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Abstract

Genetically identical cells can show phenotypic variability. This is often caused by stochastic events that originate from
randomness in biochemical processes involving in gene expression and other extrinsic cellular processes. From an
engineering perspective, there have been efforts focused on theory and experiments to control noise levels by perturbing
and replacing gene network components. However, systematic methods for noise control are lacking mainly due to the
intractable mathematical structure of noise propagation through reaction networks. Here, we provide a numerical analysis
method by quantifying the parametric sensitivity of noise characteristics at the level of the linear noise approximation. Our
analysis is readily applicable to various types of noise control and to different types of system; for example, we can
orthogonally control the mean and noise levels and can control system dynamics such as noisy oscillations. As an illustration
we applied our method to HIV and yeast gene expression systems and metabolic networks. The oscillatory signal control
was applied to p53 oscillations from DNA damage. Furthermore, we showed that the efficiency of orthogonal control can be
enhanced by applying extrinsic noise and feedback. Our noise control analysis can be applied to any stochastic model
belonging to continuous time Markovian systems such as biological and chemical reaction systems, and even computer and
social networks. We anticipate the proposed analysis to be a useful tool for designing and controlling synthetic gene
networks.
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Introduction

There have been numerous experiments conducted on a wide

range of organisms such as prokaryotic [1–3] and eukaryotic [4,5]

cells including mammalian cells [6,7], to study gene expression

noise. The noise originates from randomness in biochemical

processes involving in transcription-translation, shared synthesis-

degradation mechanisms [8], the cell cycle [9,10], and other

unidentified processes. Stochastic gene expression can lead to

significant phenotypic cell-to-cell variation. For example, the

stochasticity can help cells survive in stress environment [11–13]

or determine the fate of viruses between latency and reactivation

by randomly switching the two states [14,15]. In metabolic

networks, noise in enzyme levels causes metabolic flux to fluctuate

and eventually can reduce the growth rate of host cells [16].

Although the measured noise is often explained by mathemat-

ical models [1–7], a systematic analysis on parametric control of

noise has been lacking. This is attributed to the fact that noise

propagation through pathway connections generates correlations

between the pathway species [17], which make analysis difficult.

Most noise control analyses have been focused on identifying the

analytical structure of the noise propagation [17–19]. As the

system size increases, the mathematical structure, however,

becomes highly intractable. There have been some efforts to

describe noise propagation in a modular way [18]. However,

complicated feedback and feedforward structures in real biological

networks hamper modular noise analysis.

Here, we are concerned with control of noise in biological

systems such as gene regulatory networks and metabolic networks.

In particular, we are interested in independent (orthogonal)

control of noise and mean levels. For example, noise can

stochastically switch one gene expression state to another via

stochastic switching. This phenomenon was investigated in the

expression of ComK that regulates DNA uptake in Bacillus subtilis

[12]. The study used orthogonal control of noise to show that the

reduction in the expression noise decreases the switching to

competence [12]. Similarly, one can study how stochastic viral

decisions [15] are made by independently changing the noise and

mean levels of viral gene expression. Their individual contribu-

tions can be compared and used for identifying noise control

schemes. This could eventually provide an efficient way to prevent

viral activation. Here, we provide a systematic mathematical

analysis method for simultaneous control of noise and mean levels

and apply it to a number of well known biological examples.

We approach this control problem numerically by quantifying

the parametric sensitivity of noise characteristics at the level of the

linear noise approximation [20]. Our numerical approach, which

we name stochastic control analysis [21], is practical in inter-

preting noise control experiments and computationally efficient

and scalable in system size. Based on our analysis method, ‘active’

control of noise is proposed to manipulate the noise. We pursue

various control schemes, such as independent control of mean and

noise levels (such control will be called orthogonal), control of

multiple mean and noise levels with certain ratios, and control of

system dynamics of noisy oscillations. Active noise control can be

applied to modify natural gene regulatory networks and improve

their noise-related phenotype, and furthermore to design and

construct gene regulatory networks for better performance by
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exploiting noise. It can be applied not only to gene regulatory

networks but also to other biological systems such as metabolic

networks [16].

