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Abstract

Optimizing amino acid conformation and identity is a central problem in computational protein design. Protein design
algorithms must allow realistic protein flexibility to occur during this optimization, or they may fail to find the best sequence
with the lowest energy. Most design algorithms implement side-chain flexibility by allowing the side chains to move
between a small set of discrete, low-energy states, which we call rigid rotamers. In this work we show that allowing
continuous side-chain flexibility (which we call continuous rotamers) greatly improves protein flexibility modeling. We
present a large-scale study that compares the sequences and best energy conformations in 69 protein-core redesigns using
a rigid-rotamer model versus a continuous-rotamer model. We show that in nearly all of our redesigns the sequence found
by the continuous-rotamer model is different and has a lower energy than the one found by the rigid-rotamer model.
Moreover, the sequences found by the continuous-rotamer model are more similar to the native sequences. We then show
that the seemingly easy solution of sampling more rigid rotamers within the continuous region is not a practical alternative
to a continuous-rotamer model: at computationally feasible resolutions, using more rigid rotamers was never better than a
continuous-rotamer model and almost always resulted in higher energies. Finally, we present a new protein design
algorithm based on the dead-end elimination (DEE) algorithm, which we call iMinDEE, that makes the use of continuous
rotamers feasible in larger systems. iMinDEE guarantees finding the optimal answer while pruning the search space with
close to the same efficiency of DEE. Availability: Software is available under the Lesser GNU Public License v3. Contact the
authors for source code.
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Introduction

Computational structure-based protein redesign is a promising

field with applications for drug design [1], biosynthesis [2],

protein:peptide design [3], and predicting drug resistance [4]. The

goal of a structure-based protein redesign algorithm is to search

over protein conformations and find the global minimum energy

conformation, or GMEC, with respect to a given protein design

model. The protein design model defines both the input to the

algorithm and how the redesigned protein can move (the flexible

space). As input the algorithm takes one or several starting protein

structures, an energy function to score the designed proteins, and

whether the design search allows amino acid type mutations (a

mutation search). If mutations are allowed, the protein design

algorithm searches protein conformations from multiple sequences

to find the amino acid sequence of the GMEC.

Most protein design models limit the flexible space during the

search in the interest of computational feasibility. A common

protein design model assumes a fixed backbone and only allows

the side chains to move among a set of discrete conformations

called rotamers. Rotamers are determined using theoretical

calculations and the empirical observation that the side chains of

amino acids in protein structures avoid most of the available

conformational space and appear frequently as clusters in x-angle

space [5] (Figure 1A).

Traditionally, a rigid-rotamer model is used for protein design. The

rigid-rotamer model represents each empirically-determined side-

chain cluster as a single discrete rotamer (usually the modal or

mean value of the cluster’s distribution is chosen for the rotamer

conformation (Figure 1B)). However, protein energetics are

sensitive to small changes in atom coordinates, so a single discrete

conformation cannot fully describe a continuous region of side-

chain conformation space. On the other hand, the continuous-

rotamer model allows each rotamer to represent a region in x-angle

space in order to more accurately reflect the empirically-

discovered side-chain clusters (Figure 1C). Because both methods

use different rotamer models, they obtain different GMECs; we

refer to the GMEC when using a rigid-rotamer model, and the

continuous-rotamer model, respectively, as the rigid GMEC and the

minGMEC.

Many protein design algorithms focus on finding the rigid

GMEC instead of the minGMEC. These algorithms often try to

account for this simplification by allowing side-chain x angles to

rotate slightly after the rigid search to optimize energy interac-

tions, a process known as post hoc energy minimization. This is

dangerous because rigid rotamers will often score poorly during a

search and be discarded, even though they can potentially

minimize to lower energies than the rigid GMEC. The toy

example in Figure 2 illustrates how rotamers that are part of a

well-packed structure would be discarded by a rigid-rotamer
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search. Even though a post hoc energy minimization of the rigid-

rotamer model in this example would result in a low-energy

structure, the pre-minimization energy would be so high that this

conformation would not be considered for minimization. Thus,

rigid-rotamer methods are likely to not even consider the

minGMEC as a good candidate structure.

Previous work has shown the benefit of continuously minimizing

rotamers [6,7]. For example, the method described in [7] extends

post-hoc energy minimization by allowing rotamers to change

during the minimization step. First, a Monte Carlo, rigid-rotamer

based algorithm finds a low-energy structure. Next, one residue

position at a time, rotamers for that position are continuously

minimized, and the lowest energy rotamer is chosen. Thus, the

method in [7] is (a) dependent on the rigid-rotamer solution, (b)

dependent on the order residue positions are minimized, and (c)

does not explicitly allow concerted side-chain movements. In

contrast, we use continuous rotamers instead of relying on a rigid-

rotamer search. The new design search is no longer over discrete

side-chain conformations. Instead, each side-chain rotamer is a

continuous region of x-angle space. Therefore, our method is

independent of the order in which rotamers are minimized, and

allows for coordinated side-chain movements. The use of

continuous rotamers guarantees that our protein design search,

(i) can find the global minimum energy sequence for continuously

minimized side chains, and (ii) never gets stuck in local minima.

Our results show the benefits of using continuous rotamers over

rigid-rotamer-based models.

In this work we focus on the protein design method dead-end

elimination (DEE) because it provably finds the globally optimal

solution according to the protein design model. Many protein

designs, however, use heuristic algorithms instead of provable

algorithms. Heuristic algorithms make no guarantees on the

optimality of the solution, but they are popular because of their

speed. Our results are relevant to these methods as well because

the optimal solution computed by DEE provides a bound on the

accuracy of all possible heuristic methods. We can therefore

measure precisely the limitations of any rigid-rotamer algorithm.

The original DEE algorithm (referred to in this paper as rigid DEE)

finds the GMEC with respect to the discrete rigid-rotamer model

by pruning rotamers that provably cannot be part of the rigid

GMEC [8]. An advancement of rigid DEE, the MinDEE

algorithm [9,10], addresses the problem of finding the minGMEC

by computing an upper and lower bound on the continuous

energies of each rotamer and each pairwise rotamer interaction.

In addition to finding lower bounds for each rotamer

individually, MinDEE also finds energy bounds for the possible

change in energetics that might occur during minimization across

the entire protein. The MinDEE pruning criterion prevents the

algorithm from using a rotamer it to prune a rotamer ir if it could

potentially perturb the other minimizing side chains during its

minimization to make it a higher energy rotamer than ir (Figure 2).

Even though MinDEE is a powerful technique that prunes the

design conformation space by orders of magnitude, the range of

potential minimization perturbations that MinDEE considers

results in unrealistically loose bounds that bracket each energy

interaction. These bounds represent theoretical worst cases which

reduce MinDEE’s capacity to prune. Therefore, MinDEE’s

pruning power is significantly weaker than rigid DEE.

MinDEE is an integral part of the K� algorithm [2,9,11], an

ensemble-based algorithm that estimates the binding constant of a

protein-ligand complex through a provably-accurate approxima-

tion of the partition function. K� was used prospectively in drug

design [1], enzyme redesign [2], protein:peptide design [3], and

drug resistance prediction [4], all with experimental validation. K�

approximates the partition function by evaluating only the low

energy conformations that carry the largest weight in the

Boltzmann-weighted partition function. The MinDEE algorithm

is essential for K�, since MinDEE prunes the majority of

conformations that cannot minimize into low energy conforma-

tions, and therefore need not be considered by K�. Therefore,

improvements to the MinDEE criterion and algorithm directly

improve the efficiency of MinDEE/A* and the K� algorithm.

