bundle rotates CCW, a net force with the opposite

direction acts on the flagella, and these two forces form a couple

that produces the swimming bias of the cell. (Since the entire cell is

also torque-free, there is a counteracting viscous couple that

opposes the rotation, and there is no angular acceleration.) The

closer the cell is to the surface, the smaller is the radius of

curvature of its trajectory and the slower the cell speed. Because of

the bias, cells that are once near the surface tend to remain near

the surface, which increases the possibility of attachment. (In the

case of Proteus this may facilitate the swimmer-to-swarmer

transition, but this is not established.) Resistive force theory has

been used to derive quantitative approximations for the radius of

curvature as a function of the distance of the cell from the surface

and other cell-level dimensions, treating the cell body as a sphere

and the flagellar bundle as a single rigid helix [47]. Cell speed has

been shown to first increase and then decrease with increasing

viscosity of linear-polymer solutions when cells are far from a

surface [48], but how viscosity changes the bias close to a surface is

not known.

The question we investigate here is whether the microscopic

swimming bias of single bacteria can produce the macroscopic

spiral stream formation with the correct chirality. We cannot apply

the above theory rigorously, since that would involve solving the

Stokes problem for each cell, using variable heights from the

surface. Instead, we introduce a constant bias of each cell during

the runs, i.e.,

dvi

dt
~eb

vi

jvij
|k

where k is the normal vector to the surface, and ebw0 measures

the magnitude of the bias in the direction of swimming.

Figure 4 shows the evolution of the cell density using a bias of

e~0:04p, which is chosen so that a cell traverses a complete circle

in 50 secs. The simulations show that the initially-uniform cell

density evolves into spiral streams after a few minutes and by

12 minutes the majority of the cells have joined one of the spiral

arms. The spiral streams persist for some time and eventually

break into necklaces of aggregates which actively move towards

the center of the domain.

Figure 5A shows the positions, at 30 second intervals, of 10

randomly chosen cells, and Figure 5B illustrates how to

understand the macroscopic chirality based on the swimming bias

of individual cells. At t~t1 the blue cell detects a signal gradient

(red arrow) roughly in the 1 o’clock direction, and on average it

swims up the gradient longer than down the gradient. Because of

the CW swimming bias, the average drift is in the direction of the

blue arrow. At t~t2 it arrives at the place and ‘realizes’ that the

signal gradient is roughly in the 12 o’clock direction, and a similar

argument leads to the average net velocity at that spot. As a result

of these competing influences, the cell gradually make its way to

the source of attractant (the red dot) along a CCW trajectory.

Certainly the pitch of the spirals is related to the swimming bias,

but we have not determined the precise relationship. The spiral

movement has also been explained mathematically for a

continuum description of cell dynamics in [32], where the

macroscopic chemotaxis equation is derived from the hybrid

model in the presence of an external force, under the assumption

that the gradient of attractant is shallow. When the swimming bias

is constant, the analysis shows that this bias leads to an additional

taxis-like flux orthogonal to the signal gradient. However, we show

later that the continuum description is not valid for the later stages

of patterning in Proteus, since attractant gradients become too

large.

According to the foregoing explanation, one expects spirals in

the opposite direction when experiments are performed with the

petri plate upside-down and patterns are viewed from the top,

since in this case the relative position of the matrix and slime is

inverted and cells are swimming under the surface. This prediction

has been confirmed experimentally, and the conclusion is that the

interaction between the cell and the liquid-gel surface is the crucial

factor that determines the genesis and structure of the spirals.

Pattern formation on a growing disk
From the foregoing simulations we conclude that when the

swimming bias is incorporated, the hybrid model correctly predicts

the emergence of streams and their evolution into spirals of the

correct chirality for experimentally-reasonable initial cell densities

and attractant concentration. Next we make a further step toward

a complete model by incorporating growth of the patterning

domain. The simulation starts when the colony begins to expand.