In addition, we make a connection between noise control and

network structure, and propose the mechanisms that could

enhance the efficiency of orthogonal control. In a certain class

of metabolic networks [22], probability distribution functions of

each metabolite concentration were shown to be statistically

independent of other species at the stationary state. The same

result was also found in zero-range processes [23] in physics,

complex balanced systems [24] and Jackson queueing networks

[25] in mathematics. This independence was shown to be rooted

to a certain network structure satisfying Feinberg’s deficiency zero

theorem [24–26]. We will show that when such species

independence occurs, the orthogonal control of mean and noise

levels is not possible, but that the application of extrinsic noise or

feedback could help achieve orthogonal control.

Results

Stochastic sensitivity
For the purpose of noise control, we introduce stochastic

sensitivities [21] called control coefficients (CCs) similar to the

control coefficients in metabolic control analysis (MCA) [27–29].

These coefficients quantify the response of a system (r?rzdr)

from one stationary state to another due to a parameter

perturbation (p?pzdp), mathematically defined by

Cr
p~

p

r

dr

dp
: ð1Þ

The system parameters can include reaction rate constants [21],

and the system responses include the mean and noise levels of

concentrations and the temporal correlations of the concentrations

(i.e., autocorrelations [30]).

CCs have been widely used in MCA for metabolic networks in

the deterministic framework [27–29]. Here we use CCs to control

noise in stochastic systems [3,21]. Since noise can be considered a

response of continuous perturbations in system parameters, the

attributes of the dynamical response of the system (such as the

period and amplitude of oscillations) [2,3,6,31–34] can be deduced

from noise characteristics, such as autocorrelations [30]. Thus,

stochastic CCs also can be used to control system dynamics.

The noise level is defined as variance (covariance) divided by

mean square (product of two mean values). We compute the noise

levels and auto-correlations at the first level of approximation (see

Methods) such that the noise level is assumed to be small enough

that the rate laws can be linearized. From the computed noise

levels and auto-correlations, we obtain the CCs (see Methods) to

indicate where and by how much the system parameters are

controlled.

Control vector
In deterministic classical control theory [35] and MCA [36–39],

the orthogonal control of system variables (flux and concentra-

tions) has been studied. Here, we mainly consider orthogonal

control in the stochastic regime to independently control mean

and noise levels of concentrations. The noise level is often strongly

anti-correlated with its mean level; for example, when a molecular

species degrades with a first order reaction and is synthesized at a

constant rate, the concentration level follows the Poisson

distribution, where the variance is equal to the mean value, i.e.,

the noise level is equal to the inverse of the mean value. Thus,

orthogonal noise control typically requires two or more param-

eters to be perturbed. In addition, the noise level shows non-local

correlations between different species of molecules due to noise

propagation [17,40]. This also implies that a set of multiple

parameters may need to be controlled simultaneously. Taking into

account these points, we present a systematic non-local method for

orthogonal control using the control coefficients.

We introduce a control vector

C y~(Cy
p1

,Cy
p2

, � � � ,Cy
pL

), ð2Þ

which is defined in an L{dimensional control parameter space.

By the definition of the control coefficients, the inner product

between Cy and a parameter perturbation vector gives the change

in the system variable y due to the perturbation:

C y: dp1

p1
,
dp2

p2
, � � � , dpL

pL

� �
~
XL

i~1

Cy
pi

dpi

pi

~
dy

y
:

By denoting the parameter perturbation vector by
d p

p
, the above

equation becomes:

C y: d p

p
~

dy

y
: ð3Þ

When parameters p are perturbed in the direction of C y, a

system variable y (concentration mean or noise level) will

increase. When p are perturbed in one of the perpendicular
directions to Cy, the system variable y does not change (one

particular direction is (1,1, � � � ,1). This corresponds to MCA-like

summation theorems [21]).