In this work we show that when a protein design algorithm uses

a continuous-rotamer model, the algorithm is able to find the

minGMEC, which is often a much lower energy sequence than the

rigid GMEC. Specifically, we show that the MinDEE algorithm is

able to find lower energy sequences than those found by rigid DEE

in 66 out of 69 proteins from the PDB. We also show that trying to

find the minGMEC by increasing the number of rotamers in the

rigid-rotamer model (Figure 1D) is often impractical, and still fails

to find the minGMEC in most cases. In addition, we propose a

simplified and improved alternative to MinDEE, which we call

iMinDEE. iMinDEE uses a new technique that we call Greedy

Estimation of Minimization (GEM), which allows iMinDEE to reduce

the search space by orders of magnitude when compared to

MinDEE. iMinDEE and MinDEE are mathematically guaranteed

to compute the same results, and to check this is true, we ran both

algorithms and obtained identical results. Finally, we used native

sequence recovery, a commonly used metric to evaluate protein design

algorithms, to show that continuous rotamers result in more

biologically accurate protein redesigns. We tested how well the

sequences of both the minGMEC and the rigid GMEC

recapitulated the native protein sequence and found that

iMinDEE significantly improves native sequence recovery over

rigidDEE.

Results

In this work we focus on the importance of using continuous

rotamers instead of rigid rotamers in protein design. First, we

establish that protein design searches that use continuous rotamers

find sequences lower in energy than those using rigid rotamers.

Author Summary

Computational protein design is a promising field with
many biomedical applications, such as drug design, or the
redesign of new enzymes to perform nonnatural chemical
reactions. An essential feature of any protein design
algorithm is the ability to accurately model the flexibility
that occurs in real proteins. In enzyme design, for example,
an algorithm must predict how the designed protein will
change during binding and catalysis. In this work we
present a large-scale study of 69 protein redesigns that
shows the necessity of modeling more realistic protein
flexibility. Specifically, we model the continuous space
around low-energy conformations of amino acid side
chains, and compare it against the standard rigid approach
of modeling only a small discrete set of low-energy
conformations. We show that by allowing the side chains
to move in the continuous space around low energy
conformations during the protein design search, we obtain
very different sequences that better match real protein
sequences. Moreover, we propose a new protein design
algorithm that, contrary to conventional wisdom, shows
that we can search the continuous space around side
chains with close to the same efficiency as algorithms that
model only a discrete set of conformations.

Protein Design Using Continuous Rotamers
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Next, we present an improved and simplified DEE pruning

criterion that makes continuous-rotamer protein design more

computationally feasible.

Impact of continuous rotamers on protein design
In this section we first describe the original rigid DEE [8] and

MinDEE criteria [9], and then show an experimental comparison

of the two methods. This comparison shows that MinDEE

provides a substantial advantage over rigid DEE in computing

low-energy sequences. Finally, we compare a rigid-rotamer

protein design search using an expanded rotamer library against

MinDEE with a standard rotamer library.

Rigid DEE criterion. The rigid DEE criterion [8] prunes

rigid rotamers that cannot be part of the GMEC for a given

protein design system. To prune a candidate rotamer, rigid DEE

finds a competitor rotamer at the same residue position that can

always provide a lower energy than the candidate rotamer. Let the

internal energy of rotamer r at residue position i, ir be E(ir), the

pairwise energy between rotamers ir and js be E(ir,js) and E
M

be

the template energy (i.e. the energy of the backbone atoms and

side chain residues that are not allowed to move or mutate). The

protein design system can be represented as a rotamer vector,

A~(A1,:::,An), which is an assignment of a rotamer Ai at each

design position i. Then we define the total energy E
T
(A) of the

system A:

E
T

(A)~E
M

z
X

i,ir[A

E(ir)z
X

i,ir[A

X

jwi,js[A

E(ir,js): ð1Þ

The dead-end elimination criterion states that for a rotamer ir, if

there is a rotamer it such that:

E(ir)z
X

j=i

min
s

E(ir,js)wE(it)z
X

j=i

max
s

E(it,js), ð2Þ

then ir is provably not part of the GMEC, and can therefore be

pruned. Rigid DEE prunes rotamers in sequential iterations; the

pruning of a rotamer at position i in one iteration might enable the

pruning of a rotamer at position j in the next iteration.

MinDEE. The MinDEE criterion [9,12] extends the rigid

DEE criterion to provably prune only rotamers that cannot

minimize to the minGMEC. MinDEE treats rotamers as a

continuous range of conformations inside a voxel V (ir) over the

space defined by movements up to h degrees from the modal

value. MinDEE sets bounds for the energy of each voxel through a

maximum energy, E+(ir), and a minimum energy, E7(ir) to be

used for pruning. In the case of pairwise energies, MinDEE sets

bounds for the minimum and maximum interaction energies

between residues ir and js within the space V (ir)|V (js): E7(ir,js)
and E+(ir,js) respectively. When energy minimization is not

allowed, the energy of a fully-assigned rotamer vector A, E(A),
can be computed as a sum of independent, individual terms (Eq.

(1)). When energy minimization is allowed, however, the

minimized energy of A, E
T
(A), cannot be pairwise-decomposed,

since the minimization of one rotamer within its voxel might alter

how the remaining rotamers minimize (i.e. a domino effect).

E
T
(A), however, can be bounded by the sums of maxima and

minima [9], E7(A)vE
T
(A)vE+(A):

E+(A)~E
M

z
X

i

E+(ir)z
X

i

X

jwi

E+(ir, js), ð3Þ

E7(A)~E
M

z
X

i

E7(ir)z
X

i

X

jwi

E7(ir, js): ð4Þ

In order to prune rotamers, possible perturbations that

minimization may cause in the rest of the system must be accounted

for. MinDEE accounts for possible side-chain rearrangements

during minimization by including the maximum range terms:

E�(ir)~E+(ir){E7(ir), E�(ir,js)~E+(ir,js){E7(ir,js). The

MinDEE criterion for pruning [9] is:

E7(ir)z
X

j=i

min
s

E7(ir,js){
X

j=i

max
s

E�(js)

{
X

j=i

X

k=i,kwj

max
s,u

E�(js,ku)wE+(it)z
X

j=i

max
s

E+(it, js):
ð5Þ

If Eq. (5) holds for rotamers ir and it, then rotamer ir is provably not

part of the minGMEC.

MinDEE/A*. MinDEE prunes rotamers that are provably

not part of the minGMEC, and then the A* [9,13] algorithm is

used to enumerate rotamer vectors in order of the lower bound on

their energies. During the A* search, each rotamer vector is

minimized and the A* enumeration stops when the lower energy

bound of the enumerated conformation is higher than the lowest

minimized energy.

Energy comparison between rigid DEE and MinDEE. Both

the rigid GMEC and the minGMEC were computed for 69

protein core redesigns. As a postprocessing step, the rigid-GMEC

Figure 1. Distribution of Isoleucine in x-angle space. Isoleucine
has two flexible dihedral angles (x1 and x2 angles) and the ocurrence of
isoleucine conformations across a wide set of high-quality structures
[38] is plotted here. Panel A shows the entire x1 and x2 angle space,
while panels B, C, and D zoom in on the region specific to one rotamer.
(A) The side chains of amino acids commonly appear almost exclusively
(blue dots in the plot) within specific regions of their flexible space.
(B) In a rigid-rotamer model a single conformation (the red diamond)
represents that entire region. (C) In a continuous-rotamer model, a
voxel models the continuous region that represents the rotamer. (D) An
expanded rotamer model samples additional rigid rotamers near
rotamers from the rigid-rotamer model.
doi:10.1371/journal.pcbi.1002335.g001

Protein Design Using Continuous Rotamers

PLoS Computational Biology | www.ploscompbiol.org 3 January 2012 | Volume 8 | Issue 1 | e1002335



conformation was energy minimized to make the comparison fair,

since many programs that use rigid rotamers minimize the rigid

GMEC after rigid DEE. We will refer to the post hoc energy minimized

rigid GMEC as the rigidMin. Figure 3 shows a comparison between the

energy of the minGMEC and the rigidMin, normalized to the energy

of the rigid GMEC for 69 design runs. In 68 of the 69 design runs the

minGMEC had a lower energy than the rigidMin, with an average

energy difference of 7:5 kcal=mol (standard deviation~5:7) and a

maximum energy difference of 24:2 kcal=mol. In only one design

case, antiviral lectin scytovirin from Scytonema varium (PDB id: 2QSK)

are the minGMEC and the rigidMin the same, with the same

minimized energy and the same sequence. Furthermore, in 66 of the

69 design runs the minGMEC was different from the rigid GMEC. We

evaluated the sequence distance, the percentage of designed residues that

differ in their amino acid type between the rigid GMEC and the

minGMEC, and found a sequence distance average of 31:1%
(standard deviation~15:7). The maximum sequence distance is

64:3%. For two design runs, Cytochrome C from Shewanella oneidensis

(PDB id: 1M1Q), and NapB from Haemophilus influenzae (PDB id: 1JNI),

the minGMEC and the rigid GMEC have the same sequence, but

different rotamers and therefore different energies. Both of these

designs are small: only 4 redesigned residues for 1M1Q and 5 for 1JNI.