As we indicated earlier, the biology of swimmer/swarmer

differentiation and the biophysics of movement at the leading

edge are poorly understood. Consequently, we here regard the

advancing front as a source of swimmer cells and prescribe a

constant expansion rate. Since we simulate from the very

beginning of colony expansion, with no attractant in the petri

Figure 5. Individual cell tracks and average velocity profile
during spiral stream formation in Figure 4. (A)The positions of 10
randomly chosen cells, each position recorded every 30 sec by a blue
dot. (B) schematics of cell movement with a swimming bias of
individual cells.
doi:10.1371/journal.pcbi.1002332.g005
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dish, we take S to be zero everywhere as an initial condition. The

results of one computational experiment are shown in Figure 6, in

which the colony expands outward at a speed of 0:5cm=h, as

observed in experiments (Figure S1), and the cells added in this

process are swimmer cells. One sees that the early dynamics when

the disk is small are similar to the results in Figure 4 on a fixed

disk, but as the disk continues to grow the inner structure develops

into numerous isolated islands, while the structure near the

boundary exhibits the spirals. The juxtaposition in Figure 7 of the

numerical simulation of the pattern at 5 hours and the

experimental results shown in Figure 1 shows surprisingly good

agreement, despite the simplicity of the model. This suggests that

the essential mechanisms in the pattern formation have been

identified, but others are certainly involved, since the experimental

results show additional structure in the center of the disk that the

current model does not replicate.

Discussion

New experimental results reported here show that swimmer

cells in the center of the colony stream inward toward the

inoculation site, and form a number of complex patterns,

including radial and spiral streams in an early stage, and rings

and traveling trains in later stages. These experiments suggest that

intercellular communication is involved in the spatial pattern

formation. The experiments raise many questions, including what

induces the inward movement of swimmer cells, why they move in

streams, why radial streams quickly evolve into spiral streams, and

finally, why all the spirals wind CCW. To address these we

developed a hybrid cell-based model in which we describe the

chemotactic movement of each cell individually by an independent

velocity jump process. We couple this cell-based model of

chemotactic movement with reaction-diffusion equations for the

nutrient and attractant. To numerically solve the governing

equations, a Monte Carlo method is used to simulate the velocity

jump process of each cell, and an ADI method is used to solve the

reaction-diffusion equations for the extracellular chemicals. The

hybrid cell-based model has yielded biologically-based answers to

the questions raised by the experimental observations. Starting

with an estimate of the attractant level before the onset of the

radial streaming as the initial value, we predicted the formation of

radial streams as a result of the modulation of the local attractant

concentration by the cells. It is observed in E. coli that ‘runs’ of

single cells curve to the right when cells swim near a surface, and

we incorporated this swimming bias by adding a constant angular

velocity during runs of each cell. This leads to spiral streams with

the same chirality as is observed experimentally. Finally, by

incorporating growth of the patterning domain we were able to

capture some of the salient features of the global patterns

observed.

The streams and spirals reported here share similarities with

those formed in Dictyostelium discoideum, where cells migrate towards

a pacemaker [49–52], but there are significant differences. Firstly,

the mechanism leading to aggregation is similar, in that in both

cases the cells react chemotactically and secrete the attractant.

However, since bacteria are small, they do a ‘bakery search’ in

deciding how to move - detecting the signal while moving, and

constantly modulating their run time in response to changes in the

signal. In contrast, D. discoideum is large enough that it can measure

gradients across it’s length and orient and move accordingly [53].

Thus bacteria measure temporal gradients whereas amoeboid cells

such as D. discoideum measure spatial gradients. In either case the

cells respond locally by forming streams and migrate up the

gradient of an attractant. However, spirals are less ubiquitous in D.

discoideum, and when they form they can be of either handedness

[54], whereas in P. mirabilis, only spirals wound CCW when

viewed from above have been observed, which emphasizes the

importance of the influence of the cell-substrate interaction when

cells swim close to the surface. Experiments in which the

patterning occurs in an inverted petri dish lead to spirals with

an opposite handedness when viewed from above, which further

support our explanation. Our results imply that the spatial patterns

observed in P. mirabilis can be explained by the chemotactic

behavior of swimmer cells, and suggest that differentiation and de-

differentiation of the cells at the leading edge does not play a

critical role in patterning, but rather serves to expand the colony

under appropriate conditions. A future objective is to incorporate

a better description of the dynamics at the leading edge when

more biological information is available.