For example, consider the following synthesis-degradation

process:

p1
X

p2X

�, ð4Þ

where p1 is a constant synthesis rate and p2 a degradation rate

constant. These two parameters are considered the control

Author Summary

Stochastic gene expression at the single cell level can lead
to significant phenotypic variation at the population level.
To obtain a desired phenotype, the noise levels of
intracellular protein concentrations may need to be tuned
and controlled. Noise levels often decrease in relative
amount as the mean values increase. This implies that the
noise levels can be passively controlled by changing the
mean values. In an engineering perspective, the noise
levels can be further controlled while the mean values can
be simultaneously adjusted to desired values. Here,
systematic schemes for such simultaneous control are
described by identifying where and by how much the
system needs to be perturbed. The schemes can be
applied to the design process of a potential therapeutic
HIV-drug that targets a certain set of reactions that are
identified by the proposed analysis, to prevent stochastic
transition to the lytic state. In some cases, the simulta-
neous control cannot be performed efficiently, when the
noise levels strongly change with the mean values. This
problem is shown to be resolved by applying extra noise
and feedback.

Adjusting Phenotypes by Noise Control
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parameters: p~(p1,p2). We aim to reduce the noise level of X

without changing its mean level. At the stationary state, the mean

synthesis rate equals the mean degradation rate: p1~p2SXT.

Therefore, the mean level at the stationary state becomes

SXT~
p1

p2
:

The noise level becomes 1=SXT, since the probability distribution

of X satisfies the Poisson distribution function and one of its

properties is that the variance of X is equal to the mean level of X .

Therefore, the noise level can be obtained as

VX ~
Variance(X )

SXT2
~

1

SXT
~

p2

p1
:

The control vectors for the mean and noise level can be calculated

by using the definition of CCs, Eq. (1):

C SXT~(1,{1), C VX
~({1,1):

When the parameters are perturbed in the perpendicular direction

of CSXT:

dp1

p1
,
dp2

p2

� �
~a(1,1)

with a a non-zero real number, the mean level does not change

[21]. However, since the noise level is the inverse of the mean

value, the noise level does not change, either [21]. This is because

the control vector for the noise level is anti-parallel with that of the

mean value. Therefore, when a species concentration satisfies the

Poisson distribution function, its orthogonal control is impossible.

The appearance of the Poisson distribution is known to be

generalized for a certain class of mass-action networks that satisfy

complex balance [24]. We will show later that the application

of extrinsic noise and feedback onto these networks enable

orthogonal control.

Generalized control
In the last section, we saw a simple system, where we could not

achieve orthogonal control. This begs the question, what networks

can be controlled. This section describes how to answer this

question and in addition, if controllable, how to determine the

direction of parameter perturbations.

Consider that the vector of system variables y, represented

by fy1,y2, � � � ,ylg, that is to be changed by percentage amounts
d y

y
via parameter perturbations

d p

p
. Once control coefficients are

computed, the parameter perturbations
d p

p
can be obtained by

solving Eq. (3). The unit vector of
d p

p
, denoted by lN , indicates

the direction of control.

In the case of orthogonal control considered in the system (4),

the mean level of X (denoted by y1) was aimed to be fixed, and its

noise level (denoted by y2) to be decreased, here for example by

3% (dy2=y2~{0:03). These system variables were controlled by

perturbing p1 and p2. Thus, Eq. (3) can be written in the following

matrix form:

1 {1

{1 1

� �
dp1=p1

dp2=p2

� �
~

0

{0:03

� �
:

This equation has no solution for
d p

p
, meaning that the desired

control cannot be achieved and is overly-constrained. When the

desired control is given by
dy1

y1
~0:03 and

dy2

y2
~{0:03 (not an

orthogonal control case), the control can be, however, achieved in

various ways. Eq. (3) becomes simplified to dp1=p1{dp2=p2~

0:03. There are infinite number of solutions and Eq. (3) is then

called degenerate.

In degenerate cases, we need to determine the direction of

control that requires the minimum amount of change in system

parameters for a given change in system variables. Mathemati-

cally, Eq. (3) can be solved for
d p

p
, where the norm ((dp1=p1)2z

(dp2=p2)2z � � �z(dpm=pm)2) is minimized, by using the Lagrange

multiplier method (see the Methods).
d p

p
is normalized to obtain

the direction of control lN .

Orthogonal control
This section focuses on orthogonal control between two system

variables, noise level Vs and mean value SsT. We aim to reduce

the concentration noise level with its mean level fixed.

Control direction. Although the direction of the orthogonal

control, lN , can be obtained by using the Langrange multiplier

method (see Methods) as described in the previous section, we

describe the following equivalent way of finding it to help

understand the physical meaning of lN .