To further illustrate these results we present the results from a

representative design run, the run for Ribonuclease from

Streptomyces aureofaciens (PDB id: 1LNI). The rigid GMEC

(computed with DEE/A*) has an energy of {240:3 kcal=mol,
the rigidMin has an energy of {247:1 kcal=mol, and the

minGMEC (computed with MinDEE/A*) has an energy of

{264:5 kcal=mol. Five amino acids differ between the min-

GMEC and the rigid GMEC: the minGMEC has D33, Y52, R69,

M70, and F89; the rigid GMEC has N33, H52, N69, T70,

and H89. If the rotamers from the minGMEC are returned to

their rigid, modal values, the energy of this conformation is

z337 kcal=mol, over 600 kcal=mol above the minGMEC. This

illustrates how a method that relies on rigid rotamers, followed by

a post hoc minimization step, can miss the minGMEC.

Figure 2. Toy example on the impact of rotamer minimization in protein design and DEE pruning. (A) Many protein design algorithms
select a single, discrete conformation to represent each rotamer. The discrete conformation speeds up the computation, but it can result in steric
clashes (shown in red). (B) Small changes in x-angle space can have profound effects on the energies of interacting rotamers, particularly in the
packed core of a protein. The three hydrophobic residues in this toy example can form a well-packed core through small changes in their x angles in
this cartoon. A pruning algorithm like rigid DEE would erroneously prune the clashing rotamers since it does not account for these small changes.
(C) If one rotamer, ir , always results in conformations of higher energy than another, it, the rotamer ir and all the conformations that contain ir can be
pruned. The rigid DEE algorithm [8] prunes rotamers and amino acids that are provably not part of the rigid GMEC. (D) When rotamers can minimize
within their specified voxel, rotamers and amino acids that seemed poor in a rigid model might minimize to lower energy conformations than the
rigid GMEC. The lowest-energy conformation in this scenario is the minGMEC. The MinDEE algorithm [9] and iMinDEE algorithm can provably prune
rotamers in the presence of minimization.
doi:10.1371/journal.pcbi.1002335.g002
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These results clearly show that if minimization is not included

during the search, the true lowest-energy sequences are missed in

almost every case and in many cases the minGMEC has a much

different sequence than the rigid GMEC. This also shows that

energetically favorable rotamers are pruned because of the

inability of rigid rotamers to make small spatial adjustments.

More importantly, this means that wet lab experiments based on

rigid DEE results, even with post hoc energy minimization, will not

test the sequences that are predicted to be the best by the energy

model.

MinDEE vs. an expanded rotamer library. A seemingly

simpler alternative to MinDEE is to increase the granularity of the

rotamer library and use the rigid DEE algorithm. In practice,

however, this is hard because the precomputation of pairwise

interactions, the rigid DEE pruning stages, and the A*

conformational search are computationally expensive for side

chains with 3 or 4 degrees of freedom. For example, consider a

rotamer library that is expanded by adding all rotamers with

dihedrals +50 and +100 from rotamers in the original library. In

such a library an arginine residue that originally had 34 rotamers

would increase to 34|54 rotamers. In this scenario, a pairwise

computation between two arginine residues must consider 450

million pairs.

To overcome this rotamer explosion, some protein design

protocols [14,15] add more rotamers by altering only the x1 or x1

and x2 angles by +1 standard deviation (s). We tested this

approach by building two expanded rotamer libraries from the

Richardson’s Penultimate Rotamer Library: RL1, a rotamer

library where new rotamers are added by varying each rotamer’s

x1 angle by +s; and RL2, an extension where rotamers are added

by varying both x1 and x2 by +s. We then compared the rigid

GMEC of the original rotamer library (denoted as RL0), RL1, and

RL2 against the minGMEC for each system. The energetic and

sequence results for these rotamer libraries are shown in Figure 4.

Figure 4 shows results for only 46 proteins, much less than the

69 shown in Figure 3, because rigid DEE with rotamer library

RL2 failed for 23 of them. The results for the 46 proteins that did

finish for RL2 show that on average the RL0 rigid GMEC is

15:17 kcal=mol higher in energy than the minGMEC; RL1 is

7:39 kcal=mol above the minGMEC; and RL2 is 2:60 kcal=mol
above the minGMEC. The amino acid sequences also vary

between the expanded rotamer libraries and the minGMEC, with

an average difference of 28% for RL0, 18% for RL1 and 10% for

RL2.

The remaining 23 systems ran out of memory on the rigid DEE

runs with rotamer library RL2, either in the DEE stages, or in the

A* stage. This ocurred because the rotamer library RL2 is too

large, even though our protein core redesigns are restricted to at

most 15 mutable residues. Two redesigns, 1L9L and 3G21, both

with 15 redesigned residues, failed for both RL1 and RL2 rotamer

libraries. The results for the 21 systems that failed with rotamer

library RL2 but completed with rotamer library RL1 are shown in

Figure 5.

Greedy Estimation of Minimization (GEM)
The MinDEE algorithm is guaranteed to find the GMEC when

searching over continuous rotamers, which we call the min-

GMEC. To efficiently prune and search over continuous-rotamer

conformations, the MinDEE algorithm computes lower and upper

bounds on the pairwise energies of continuous rotamers (E7(ir,js)
and E+(ir,js), as defined above). In practice, however, these

maximum and minimum bounds can be very loose. This results in

a large gap between the maximum and minimum terms, which

consequently makes the E� terms in the MinDEE pruning

Figure 3. Rigid GMEC vs. minGMEC. (A) Fraction of the redesigned residues that had different amino acids (AA) between the rigid GMEC and the
minGMEC. In 66 out of the 69 cases the minGMEC and the rigid GMEC have different sequences. The three systems where the minGMEC has the same
sequence as the rigid GMEC are marked with a bold line at zero (2QSK, 1M1Q, and 1JNI). (B) Energy of the minGMEC vs. energy of the rigidMin (the
post hoc minimization of the rigid GMEC), relative to the energy of the rigid GMEC, which is set to zero for each system. In 68 of 69 cases the energy of
the minGMEC is lower than that of the rigidMin. For 2QSK the rotamers of the rigid GMEC are the same as the rotamers of the minGMEC, and,
therefore, the energy of the rigidMin is the same as the energy of the minGMEC. The energy of the minGMEC is shown in yellow + blue bars, while the
yellow color by itself shows the energy of the rigidMin. The results of this figure are identical for iMinDEE and MinDEE since both algorithms provably
find the minGMEC.
doi:10.1371/journal.pcbi.1002335.g003
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criterion (Eq. 5) very large. For example, a pair of neighboring

tryptophan rotamers might have a maximum energy within a

voxel of 1010 kcal=mol, but these can minimize and form

favorable stacking to an energy of {10 kcal=mol. These large

E� terms make it difficult to prune rotamers, resulting in much less

pruning than rigid DEE.