The spatial patterns reported here are also different from those

observed in other bacteria such as E. coli or Bacillus subtilis. In the

latter, fractal bacterial patterns have been observed [5,6], and

these patterns form primarily at the leading edge of the growing

colony. There cell motility plays a lesser role and the limited

diffusion of nutrient plays an important role in the pattern

Figure 6. Streams in a growing colony. r0~104cells=cm2,
eb~0:04p, Other parameters used are the same as in Figure 3.
doi:10.1371/journal.pcbi.1002332.g006

Figure 7. A comparison of predicted and observed spatial
patterns. Parameters used are the same as in Figure 3.
doi:10.1371/journal.pcbi.1002332.g007
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formation. In [11], chiral growth patterns have been observed to

form at the leading edge of Paenibacillus colonies with chirality

depending on the concentration of agar in the medium. Those

patterns were explained by introducing a phenomenological

rotation to the tumbling of cells at the leading edge. However,

the spiral streams we presented here form in the center of a

growing colony, and the CCW chirality results from the physical

property of bacterial swimming when they move close to a surface,

namely, a CW individual swimming bias when observed from

above [45–47].

Further experimental work is needed to validate our primary

assumptions and to set the stage for incorporation of more detail

into the model. A first step would be to definitively identify the

primary attractant and the receptors for it, and to determine

whether the primary attractant is also secreted by cells, as assumed

here. If several are equally important the mathematical model for

individual cells and the equations for the evolution of the

attractants would have to be modified, but this poses no new

mathematical or conceptual difficulties. Of course if several are

involved there are entirely new ways in which the patterns can be

influenced by manipulating the attractants. A second set of

experiments would be needed to elucidate the behavior of

individual cells and determine whether the run-and-tumble

description must be modified. This has been done in detail and

at great expense for E. coli, and would have to be repeated for

Proteus. The third crucial assumption concerns the mechanism that

leads to spirals of fixed chirality. The analysis that leads to our

hypothesis for a rotational bias when swimming near a surface

relies on the fact that the motion is at low Reynolds number, and

therefore, that viscous effects dominate the motion. Accordingly,

experiments in which the viscosity is manipulated would shed light

on the validity of this assumption, since decreasing the viscosity

will decrease the bias and reduce the curvature of the spirals, and

conversely for increases in viscosity.

Of course the experimental reality is more complicated than

that which our model describes, and this can lead a set of

significantly more complex experiments. For instance, the nutrient

composition is very complex and nutrient depletion may occur at a

later stage, such as during train formation. Further, cells may

become non-motile for various reasons, and these factors may play

a role in the stabilization of the ring patterns. Another important

issue is the hydrodynamic interaction of the swimmer cells with

fluid in the slime layer. When cell density is low and cells are well

separated we can approximate their movement by independent

velocity jump processes plus a swimming bias, but when the cell

density is high the cell movement is correlated through the

hydrodynamic interactions and this must be taken into account.

This hydrodynamic interaction may be an important factor in the

formation of the trains observed in experiments.

In previous work the individual cell behavior, including the

swimming bias, has been embedded in a continuum chemotaxis

equation derived by analyzing the diffusion limit of a transport

equation based on the velocity jump process [32]. The resulting

equation is based on the assumption that the signal gradient is

shallow and the predicted macroscopic velocity in this regime is

linear in the signal gradient. A novel feature of the result is that the

swimming bias at the individual cell level gives rise to an additional

taxis term orthogonal to the signal gradient in this equation.

However in the simulations of the patterns presented here we

observe steep signal gradients near the core of the patterns and

within the streams, and therefore in these regimes the assumptions

underlying the continuum chemotaxis model are not valid.

To illustrate the significance of this, we use the function

H~sG’(S)+S=g as a measure of the signal gradient detected by a

cell, and for each fixed spatial distribution of H, we stochastically

simulated the trajectory of 5000 cells with the same initial

position and random initial velocity. We found, using least-

squares fitting, that the mean, variance, and covariance of the

displacement parallel and perpendicular to the gradient can be fit

very well by a linear function, and we used these statistics to

obtain the macroscopic drift and diffusion rate for each signal

gradient H chosen. In the simulations we assumed, without loss

of generality, that H is in the direction of the y-axis, and took the

initial positions to be (0,0). Then we computed the macroscopic

drift as

us~
vxw

t
,
vyw

t

� �
,

and the diffusion matrix

Dx Dxy

Dxy Dy

� �
~

vx2
w

2t

vxyw
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2t
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2t