1) Compute a control vector for SsT.

2) Find the perpendicular space to CSsT. All the parameter

perturbations within the perpendicular space do not change

SsT (Fig. 1).

3) Compute a control vector for the concentration noise level,

Vs.

Figure 1. Control vector analysis for noise reduction. The noise
level of a concentration (variance divided by mean squared) is aimed to
be reduced while its mean level does not change. When parameter
perturbations (dp1=p1,dp2=p2, � � � ,dpL=pL) are performed within the
space perpendicular to the control vector CSsT for the mean level, the
mean concentration does not change. A control vector CVs

for the
concentration noise level is projected onto the perpendicular space.
The projected vector is denoted by {l. When parameter perturbations
are directed along l (the opposite direction of {l), the noise level will
decrease while the mean concentration does not change.
doi:10.1371/journal.pcbi.1002344.g001

Adjusting Phenotypes by Noise Control
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4) Project the control vector for Vs onto the perpendicular

space and multiply the projected vector by {1. The

resultant vector is denoted by l (Fig. 1) and its normalized

form by lN .

The vector l can be mathematically expressed as

l:({1) CVs
{ cos h CVs

��� ��� CSsT

CSsTj j

� �
~

({1) CVs
{

CVs : CSsT

CSsTj j2
CSsT

" #
,

ð5Þ

where the factor of {1 makes the noise level decrease and h is the

angle between the two control vectors CSsT and CVs
(Fig. 1). The

unit vector of this l is shown to be identical to that of d p=p
obtained via the Lagrangian multiplier method (see the Methods).

The vector l will be named the orthogonal-control vector.

Control strength and efficiency. We define the strength
(k) of this orthogonal control as the norm of the orthogonal-control

vector:

k~ lj j~j C Vs jj sin (h)j, ð6Þ

where the term j sin (h)j quantifies how much percentage ratio of

the control vector for noise level is projected onto the

perpendicular space. This defines the efficiency of the

orthogonal control:

�~j sin hj: ð7Þ

Thus, the control strength is related to the efficiency as

k~jCVs j�:

The higher efficiency leads to the higher control strength. If h is

close to +1800, the two controls are anti-correlated and � and k
are *0. If h is close to 900, the two controls are already orthogonal

and � is *1 and the maximum control strength can be reached:

k~jCVs j. Therefore, the most efficient orthogonal control is

achieved when the two control vectors are perpendicular, i.e., �~1
and the orthogonal control is not possible when �~0.

Under experimental conditions, not all system parameters can

be controlled. Thus, it is more appropriate for a control vector to

be defined in a subspace of the full parameter space. For example,

Cy can represent (Cy
pi

,Cy
pj

) for two-parameter controls, where pi

and pj are chosen for perturbation and the other parameters are

held constant. All the proposed quantities characterizing orthog-

onal controls such as l, �, and k can be applied to the control

vector defined in the subspace. Let us now consider specific

examples of orthogonal control in other systems.

Orthogonal control between noise and mean levels
We consider single-promoter gene expression systems to show

orthogonal control of noise and mean expression levels. Yeast

promoter GAL10 [11,41] and HIV-1 long terminal repeat (LTR)

promoter [42] show significant gene expression noise that mainly

originates from transcriptional bursting [11,42]: Once chromatin

structure is remodeled, RNA polymerase II enzymes, while

waiting for the remodeling, can continue the transcription

elongation process in a bursting manner [4,11,42–44]. This

phenomenon has been modeled as a two-state model describing

stochastic gene activation and deactivation [4,42,44] (cf. [11] and

see Fig. 2b):

Pi

konPi

koff Pa

Pa

amPa
mRNA

cm ½mRNA�
�

ap ½mRNA�
Protein

cp ½Pr otein�
�,

where Pi and Pa denote inactive and active states of a promoter

and the functions that are placed above or below the arrows are

reaction rates, not constants.

Here we identify which parameter control scheme is optimal for

noise and mean level orthogonal control. We constrain ourselves

to the case that two parameters can be controlled for each

experiment. For all possible two-parameter combinations, control

efficiency and strength are computed, and the parameter com-

bination leading to the best efficiency and strength is identified as

the most optimal control scheme.