In this section we present a new criterion and algorithm,

iMinDEE, which can prune rotamers much more efficiently than

MinDEE and is still guaranteed to find the minGMEC. iMinDEE

obtains improved pruning by removing the need to define

maximum bounds on continuous-rotamer energies, which elimi-

nates the large E� terms from the pruning criterion. Remember

that the E� terms from the MinDEE criteria were needed to

account for all possible side-chain rearrangements that could occur

during protein minimization. Instead of accounting for all

potential side-chain rearrangements, iMinDEE greedily estimates

how much minimization can actually occur.

We refer to the overall technique that iMinDEE uses to prune

rotamers as Greedy Estimation of Minimization (GEM). The basis

behind GEM is to greedily assume that protein minimization

occurs independently for each rotamer pair. Rotamers are initially

pruned based on this assumption, and the A* algorithm finds the

best conformation in the remaining (unpruned) conformational

search space. After this first run, we can check whether the

Figure 4. The minGMEC vs. rigid DEE with an expanded rotamer library. Two expanded rotamer libraries were used, RL1 and RL2, and they
were compared against the standard rotamer library (RL0). (A) Redesigns that failed for rigid DEE using rotamer library RL2 because of the library’s
large size. AA: The number of mutable amino acids. (B) Fraction of the amino acids that are different between the minGMEC of MinDEE and,
respectively: the rigid GMEC of RL0 (light grey), the rigid GMEC of RL1 (grey), and the rigid GMEC of RL2 (dark grey). Those designs where the
sequence of the minGMEC and the sequence of the rigid GMEC are the same are marked with a bold line at zero. (C) Energy of the rigid GMEC of RL0
(light grey + grey + dark grey) vs. the rigid GMEC of RL1 (grey + dark grey) vs. the rigid GMEC of RL2 (dark grey), relative to the energy of the
minGMEC, which is set to zero for each system.
doi:10.1371/journal.pcbi.1002335.g004
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assumption was wrong and if the minGMEC was pruned.

Remarkably, if the minGMEC was pruned, we can provably

refine our initial assumption to obtain a new pruning criterion that

is guaranteed to recover the minGMEC, and the algorithm will

run at most one more time.

Interval MinDEE. We propose an improved algorithm for

continuous-rotamer pruning called Interval MinDEE (iMinDEE)

which eliminates the need for defining maximum bounds on the

energy terms of rotamers. Instead, iMinDEE uses an interval term,

I , that accurately bounds the minimization that can occur within

the protein. This allows for much tighter energy bounds than the

MinDEE method and therefore much more pruning.

To account for side-chain minimization the iMinDEE algo-

rithm computes lower bounds on the internal and pairwise

energies of continuous rotamers. Each continuous rotamer

represents a continuous set of side-chain conformations (i.e., a

set of x angles) that can be interpreted as a voxel in x angle space.

Consider a pair of continuous rotamers, ir and js. The pairwise

energy E(ir,js) of ir and js varies as ir and js each take on

conformations defined by the parameter space of their voxel. To

bound these pairwise energies, iMinDEE calculates the lowest-

energy conformation for a rotamer pair when no other side chains

are present. Unfortunately, once additional residues are added to

the protein, and the entire conformation is minimized, it is

no longer guaranteed that a single rotamer pair will maintain its

lower bound conformation. Thus, during the design search

when calculating the energy of a full protein conformation, the

actual energy of a rotamer pair will always be higher than the

precomputed low-energy bound. The interval term, I , in the

iMinDEE pruning criteria accounts for this energy difference for

all rotamer pairs.

We now define the interval term. Let A be any valid rotamer

assignment. Let E7(A) be the low-energy bound of rotamer

assignment A and let ET (A) be the total minimized energy of A.

Let L be the rotamer assignment with the lowest energy bound

and let G be the rotamer assignment of the minGMEC. By

definition, E7(L)ƒE7(A) and ET (G)ƒET (A). We define the

interval I as:

I§E
T

(G){E7(L): ð6Þ

Figure 5. The minGMEC vs. rigid DEE with an expanded rotamer library for the systems that failed with rigid DEE using rotamer
library RL2. These results compare the standard rotamer library (RL0) against an expanded rotamer library, RL1. (A) Fraction of the amino acids that
are different between the minGMEC of MinDEE and, respectively: the rigid GMEC of RL0 (light grey), and the rigid GMEC of RL1 (grey). (B) Energy of
the rigid GMEC of RL0 (light grey + grey) vs. the rigid GMEC of RL1 (grey), relative to the energy of the minGMEC, which is set to zero for each system.
doi:10.1371/journal.pcbi.1002335.g005
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We now define the iMinDEE criterion:

E7(ir)z
X

j=i

min
s

E7(ir,js)wE7(it)z
X

j=i

max
s

E7(it,js)zI : ð7Þ

E7(ir) is the lower bound on the energy of rotamer ir, and

E7(ir,js) is the lower bound on the pairwise energy of rotamers ir
and it, as defined in the MinDEE section above. If Eq. (7) holds,

then ir is provably not part of the minGMEC.

Proposition 1. When Eq. (7) holds, rotamer ir can be provably pruned

from the search space because it cannot be part of the minimized global

minimum energy conformation (minGMEC).

The proof for Proposition 1 is given in Text S1.

The smaller the value of I , the greater the pruning by

iMinDEE. However, determining the optimal value of I would

require computing the optimal rotamer assignment G, so finding

the optimal I is as hard as solving the problem of finding the

minGMEC. Instead, we find an approximation for the optimal

value of I as outlined below.

Greedy estimation of a good approximation for I. In this

section we detail the GEM technique to find a valid approximation

for the optimal value of I . The algorithm is sound, must only be

repeated at most once, and guarantees that iMinDEE finds the

minGMEC. First, we choose an initial approximation for I , called

I0 (in our implementation we found setting I0~0:5 kcal=mol
worked well). Next, we prune the rotamer library using the

iMinDEE criterion (Eq. (7)) substituting I0 for I . After pruning,

we use A* to enumerate protein conformations in order of their

lower energy bound and compute the minimized energy of the

enumerated conformations. Let G
0

be the lowest energy

conformation found during the enumeration. Since I0 was only

an initial guess for I , it is possible that the optimal value of I is

greater than I0. If that is the case, then G
0
=G, where G is the

minGMEC that we are trying to find. To check the validity of I0 we

define a second approximation to I called I1:

I1~E
T

(G
0
){E7(L): ð8Þ

Using the proposition below, we can determine whether I0 was a

valid approximation for I . If it was not, then I1 is guaranteed to be a

valid approximation for I . Finally, we can repeat the pruning and

A* steps using I1 instead of I0, and are guaranteed to find the

minGMEC during this A* search.

Proposition 2. If I0§I1 then G
0
~G and the search can stop;

otherwise the search must be repeated once using I1~E
T
(G

0
){E7(L) to

find the minGMEC.

Proof. First consider if I0§I1. Then using the definitions of I1

and the fact that E
T
(G

0
)§E

T
(G):

I0§E
T

(G
0
){E7(L)§E

T
(G){E7(L):

I0 satisfies Eq. (6), which means that the pruning criterion is valid

and G
0
~G. Now consider if I0vI1. In this case the pruning

criterion used was not correct so the design can be rerun using I1

instead of I0. By definition we know that I1§E
T

(G){E7(L) so as

in the first case the pruning criterion is valid and G
0
~G.

Figure 6 illustrates how the entire algorithm works. The

algorithm repeats at most once and is guaranteed to find the

minGMEC. Even though iMinDEE must go through two phases

of pruning and A* enumeration, this is a constant factor increase

in runtime, and in practice iMinDEE is still much faster than

MinDEE. By removing the maximum energy bounds (E+(ir) and

E+(ir,js) in Eq. (5)) from the MinDEE criterion, the iMinDEE

criterion is able to prune significantly more than MinDEE (See

Figure 7).