0
BB@
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Figure 8 compares the statistical results predicted by the cell-

based model described above with the formula given in [32], both

in the absence of a swimming bias and when there is a bias

eb~0:04p, as in Figures 4 and 6. We see that the continuum

description given in [32] gives a good approximation for H very

small (the shallow gradient assumption), but not for H large. The

statistical analysis of results from the cell-based model reveals

saturation in the macroscopic velocity (Figure 8B, E) and gradient-

dependent diffusion coefficients (Figure 8A, D). When there is no

bias, both Dx and Dy increase with the signal gradient H
(Figure 8A) and saturate for very large H (not shown), while the

cross diffusion coefficient Dxy is essentially 0 (Figure 8A). In

contrast with this, if there is a swimming bias, the diffusion

coefficients Dx and Dy first increase and then decrease before

converging to a constant, while Dxy is small but nonzero for

intermediate H (Figure 8C). These results are very different from

the prediction of the continuum model shown in red lines in

Figure 8, where the predicted macroscopic velocity exceeds the

cell speed in the presence of large signal gradients, and the

diffusion of cells is isotropic with a constant coefficient. In addition,

statistical analysis of the cell-based model also shows that when

there is a swimming bias, the angle between the macroscopic

velocity and the signal gradient depends nonlinearly on the

magnitude of the signal gradient, in contrast to the prediction from

the PDE in [32] (Figure 8F). Thus the hybrid model developed

herein successfully describes pattern formation in the presence of

large gradients, whereas current continuum descriptions of cell

motion do not. Further work is needed to connect the two

descriptions in this regime.

Methods

Chemotaxis analysis of swimmer cells
To justify the model assumption that swimmer cells are

chemotactic to an attractant they produce, we tested if swimmers

in the center of the colony have the ability to move chemotacticly.

Positive chemotaxis toward each of the common 20 amino acids

was tested using the drop assay. Each amino acid was tested at the

following concentrations: .1 M, 10 mM, 1 mM, l0 mM, and 1 mM
(see Table 1).

Chemotaxis of swimmer cells towards single amino acids was

also tested using 0.3% agar plates with different thickness of
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substrate layer(10 and 20 ml). Each amino acid was used in

concentrations varying from 0.25 mM to 7.5 mM in both

thicknesses of agar. The plates were point inoculated and placed

in a humid chamber at room temperature for at least 20 hrs.

Bacteria growing on 10 and 20 ml plates with 0.00l M of

Aspartate, Methionine and Serine formed dense moving outer

ring which we interpret as a chemotactic ring. Bacteria grown on

all remaining amino acids produced colonies with the higher

density at the point of inoculation and homogeneous cell

distribution in the rest of the colony.

Numerical algorithm
In the implementation of the cell-based model, cell motion is

simulated by a standard Monte Carlo method in the whole

domain, while the equations for extracellular chemicals are solved

by an alternating direction method on a set of rectangular grid

points. In this appendix, we present the numerical algorithm in a

two-dimensional domain with only one chemical - the attractant -

involved. Each cell is described by its position (xi
1,xi

2), internal

variables (yi
1,yi

2), direction of movement hi and age Ti (the

superscript i is the index of the cell). Concentration of the

attractant is described by a discrete function defined on the grid

for the finite difference method (Figure 9A). We denote the time

step by k, the grid sizes by h1 and h2.

Since two components of the model live in different spaces, two

interpolating operators are needed in the algorithm. T gc is used to

evaluate the attractant concentration that a cell senses. For a cell at

(xi
1,xi

2), inside the square with vertex indices (n{1,m{1), (n,m{1),
(n{1,m) and (n,m), T gc(xi

1,xi
2) is defined by the bi-linear function:

T gc(xi
1,xi

2)~
A4

A
Sn{1,m{1z

A3

A
Sn,m{1z

A2

A
Sn{1,mz

A1

A
Sn,m ð5Þ

where A~h1h2 and Aj ,j~1,2,3,4 are the area fractions (Figure 9B).