HIV-1 LTR promoters. The HIV-1 long terminal repeat

(LTR) promoter shows significant gene expression noise that

mainly originates from transcriptional bursting [42]. We aim to

identify control schemes that independently changes the mean

and noise levels of the LTR promoter expression. The identified

schemes will be combined to provide simultaneous control of

both noise and mean, and this can be useful for a potential

application to viral latency decision by preventing stochastic

switching from the low basal expression state to the high trans-

activated state [45].

The two-state model proposed in [42] was investigated (Fig. 2b).

The total number of the promoter (½Pi�z½Pa�) was assumed to be

1, and kon~0:7, koff ~30, am~60, cm~ ln (2)=3, ap~2500,

cp~ ln (2)=2:5 with the unit of all the parameters hour{1, where

the number of molecule is considered unitless. We devised two-

parameter control schemes to reduce the noise level of the LTR

promoter expression without affecting the mean level. Consider

one specific set of parameters for perturbation: gene activation kon

and translation ap (this set will lead to the most sensitive control).

The corresponding control vectors were found to be

C SsT
(kon ,ap)~(0:98,1:00) and C Vs

(kon ,ap)~({1:01,0:00):

From Eq. (5), the orthogonal-control vector was obtained by

l~(0:52,{0:50):

The strength and efficiency of the control was obtained from Eqs.

(6) and (7), respectively:

k~0:72 and �~0:71:

k and � being close to one means that quite strong control can be

achieved with high efficiency. We have performed all possible two-

parameter control analysis. Most efficient controls were found to

be related to ap and among them, the one related to kon was

strongest (Fig. 3a).

Why are control schemes that are related to ap most efficient?

Based on the computed CCs, decreasing translation reduces the

mean level while the noise level does not change. All other

reactions, however, can make the noise level to decrease although

the mean level increases [42–44]. This indicates that the noise

Adjusting Phenotypes by Noise Control
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level can be reduced efficiently without affecting its mean level by

perturbing ap and one of the other reactions simultaneously.

Experimentally, this type of control is plausible. The translation

ap can be controlled by mutating the internal ribosome entry site

(IRES) [46] or controlling translation initiation factors. The gene

activation kon can be induced by tumor necrosis factor-a, causing

the noise level to decrease while the product of the noise and mean

levels stays the same [42] (this is reflected in the CCs of kon for

noise and mean levels as being approximately -1 and 1,

respectively, in Fig. 2c, second column.)

We can also devise another type of control such as orthogonal

control of the mean level reduction. We examined all two-

Figure 2. Orthogonal control of mean and noise levels in the HIV-1 LTR-promoter expression. (a) The HIV-1 model vector with a green
fluorescence protein (GFP) gene that is transfected to Jurkat cells [42] is considered. (b) The promoter inactive and active states are explicitly
represented by the two-state model [4,41]. Based on the values of the control coefficients (provided in (c)), in silico perturbation experiments were
designed. (d) The noise level was reduced without changing its mean level. The translation rate was decreased 10 times and one of the reactions
among transcript degradation, gene deactivation, and protein degradation was decreased 10 times, or one of the reactions among gene activation
and transcription was increased 10 times. (e) The mean level was reduced without changing the noise level either by decreasing the translation 10
times (DTranslation), or by increasing the gene activation by twice and protein degradation 10 times (DGene-Activate + DProtein-Deg). Two
orthogonal control schemes were combined so that both the noise and mean levels were simultaneously controlled. The combined control was
performed by decreasing the translation rate 100 times and increasing the gene activation 10 times (Combined Control).
doi:10.1371/journal.pcbi.1002344.g002

Figure 3. Efficiency and strength of orthogonal control in the HIV-1 expression system (Fig. 2a). All possible two-parameter controls
were considered. The efficiency � and strength k were computed by using Eqs. (6) and (7). (a) Among noise reduction control schemes, the most
efficient and strongest one was related to gene activation kon and translation ap . (b) Among mean-level reduction controls, the most efficient and
strongest control schemes were related to translation ap (collapsed data points).
doi:10.1371/journal.pcbi.1002344.g003

Adjusting Phenotypes by Noise Control
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parameter control schemes by computing k and �, and found that

the most efficient and strongest control is achieved by decreasing

the translation rate without perturbing other reactions (the data

points related to the translation were collapsed in Fig. 3b). The

second best controls were found to be related to gene activation

kon. For example, we could achieve the mean level control by

increasing gene activation kon and protein degradation cp

together, where the control for each parameter will compensate

the mean-level change that would have occurred by the other

control.