Analysis of iMinDEE
iMinDEE is mathematically guaranteed to compute the same

result as the original MinDEE, but can do so much more

Figure 6. iMinDEE algorithm illustration. The A* branch-and-bound algorithm completely searches the conformation space and enumerates
conformations in order of their low-energy bound. Because the search is complete, a large conformational search space can be computationally
infeasible for A*. Therefore, a pre-A* pruning of the conformational search space with the MinDEE algorithm or iMinDEE algorithm can make the A*
search feasible. (A) The entire MinDEE conformation space in the order that the A* algorithm would enumerate the conformations. A* enumerates
conformations until it can prove the minGMEC (denoted as G) has been found, but unpruned high energy conformations slow down the search. The
first conformation enumerated by A*, corresponding to the conformation with the lowest energy bound, is denoted L, and the lower bound on its
energy is E7(L). The minGMEC, G, is marked by a green dot and its energy is ET (G). (B) Instead of MinDEE, we can use iMinDEE to prune
conformations with energy bounds that are higher than the lowest energy bound by more than the initial I0 value. We then select the lowest
minimized energy found so far (i.e. as opposed to lowest energy bound) and use that to compute the I1 value. The conformation with the lowest
minimized energy is denoted G

0
with a blue dot and its energy is ET (G

0
). (C) The iMinDEE search is repeated if I1wI0 . Since ET (G

0
)§ET (G), I1 meets

the condition of Eq. (6), and the search will not need to be repeated again. By setting I~I1 , we can use the iMinDEE criterion (Eq. (7)) to prune
rotamers, and the iMinDEE algorithm will provably find the minGMEC.
doi:10.1371/journal.pcbi.1002335.g006
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efficiently. To show the benefit of our approach, we implemented

iMinDEE and applied it to the 69 protein core redesigns. We show

that iMinDEE significantly reduces the conformation search space

compared to the original MinDEE criterion. In many cases

iMinDEE is nearly as efficient as rigid DEE, while still

guaranteeing to compute the minGMEC. Finally, we analyze

the meaning and impact of the interval term, I , in the iMinDEE

criterion.

Comparison between rigid DEE, MinDEE, and iMinDEE

pruning. The protein design runs analyzed with rigid DEE and

MinDEE in the previous section were conducted using the

iMinDEE criterion. Figure 7 shows a comparison between the

percentage of rotamers pruned by rigid DEE, iMinDEE and

MinDEE. In all cases pruning is significantly higher for iMinDEE

compared with MinDEE, and in some cases iMinDEE pruning is

as efficient, or nearly as efficient, as rigid DEE. We again select the

mid-ranking (in terms of iMinDEE pruning) Ribonuclease (1LNI)

design run to look at the results in more detail. The Ribonuclease

structure has 15 residues with a SASA of less than 5% that were

selected as mutable. This results in a search space of 1:1|1023

conformations. The MinDEE algorithm prunes 40% of all

rotamers, which reduces the number of conformations to

7:7|1019. In contrast, iMinDEE prunes 83% of all rotamers

and reduces the search space to 1:4|1010. Rigid DEE prunes

93% of all rotamers and reduces the search space to 1:6|104.

This means that the remaining search space that is input into A* is

5.5 billion times smaller when iMinDEE is used than when

MinDEE is used.

Rigid DEE is not directly comparable with MinDEE/iMinDEE

because, as Figure 3 shows, it almost always finds a different (and

worse) answer than MinDEE. We feel, however, that a

comparison of pruning is necessary since rigid DEE is the

standard in the field, and potential adopters of iMinDEE might

feel reluctant to migrate if it results in considerable performance

penalties. Results of the pruning comparison show that in most

cases iMinDEE prunes with close to the same efficiency as rigid

DEE while maintaining the guarantees of MinDEE.

Analysis of the interval term. The interval term I in the

iMinDEE pruning criteria accounts for potential side-chain

rearrangements that can occur when one rotamer is changed to

another rotamer. Since the optimal value of I cannot be computed

efficiently, the iMinDEE algorithm uses the computed value I1

(Eq. (8)) during the final round of pruning. When we determine

that a design system has a high I1 value, by definition this means

that the difference between the rotamer pair bounds and the

actual minimized energy of the protein system is large. Thus, the I

value is intrinsic to each design system, and is a good indication of

whether the system can be tractably designed or not.

Figure 8 shows the relationship between I1 and pruning power

of iMinDEE for our protein design test set. Clearly, as the value of

I1 decreases iMinDEE can prune more rotamers. Ten I1 outlier

systems that had pruning levels at or below 50% are labeled in

Figure 8 (PDB ids: 1X6I, 3FIL, 1UCR, 3I2Z, 1T8K, 2BWF,

1R6J, 1CC8, 1XMK, and 2CS7). Since the pruning for these I1

outliers was low, our iMinDEE/A* implementation was unable to

compute the minGMEC for four of these runs (1X6I, 1XMK,

1CC8, and 2CS7). Because we were not able to compute the

minGMEC for these four runs, they are not included in Figures 3,

4, and 5. These four runs also ran out of memory in the rigid

DEE/A* runs with rotamer library RL2, and the runs for 1X6I

and 2CS7 ran out of memory with rotamer library RL1.

A close examination of all ten I1 outlier structures showed a

common pattern: in the absence of neighboring rotamers, rotamer

pairs would minimize into conformations that were incompatible

with other rotamers when all rotamers were minimized together.

Interestingly, eight of these structures have trouble spots where a

single rotamer is responsible for most of the gap between the

energy lower bound and minimized energy. To analyze this

graphically (Figure 9) we chose the most outlying design run,

which was of the S. pneumoniae PhtA histidine triad domain (PDB

id: 2CS7). This structure has one trouble spot involving Arg44 and

its pairwise interactions with residues Trp3, Tyr11, and Met40.

Arg44 clashes with each of its neighbors in its rigid-rotamer

conformation, but each pairwise clash can be solved through

minimization. When all rotamers are present, however, solving the

clash with one pair results in Arg44 moving to clash with another

rotamer. The result is that iMinDEE will enumerate all the

conformations that contain the four mutants, because they have a

good lower bound, but none of them can result in a good global

conformation because the Arg44 clashes with all of its neighbors

when they are all present. This suggests that using a higher-order

bounds computation might be able to resolve this particular case.

When we ran rigid DEE with rotamer library RL2 (Section

‘‘MinDEE vs. a finer rotamer library,’’ above), the design runs for

all of the ten I1 outlier systems (1X6I, 3FIL, 1UCR, 3I2Z, 1T8K,

2BWF, 1R6J, 1CC8, 1XMK, and 2CS7) failed to complete

Figure 7. Comparison of rotamer pruning with rigid DEE, MinDEE and iMinDEE. For each tested protein, this chart shows what percentage
of rotamers were pruned by each criterion. In all cases pruning with rigid DEE pruned at least as much as iMinDEE, and pruning with iMinDEE was
significantly better than MinDEE.
doi:10.1371/journal.pcbi.1002335.g007
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because they ran out of memory. In addition to the ten I1 outliers,

rigid DEE/A* with RL2 could not compute the rigid GMEC in 17

other cases (Figure 4A) and these systems often have high I1

values. Therefore, rigid DEE with an expanded rotamer library is

both unable to reach the energy of the minGMEC (Figure 4), and

unable to perform better than iMinDEE even in cases where

iMinDEE has little pruning. Since iMinDEE was able to compute

the minGMEC for the 23 systems that failed with rigid DEE/A*

and RL2 (Figure 4A), this further emphasizes the benefit of

iMinDEE over expanded rotamer techniques.