On the other hand, the attractant secreted by cells is interpolated as

increments at the grid points by T cg. Suppose during one time step k,

a cell staying at (xi
1,xi

2) secretes D amount of attractant, we then

interpolate the increment of the attractant concentration at the

neighboring grid points as follows:

T cg(xi; p,q)~

A4D

A2
, (p,q)~(n{1,m{1);

A3D

A2
, (p,q)~(n,m{1);

A2D

A2
, (p,q)~(n{1,m);

A1D

A2
, (p,q)~(n,m);

0, otherwise:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð6Þ

Figure 8. A comparison of the cell-based and the macroscopic predictions of the diffusion matrix D, chemotactic velocity uS , and
the angle between uS and +S. Here Dx and Dy are the diffusion rate perpendicular and in parallel to the signal gradient (along the y-axis), and Dxy

the cross diffusion rate. The horizontal axis (H~sG’(S)+S=g) measures the signal gradient interpreted by a cell, with units sec{1 . The top row is
obtained with no swimming bias as in Figure 3, and the bottom row is obtained with eb~0:04p as in Figures 4 and 6. Other parameters used are the
same as in the Figures 3, 4, and 6. The blue, green, and cyan curves are obtained from stochastic simulations of the cell-based model, and the red
curves are the predictions from the macroscopic chemotactic equation in [32].
doi:10.1371/journal.pcbi.1002332.g008
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We consider here a periodic boundary condition. The detailed

computing procedure is summarized as follows.

S1. Initialization.

(a) Initialize the chemical fields.

(b) Initialize the list of swimmer cells. Each cell is put in

the domain with random position, moving direction

and age. yi is set to be 0.

S2. For time step l (~1 initially), update the data of each cell.

(a) Determine the direction of movement hi by the

turning kernel.

i) Generate a random number r[U ½0,1�;
ii) If rv1{e{lik, update hi with a new random

direction.

(b) (xi
1,xi

2)l/(xi
1,xi

2)l{1z(sk cos hi,sk sin hi). Apply pe-

riodic boundary condition to make sure (xi
1,xi

2)
inside the domain,

(c) (Ti)l/(Ti)l{1zk. If (Ti)l§2 hours, then divide the

cell into two daughter cells. This step is only

considered when cell growth is considered.

(d) Update (yi
1,yi

2) by the equations for the internal

dynamics.

i) Determine the attractant concentration before

the cell moves (Si)l{1 and after the cell moves

(Si)l by using the interpolating operator T gc.

ii) Estimate the attractant level during the move-

ment by Si(t)~(Si)l{1

t{lk

k
z(Si)l

lkzk{t

k
and integrate equation for yi

2 to get (yi
2)l .

iii) (yi
1)l/G(S){(yi

2)l .

S3. Compute the source term of the attractant f l{1
2 due to the

secretion by the cells using the interpolator T cg

f
l{1

2
p,q ~

X
i

(T cg((xi)
l{1

2
; p,q)),

where D~ck.

S4. Apply the alternating direction implicit method to the

equation of the attractant:

Sl{1=2
p,q {Sl{1

p,q

k=2
~Ds

S
l{1=2
pz1,q{2Sl{1=2

p,q zS
l{1=2
p{1,q

h2
x

zDs

Sl{1
p,qz1{2Sl{1

p,q zSl{1
p,q{1

h2
x

{c
Sl{1

p,q zSl{1=2
p,q

2
zf

l{1
2

p,q ,

Sl
p,q{Sl{1=2

p,q

k=2
~Ds

S
l{1=2
pz1,q{2Sl{1=2

p,q zS
l{1=2
p{1,q

h2
x

zDs

Sl
p,qz1{2Sl

p,qzSl
p,q{1

h2
x

{c
Sl{1=2

p,q zSl
p,q

2
zf

l{1
2

p,q :

For the boundary grid points, use the periodic scheme.

S5. l/lz1. If lkƒT0, repeat S2–S4; otherwise, return.

Supporting Information

Figure S1 The radius of the colony as a function of the
real time. The data points here are extracted from the same

experiment as Video S1.

(EPS)

Figure S2 Simulated streams on a 2-D cylindrical
surface. When there is no swimming bias, the alignment of the

streams are parallel to the initial attractant gradient. This is

demonstrated in the computation where cells are put in a cylindrical

surface with constant attractant gradient. The cell density profile is

in units of 103=cm2, the attractant profile is in unit of 10{2mM.

Parameters used are the same as in Figure 3 in the main text.

(EPS)

Figure 9. The numerical algorithm for the model. (A) a schematic figure of the domains. The reaction-diffusion equations are solved on the
grid, while the cells can move around the whole domain. (B) the area fractions used in defining the interpolators (5, 6).
doi:10.1371/journal.pcbi.1002332.g009
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Video S1 Time evolution of radial and spiral streams.
The real time is shown in the movie. Compressed using Microsoft

Video Movie Maker.

(WMV)
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