Stochastic simulations [47] were performed to verify the

proposed orthogonal control methods and successfully showed

that the noise/mean level was significantly reduced without

changing the mean/noise level (Fig. 2d and e). This result shows

that the reduction of translation activity ap is very important for

both the noise and mean level reduction.

We combined the two orthogonal control schemes that change

the noise and mean levels independently. The combined control,

by perturbing ap and kon, showed significant amounts of reduction

in both the mean and noise levels (Fig. 2e). This provides efficient

mechanisms for preventing stochastic switching to the high trans-

activated state via simultaneous control on the mean and noise

levels, and can be useful for a potential HIV drug design by

preventing stochastic switching from the low basal expression state

to the high trans-activated state.

We note that the CCs for noise levels show an interesting

relationship among themselves. The CCs sum up to zero as

shown in Fig. 2c and 4c. It can be theoretically proved that there

exist summation theorems (similar to those found in MCA

[27–29]) for the CCs for noise levels (second moment) and

even higher moments [21]. The theorems directly indicate that

the sensitivities are correlated with one another in a nontrivial

way.

Yeast promoters. For the yeast promoter GAL10, it was

shown that the mean level of promoter expression changes without

altering the noise level under TATA box mutations [41]. The

mutations were known to strongly affect yeast promoters such as

GAL10 and GAL1 by increasing their promoter deactivation rate

(koff ) with a smaller effect on promoter activation (kon) [11,41,48]

but no effect on the transcription rate. However, for another yeast

promoter PHO5, the TATA box mutations were known to

strongly affect transcription rate [4,49].

We will focus on the proposed model for GAL10 found in [41]

and perform our analysis to provide explanations on noise level

invariance under TATA box mutations and to suggest other

control schemes. The same model parameter values were used as

found in [41]: The total number of the promoter (½Pi�z½Pa�) was

assumed to be 1, and kon~3:7, koff ~0:28, am~273, cm~3:5,

ap~75, cp~0:6 with the unit of all the parameters hour{1, where

the number of molecules is considered unitless.

We computed the CCs for the mean and noise levels for all the

parameters for the wild-type promoter (Fig. 4c). The control

coefficients with respect to kon were found to be {1:51 for the

noise level and 0.07 for the mean level, showing that the noise level

can be highly controllable by perturbing kon while the mean level

cannot. The control coefficients with respect to koff were 0.77 for

the noise level and {0:07 for the mean level, implying the same

story as in the control case of kon. Thus, the mean level is not

controllable for the two parameter control case (kon, koff ) while the

noise level is (Fig. 5a and b). The TATA box mutation

experiments [41], however, show the control of (kon, koff ) causes

the change in the mean level but not in the noise level. We

considered that this inconsistency arose from the fact that the

control coefficients refer to sensitivity to infinitesimal parameter

changes, while the TATA box mutations most likely correspond to

finite parameter changes [41].

Figure 4. Orthogonal control of mean and noise levels in the Gal10 promoter expression. (a) The yeast Gal10 promoter, expressing yeast-
enhanced green fluorescent protein (yEGFP) [41], is considered and (b) mathematically described with the two-state model. (c) Control coefficients
were computed for the wild-type and TATA-box mutated promoters. Based on the values of the control coefficients, in silico perturbation
experiments were designed. (d) The noise level was reduced without changing its mean level. DGene-Activate: kon was increased 10 times. DyEGFP-
synthesis-deg: ap and cp were decreased 10 times. (e) The mean level was reduced without changing the noise level either by decreasing ap 10 times
(DTranslation), or by increasing kon 15 times and koff 225 times (DTATA box). � : The actual sum is zero, but the sum of the round-up control
coefficient values (shown in (c)) is 0.02 due to a round-up error.
doi:10.1371/journal.pcbi.1002344.g004