Native sequence recovery using continuous rotamers. There

is evidence suggesting that the sequences of native proteins optimize the

stability of their backbone structure [16]. Using this hypothesis, a

common way to evaluate protein design algorithms is to see how well

the low-energy sequence found by the algorithm compares with the

native protein sequence. While it is most likely true that some residues

are optimized for function instead of stability [17], native sequence

recovery still remains a valuable tool to determine the biological

relevance of new protein design algorithms. Therefore, to analyze the

benefits of continuous rotamers for protein design, we compared the

native sequence recovery of iMinDEE with that of rigid DEE.

For the native sequence recovery tests, we chose to design those

proteins from our initial test set of 69 proteins that had no co-

factors or non-amino acid ligands interacting with core residues. It

is expected that side chains interacting with co-factors or ligands

are involved in binding and catalysis, and are not necessarily

optimized for the unbound structure. Therefore, sequence

recovery is not applicable to these functional residues, because

Figure 8. Pruning vs I1 value. Most systems have small I1 values. Some outliers have larger I1 values, and in consequence, iMinDEE loses pruning
efficiency in these systems.
doi:10.1371/journal.pcbi.1002335.g008

Figure 9. iMinDEE predicts residues Trp3 (rotamer 3), Tyr11 (rotamer 1), Met40 (rotamer 8), and Arg44 (rotamer 15) in the structure
of the PhtA histidine triad domain (PDB ID: 2CS7) to achieve a low-energy conformation. iMinDEE precomputes low-energy bounds
between all pairs of possible rotamers in structure 2CS7. This figure illustrates the lower bound between the pairs (A) Met40 and Arg44, (B) Trp3 and
Arg44, and (C) Tyr11 and Arg44. Favorable vdW contacts are shown in green and blue dots, and a small steric overlap is shown in red in pane (C). All
of these pairs have favorable, low energies and iMinDEE predicts all conformations containing the 4 rotamers shown in this chart to be among the
lowest energy structures. (D) When all four are placed in the same conformation, however, the result is a biophysically impossible steric clash, shown
by red and purple dots.
doi:10.1371/journal.pcbi.1002335.g009
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their identity is determined by more than just apo energetic

structural stability. 43 protein structures remained after removing

those with interacting co-factors and ligands, which resulted in a

total of 527 residue positions to be redesigned. We redesigned each

protein system with both rigid DEE and iMinDEE, using the same

energy parameters for both algorithms. We then compared both

the rigid GMEC computed by rigid DEE, and the minGMEC

computed by iMinDEE, vs. the native sequence.

To better understand the sequence recovery results, we

analyzed the percentage and type of residue positions that were

not recovered by each method. Over all the designed sequences,

rigid DEE failed to recover 29:22% of the designed native

residues, while iMinDEE failed to recover 19:17%, a 1=3
reduction in non-recovered residues. This improvement is highly

significant, but the results are more illustrative if we specifically

analyze the recovery of large residues and residues with more than

one flexible dihedral. If we consider all 13 amino acids with more

than one flexible dihedral, rigid DEE failed to recover 37:82%
while iMinDEE failed to recover 22:54% of native residues, a 2=5
reduction in non-recovered amino acid positions (Figure 10A). If

the bulkiest residues (those with a mass over 130 Da: Trp, Phe,

Tyr, Arg, Met, and His) are considered, rigid DEE failed to

recover 54:44% while iMinDEE only failed to recover 28:89%, a

one-half reduction in non-recovered residues. (Figure 10B). In

Table S1 we show a summary of recovered residue positions

classified by each amino acid type.

Discussion

We show here and in previous work [9,18,19] that rotamers

pruned by rigid DEE can often minimize below the rigid GMEC.

Specifically, in 68 of our test systems (Figure 3), MinDEE finds

different rotamers for the minGMEC than for the rigid GMEC, as

well as different amino acid sequences (in some cases differing in

over half of the amino acids) in 66 of the designed protein cores.

This demonstrates the importance of using continuous rotamers to

find the true minimum energy conformation given the input

energy function. In addition, we have developed a new algorithm,

iMinDEE, which greatly increases the efficiency of searching over

continuous rotamers during protein design.

Stable wild-type proteins have well-packed cores, and mutations

that decrease core packing can result in unstable or misfolded

proteins [20–22]. This is important for our designs because all of the

residues that we selected are part of the protein core and have low

solvent accessibility (see Materials and Methods). In nearly all of our

designs the mutated side chains of the minGMEC have a larger

volume than those of the rigid GMEC (4:7% on average, as high as

13%). In an average example, 1ZZK with 12 redesigned amino

acids and a volume difference of 5:4%, the rigid GMEC and the

minGMEC differ in four amino acids: three residues are larger in

the minGMEC (M20, M47, I70 in the minGMEC vs. V20, T47,

T70 in the rigid GMEC ), and just one residue is smaller (A73 in the

minGMEC vs. S73 in the rigid GMEC). Rigid DEE selects a

sequence with much smaller amino acid side chains because it

cannot find a low energy conformation for the minGMEC

sequence. Since overpacking of the minGMEC is unlikely because

all of the minGMEC conformations have good vdW potential

energies, this increase in volume supports better packing of the

minGMEC with respect to the rigid GMEC. Therefore, we believe

that modeling continuous rotamers in protein design will reduce the

misfolding and increase the stability of predicted proteins.

To further evaluate the biological relevance of our results we

performed native sequence recovery with rigid DEE and

Figure 10. Summary of native sequence recovery results. The recovery of native amino acid sequence by rigid DEE (the rigid GMEC) and by
iMinDEE (the minGMEC) are shown. (A) Summary of amino acid side chains that contain more than one flexible dihedral angle (asp, lys, ile, trp, phe,
gln, asn, leu, tyr, glu, arg, met, and his) that were not recovered by the rigid GMEC (pie chart above) and the minGMEC (pie chart below). For
comparison, the recovered amino acids with more than one flexible dihedral angle are shown in grey. Residues that were not recovered are colored
by their amino acid type. (B) Percentage of residues not recovered by the rigid GMEC (yellow) and the minGMEC (orange), categorized by amino acid
mass. The first group (All AA) shows the total percentage of non-recovered residue positions of all amino acid types. The second group (100–130 Da)
shows the percentages of non-recovered residue positions of amino acid types with a mass between 100 Da and 130 Da, and the third group shows
the percentages of non-recovered residue positions of amino acid types with a mass over 130 Da.
doi:10.1371/journal.pcbi.1002335.g010
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iMinDEE. iMinDEE obtained significant improvements over rigid

DEE in sequence recovery. This shows the importance of fully

exploring the protein structural landscape to find the lowest energy

structures according to the energy function. Previously, sequence

recovery has been used to demonstrate the importance of

incorporating desolvation penalties into a protein design energy

function [23]. These penalties are usually considered essential for

protein design because they account for the hydrophobic effect,

which drives protein folding [24]. Interestingly, our results show

that the increase in sequence recovery obtained using continuous

rotamers is comparable to the increase in sequence recovery

obtained by incorporating implicit solvation [23]. This implies that

accurately modeling continuous rotamers is as vital to computing

accurate designs as incorporating sophisticated energy terms.

It is informative to categorize our sequence recovery results by

amino acid mass: (i) small-mass amino acids with a mass less than

100 Da (Val, Ala, Gly, and Ser); (ii) medium-mass amino acids, with

a mass between 100 Da and 130 Da (Asp, Lys, Ile, Gln, Asn, Leu,

Glu, Thr); and large-mass amino acids, with a mass over 130 Da

(Trp, Phe, Tyr, Arg, Met, His). Our results show that, in a rigid-

rotamer model, the large-mass residues are recovered significantly

less frequently than the small-mass residues. We show that rigid

DEE recovered 83.55% of the small-mass residues, but only

45.56% of the large-mass residues. By using a continuous-rotamer

model the difference in native sequence recovery of the large-mass

residues vs. the small-mass residues is much smaller. iMinDEE

recovered 86.54% of the small-mass amino acids and 71.11% of

the large-mass amino acids. This further demonstrates that

continuous rotamers are necessary to model large amino acids

because they are sensitive to small changes in x angles.

One might think that increasing the size and resolution of the

rotamer library would allow rigid DEE to find the minGMEC.

Although this is true in the limit, it is impractical to systematically

increase the size of the rotamer library because the side chains of

amino acids have many degrees of freedom. If flexibility is handled

through more sampling, the protein designer must determine on

an ad hoc basis what additional sampling should be done within the

limits of computational feasibility to allow an angle to deviate from

ideal rotamer values. We show in this work that increasing the

rotamer library by diversifying the x1, or x1 and x2 dihedrals still

fails to find sequences identical to the minGMEC, and in many

cases causes the search to become intractable.

With the introduction of iMinDEE we show that continuous

rotamers can efficiently be searched to find the minGMEC. Our

pruning results (Figure 7) show that iMinDEE always prunes

significantly more rotamers than MinDEE. This increase in

pruning greatly reduces the number of protein conformations that

A* must search through to find the minGMEC. Remarkably,

iMinDEE often prunes close to as many rotamers as rigid DEE.

The comparison between iMinDEE/MinDEE and rigid DEE

pruning is somewhat complex to interpret since rigid DEE pruning

is often incorrect relative to the MinDEE criterion, and the

minGMEC is in most cases pruned by rigid DEE. It could also be

argued that MinDEE intrinsically should not prune as much as

rigid DEE, because its correctness criterion is more stringent (i.e.

minimization-aware). Nevertheless, we show that the pruning of

MinDEE can be greatly increased while still maintaining

correctness. Both MinDEE and iMinDEE have identical outputs,

and both guarantee not to prune the minGMEC, and yet

iMinDEE prunes orders of magnitude more conformations in all

cases.

Pruning with iMinDEE for each design system is greatly

affected by the I1 value for that system. The results in Figure 8

show that the performance of iMinDEE can be improved by

reducing the value of I1. I1 is defined as the difference between

ET (G’) and E7(L) (Eq. (8)). Hence, I1 can potentially be reduced

either by finding a conformation G’ with a lower energy, or by

improving the lower bound on the energy of L (see Figure 6). First,

to find a low-energy conformation for G’, the I0 parameter of the

iMinDEE algorithm must be chosen with care. While a large I0

can lead to very little pruning during the first iMinDEE pruning

step, a very small I0 could prevent a low-energy minimized

conformation (i.e. a low energy conformation G’, see Figure 6)

from being found. This would cause G’ to have a high energy and

make I1 needlessly large. Second, to improve the lower bound on

the energy of L requires improving all of the rotamer energy

bounds. The example in Figure 9 shows a case where a poor lower

bound on the energy of L can arise because iMinDEE decomposes

the system into rotamer pairs and uses bounds on these pairs to

compute the total lower energy bound. One way to prevent this

would be to compute lower bounds in a four-wise manner (Arg44

would compute the lower bound with all combinations of

neighbors), but this would increase the complexity of the problem

by forcing (qn)4 bounds computations (where q is the number of

rotamers per residue, and n the number of mutable residues). If a

four-wise bounds computation solved this specific case, there

might be other cases where a higher-order, k-wise computation

might be necessary. However, k is most likely effectively bounded

by a small constant. Improving these bounds as well as choosing an

optimal I0 for each design system represents an interesting future

research direction.

Our results suggest that the optimal value of I (Eq. (6)) measures

the difficulty of accurately designing a given protein system for any

pairwise-energy based design algorithm. First, we observed that

larger I1 values resulted in less iMinDEE pruning (Figure 8). We

also found that rigid DEE with RL2 fails to complete the design

search for proteins where iMinDEE computed a large I1 value.

These results suggest that large I1-value systems represent difficult

design problems for any pairwise-energy based design algorithm.

However, since the value computed for I1 is dependent on the

value of I0 chosen in the iMinDEE algorithm (as described above),

it is likely that the optimal value of I , which is approximated by I1,

reflects the intrinsic difficulty of a design problem. Therefore, we

believe that I , which can be approximated by I1, measures an

intrinsic degree of difficulty of any design run.

Our previous work, the Backbone DEE (BD) [18] and Backrub

DEE (BRDEE) [19] algorithms, showed that we can provably

incorporate backbone flexibility into protein design, similar to how

MinDEE incorporates side-chain flexibility. Therefore, we can

expect an analysis of continuous versus rigid backbone flexibility to

yield similar results to those presented here, and that the iMinDEE

algorithm presented here can be extended to improve the pruning

efficiency of the BD and BRDEE algorithms.

Relevance for non-DEE/A*-based protein design methods
In this work we show that incorporating continuous rotamers

into protein design algorithms can lead to substantially improved

design predictions. We used the DEE/A* framework to demon-

strate these gains, but our results are applicable to any design

method that uses a similar protein design model. As defined in the

Introduction, the protein design model defines both the input to the

algorithm (i.e. energy function and rotamer library) and how the

redesigned protein can move (i.e. rigid rotamers or continuous

rotamers). Imagine we use the same protein design model, but use

different algorithms. Because rigid DEE/A* is guaranteed to find

the best sequence according to the protein design model, any

design method that uses rigid rotamers, such as Faster [25], Monte

Carlo [26], or simulated annealing [27], will never find a lower
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energy sequence than the rigid GMEC found by DEE/A*.

Therefore, the energies of the conformations computed by DEE/

A* will always be as low or lower than those computed by non-

DEE/A*-based methods using the same protein design model.

Hence, our DEE-based results provide a bound on the

performance of the other methods. Similarly, the iMinDEE/A*

algorithms provide a bound on how well any algorithm based on

continuous rotamers can perform. By using these bounds, we can

precisely measure the consequences of using rigid rotamers to

approximate continuous rotamers, and obtain general results that

are applicable to all other algorithms using either rigid or

continuous rotamers. We can therefore guarantee that the

limitations of rigid rotamers are as important for other protein

design methods as they are for rigid DEE/A*.

The main consequence of using rigid rotamers in the design

search is that the search for side-chain conformations that result in

low energy protein structures will not be accurate. Our results

show that improving the accuracy and realism of the modeled

protein flexibility can greatly improve the results of the design

search. In our work we used a simple energy function in which

every term can be related to physical phenomena, and found that

by switching from rigid to continuous rotamers we could discover

lower energy sequences and observe large gains in sequence

recovery. This demonstrates that if all sequences and structures are

not adequately searched to find the lowest energy ones, the most

biologically-relevant results are missed. Unfortunately, the impor-

tance of accurately searching for the true lowest energy structure

and sequence is sometimes overlooked and the inaccuracies are

attributed instead to the energy function. Protein design energy

functions are constantly improved through careful crafting to

better correlate designs with retrospective biological results. Many

improvements to energy functions are made through the

introduction of complex statistical terms based on structural

bioinformatics data and other additional parameters[28,29]. If the

rigid-rotamer search inaccuracies are wrongly attributed to

imperfections in the energy function, the results will be used to

incorrectly modify the energy function. Therefore, to avoid over-

fitting the energy function, accurate flexibility, such as continuous

rotamers, should be used during the design process.

It is often assumed in the protein design field that even if the

minGMEC and the rigid GMEC are different, minimizing and

reranking the top k results from a rigid approach can lead to

finding the minGMEC [30]. Several of our results suggest that this

is very likely to not be the case, and the minGMEC would never

even be considered by any rigid-rotamer method. First, the

enormous difference in sequence and amino acid composition

between the rigid GMEC and the minGMEC is striking: in some

cases the difference is over 60%. Second, the side chains of the

amino acids in the rigid GMEC tend to have a smaller volume

than the side chains of the minGMEC, suggesting that

unavoidable clashes in a rigid-rotamer model would make the

rotamers of the minGMEC unable to sterically fit in a rigid-

rotamer environment. We analyzed the conformations of the

minGMEC in all of our 69 designs and found that if the

continuous rotamers were replaced by their closest (i.e. in x-angle

space) rigid-rotamer counterpart at each position, most of the

designs would obtain high-energy steric clashes (up to 1000 kcal/

mol higher than the rigid GMEC). Even when the rigid-rotamer

library was expanded, the new library could not capture the low-

energy sequences of the continuous rotamers. Thus, contrary to

conventional wisdom, rigid rotamers are always a severely limited

approximation to continuous rotamers.