Adjusting Phenotypes by Noise Control
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Thus, we computed again CCs for a TATA box mutation case,

where the promoter deactivation was increased 225 times and

activation 15 times. This control reduced the mean level by 50%

without any significant change in the noise level (similar to the

TATA box mutation, int1 in [41]) as shown in stochastic

simulation results (Fig. 4e). The CCs for the mean level were

significantly changed (C
SsT
kon

~0:07?0:53; C
SsT
koff

~{0:07?{0:53),

while those for the noise level were not (CVs

kon
~{1:51?{1:03;

CVs

koff
~0:77?0:50). The significant change in the CCs for the

mean level indicates that the mean level became controllable: The

strength of the mean level control, k, increased significantly

(0:03?0:28) for the control scheme (kon, koff ), with a minor

increase in the control efficiency � (0:34?0:37) (Fig. 5b and d).

For both the wild type and the mutated cases, the computed

control coefficients for noise levels satisfy their ratios, CVs

kon
: CVs

koff
,

approximately to be {2 : 1 (Fig. 4c). This means that the noise

level will not change when kon and koff are perturbed infinite-

simally by 1:2 ratio, i.e., kon?(1z�)kon; koff ?(1z2�)koff with

�%1, and for a finite perturbation, kon?akon and koff ?a2koff

with a finite positive constant a (see the Text S1). This is why

the promoter deactivation and activation was perturbed by

152(~225) and 15 times, respectively. This ratio invariance in

the TATA box mutations might be based on certain underlying

biological mechanisms that are neglected in the simplistic two-state

description of the promoter.

Based on the computed control strength and efficiency (Fig. 5),

the best two-parameter control schemes were shown to be related

to kon for noise control and to ap for mean level control. Stochastic

simulations [47] were performed to verify the predicted orthogonal

control methods and successfully showed that the noise/mean level

was significantly reduced without changing the mean/noise level

(Fig. 4d and e).

Control of gene expression dynamics
We can also apply our analysis to control dynamics. Temporal

noise correlations have been used to understand the topology of

gene networks and their dynamical properties, such as E. coli CRP-

GalS-GalE feedforward related to galactose metabolism [3], HIV

Tat-mediated positive feedback [6], and cell damage response of

p53-Mdm2 [32]. Thus, sensitivity analysis on the temporal

correlation can provide a method for controlling the attributes

of the dynamics. We consider the cell damage response of p53-

Figure 5. Efficiency and strength of orthogonal control in the Gal10 promoter expression (Fig. 4a). All possible two-parameter controls
were considered. The efficiency � and strength k were computed by using Eqs. (6) and (7) with constraint tolerance 5% (see the Methods). (a) and (c):
Among noise reduction control schemes, the most efficient and strongest control schemes were related to gene activation kon. (b) and (d): Among
mean-level reduction control schemes, the most efficient and strongest control schemes were related to translation ap .
doi:10.1371/journal.pcbi.1002344.g005
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Mdm2 and its stochastic model presented in [32] (Fig. 6a). The

model describes the stochastic fluctuations in p53 and Mdm2 by

using Langevin equations with Gaussian white noise (Text S1),

and provided successful explanations on sustained noisy oscilla-

tions in p53 and Mdm2 under DNA damage [32]. We apply the

CCs for the autocorrelation to control the amplitude and period of

the oscillations.

The autocorrelation of p53 shows damped-oscillations (Fig. 6c

and d), implying potential sustained noisy oscillations. Here it is

aimed to increase the oscillation amplitude or period. First,

consider amplitude controls. An amplitude increase can be

reflected in the autocorrelation as an increased vertical separation

between troughs and peaks. For such an increase, the computed

CCs at t~3 and 6:5 hr (corresponding to the trough and peak;

Fig. 6c) need to be large same-sign values. This control does not

belong to orthogonal control since both the trough and peak

heights need to increase together, and can be mathematically

described by using Eq. (3):

C 3hr
: d p

p
~

dy3hr

y3hr

, and C 6:5hr
: d p

p
~

dy6:5hr

y6:5hr

,

where both
dy3hr

y3hr

and
dy6:5hr

y6:5hr

are real same-sign values with similar

magnitude, and yt indicates the value of autocorrelation at time t.