Any protein design algorithm that switches from using rigid

rotamers to continuous rotamers will expand the side-chain search

space it explores. As the sequence and conformation space

increases, it is always desirable to quickly and efficiently reduce the

space to make the search more tractable. In this work we

presented the novel iMinDEE pruning condition which can

reduce the conformational space by many orders of magnitude.

After iMinDEE pruning we search the remaining conformational

space with the A* search algorithm. We use A* as the search

algorithm because it is guaranteed to find the optimal answer, but

any search algorithm can be used in combination with iMinDEE.

In fact, an approach analogous to using iMinDEE with a different

continuous-rotamer search algorithm is frequently used in rigid-

rotamer protein design protocols. Rigid DEE was used as a filter

for Monte Carlo searches [31] or for the FASTER algorithm [25].

iMinDEE can therefore have considerable impact for any protein

design algorithm that uses continuous rotamers.

Materials and Methods

Protein test sets
Crystal structures of protein chains with a maximum percentage

sequence identity of 10% and a maximum resolution of 1.3 Å

were chosen using the PISCES protein culling server [32]. In

addition, the protein chains were restricted to have a maximum

length of 100 residues. The protein crystal structures were

gathered from the PDB and further curated by adding hydrogens

[33] and removing waters and ions. Residues with missing side

chains were either removed entirely or the missing atoms were

added using the King software package [34]. In total, 69 protein

structures were selected for the test set.

Design runs
For each protein in the test set, a redesign to find low energy

sequences for the initial backbone (a mutation search) was

conducted. Each mutation search was designed so that approx-

imately 12–15 core residues of the protein would be mutable. Core

residues were chosen by finding all residues with a side-chain

relative solvent accessible surface area (SASA) less than either 5%,

10%, or 20%. SASA values were determined with the program

NACCESS [35]. If a protein had less than 12 residues with ƒ20%

SASA, only these residues were allowed to mutate. Each mutable

residue was allowed to take on its wild-type identity and several

other amino acid types. The mutant amino acid types were

determined by finding the 5–7 most likely amino acid type

substitutions based on the BLOSUM62 matrix [36]. The AMBER

[37] energy function and the Richardson’s Penultimate Rotamer

Library [38] were used as input to the algorithm. Each design run

consisted of three steps: (1) A pairwise energy matrix precomputa-

tion between all pairs of side chains [9], and a minimum energy

bound matrix precomputation for MinDEE [9] and iMinDEE; (2)

Several rounds of DEE/MinDEE/iMinDEE pruning to reduce

the search space; and (3) An A* conformational search [9,13] of

the remaining space. Each design was run in an Intel Xeon

machine with at least 4 GB of dedicated RAM and at least

2.50 Ghz of processor speed.

DEE pruning
The protein design runs were done using rigid DEE, MinDEE,

and iMinDEE. All three algorithms performed an initial steric filter

to prune rotamers that could not minimize away from a clash with

the template. Implementations of Goldstein DEE [39], Goldstein

Pairs, and Split Flags [40] were used for all three algorithms, while

Bounds Pruning [9,41] was used for rigid DEE and MinBounds

Pruning for MinDEE and iMinDEE [9]. iMinDEE was run with an

initial interval value I0~0:5 kcal=mol for all the mutation searches.
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I1 was chosen based on the minimum difference between the lowest-

energy bound and the lowest minimized energy found in the first

run.

Energy function
To evaluate molecular energetics we used an energy function

very similar to the energy function used for our previously

described, empirically successful protein designs [2–4]. The energy

function is composed of the following energy terms: (1) attractive-

repulsive van der Waals forces, and coulombic electrostatics with a

distance-dependent dielectric from the AMBER energy function

[37]; (2) implicit solvation terms from the Lazardis Karplus EEF1

solvation model to account for the hydrophobic effect [24]; and (3)

entropic penalties [10,42] and reference energies [15] to account

for entropy and energetics of the unfolded protein state. The total

energy for a protein structure was calculated by computing a linear

combination of all the energy terms, using weightings for the terms

as described below.

The weighting of each energy term is important for accurate

results and most successful protein designs perform some training

of the energy parameters [3,16,29]. We trained our energy

function by performing protein core redesigns on 9 structures from

the PDB database that were not in the set of 69 structures used in

this study. The structures for the training set (PDB ids: 1fus, 1ifc,

1lkk, 1plc, 1poa, 1rro, 1whi, 2rhe, and 2trx) were selected from the

Richardson’s Top 100 database of high-quality curated protein

structures [43]. All of them were reprotonated according to the

PDB v3 [33] standard and energy minimized with Sander [37].

Residues with less than 20% SASA were selected to mutate; the

low-SASA residues were split into groups of 10–15 highly-

interacting residues each.

Training was performed by redesigning each group of low-

SASA residues with rigid DEE/A* and allowing each amino acid

to be mutated to the same 5–7 amino acids allowed in the design

runs, which were based on the BLOSUM62 matrix [36]. In

addition, each wild-type rotamer was added to the rotamer library.

Each redesign was first run using 21 different coarse parameter

combinations of solvation and dielectric constant defined by a

7|3 grid with solvation~(0:0,0:3,0:4,0:5,0:6,0:7,0:8) and dielec-

tric constant~(4,6,10). The optimal value found was solvation

~0:5 and dielectric~4. We then set solvation to 0.5 and dielectric

to 4 and performed a local minimization by scaling atom radii.

Scaling down the radii of atoms decreases the effect of the

repulsive term in the van der Waals energy term. We used

scales~(0:92,0:93,0:94,0:95,0:96,0:97,0:98,0:99). The optimal

atom radii scaling factor was determined to be 0:94.

Native sequence recovery
Each of the 69 protein systems used in our runs was manually

analyzed for ligands or co-factors that appeared close to core-

residues. Structures with ligands or co-factors in close contact to

the mutable design residues were not considered, because

functional residues tend to be optimized for functionality and

not to stabilize the monomeric structure [17]. 43 protein structures

remained after removing those with interacting ligands or co-

factors. Each mutation search was set up so that approximately

12–15 core residues of the protein would be mutable. Core

residues were chosen by finding all residues with a side-chain

relative solvent accessible surface area (SASA) less than either 5%,

10%, or 20%. SASA values were determined with the program

NACCESS [35]. If a protein had less than 12 residues with ƒ20%
SASA, only these residues were allowed to mutate. Each mutable

residue was allowed to take on its wild-type identity and 5–7 other

amino acid types. The mutant amino acid types were determined

by finding the 5–7 most likely amino acid type substitutions based

on the BLOSUM62 matrix [36]. The native rotamers were not

included in the native sequence recovery experiments. Native

sequence recovery was then performed on the 43 proteins with

PDB ids: 1lni, 1ok0, 1psr, 1t8k, 1u2h, 1usm, 1wxc, 1zzk, 2cov,

2fhz, 2hs1, 2r2z, 3d3b, 3dnj, 1l9l, 1r6j, 1u07, 1ucs, 1vbw, 1y6x,

2hin, 2j8b, 2p5k, 2wj5, 3g21, 3hfo, 3jtz, 1aho, 1f94, 1oai, 1vfy,

2b97, 2cc6, 2cg7, 2dsx, 2fma, 2gom, 2hba, 2hlr, 2ic6, 3g36, 3i2z,

and 1i27.
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