We consider one-parameter controls, and then the inner

products in the above equations become number products,

indicating that C3hr and C6:5hr are real same sign values with the

similar order of magnitude. This is well satisfied by the control

coefficients corresponding to cp. Thus, we decreased cp by 50%

and this led to a visible increase in the p53 oscillation amplitude

(Fig. 6c). Experimentally, p53 effective degradation, cp, was

reduced by introducing the small molecule Nutlin3 that inhibits

p53 from binding to Mdm2 [50,51] (the Mdm2-p53 complex

shows enhanced degradation) and the oscillation amplitude was

found to increase without affecting the period [51].

Second, consider period controls. The period increase causes

the stretch-out of the autocorrelation in t-axis. This implies that

the CCs at t~5:5 and 7:5 hr (corresponding to x*
p

4
and x*

3p

4
in sin (x), which decreases and increases when the sine function

shifts to the right, respectively) need to be large opposite-sign

values, respectively (Fig. 6b). Mathemtically, Eq. (3) is expressed as

C 5:5hr
: d p

p
~

dy5:5hr

y5:5hr

, and C 7:5hr
: d p

p
~

dy7:5hr

y7:5hr

,

where
dy5:5hr

y5:5hr

and
dy7:5hr

y7:5hr

are real opposite-sign values with similar

magnitude.

For one-parameter control, the above equations indicate that

C5:5hr and C7:5hr are real opposite-sign values with similar

magnitude. Both the controls on kp?a and ka?p were found to

be the best case. When one of these parameters was decreased to

its 10% levels of the original value, a significant increase in the

period was obtained (Fig. 6d). The decrease in kp?a or ka?p causes

the ATM level to decrease and experimentally this can be

achieved by decreasing c-irradiation intensity [52]. (For cases

without the irradiation, kp?a and ka?p can be considered to

vanish, resulting in a second-order linear model in [32].) Our

analysis based on control coefficients showed successful control on

noisy oscillation. This can serve as an important tool for analyzing

the parameter dependence of stochastic dynamics, particularly

when an analogous deterministic counterpart does not exist.

Figure 6. Control of p53 oscillations caused by DNA damage. (a) ATM protein kinases are activated in response to a DNA damage and
phosphorylate p53, which activates the WIP1 gene that inhibits the ATM [68]. The phosphorylated p53 activates mdm2 at the transcription level and
Mdm2 binds to p53 with the Mdm2-p53 complex undergoing enhanced degradation. These negative feedback loops among ATM, p53, and Mdm2
cause sustained noisy oscillation at the p53 level [32,51]. (b) Based on the model proposed by Geva-zatorsky et al. [32], control coefficients were
computed. (c) Accordingly perturbation experiments were designed. Autocorrelation functions of p53 showed damped oscillations and their
amplitudes were increased by decreasing the effective degradation rate cp of p53 by 50%. (d) The oscillation period was increased by decreasing the
inhibitory regulation of p53 on ATM 10 times. Refer to Text S1 for the details of the model. We note that the CCs for correlations also satisfy
summation theorems (Text S1), indicating nontrivial correlation among the sensitivities.
doi:10.1371/journal.pcbi.1002344.g006
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Network structure and orthogonal control
In this section, we will investigate the relationship between noise

control and network structure. To show the applicability of our

analysis to other systems, we will consider metabolic networks. It

has been known that noise at enzyme levels causes metabolic flux

to fluctuate and eventually to reduce the growth rate of host cells

[16] due to nonlinearity in the system and noise propagation

[40,53] from the enzyme to the pathway. Here, we consider linear

metabolic pathways (Fig. 7) and aim to reduce the noise level of

the end product (P in Fig. 7) without altering its mean level. One

of the enzymes (E) is considered explicitly and is used to supply

extrinsic noise to the metabolic network. If such orthogonal noise

reduction is achieved, the decrease in the growth rate that would

have occurred due to the noise propagation can be suppressed.

Here, we show that feedback in the metabolic network and

noise propagation [17,40] from enzyme fluctuation [16] play

important roles in enabling orthogonal control. We will limit

control parameters to fp3,p4,p5,p6g for ease of comparison

between the original network and its variants.

First, consider the metabolic network under a constant enzyme

level E (located in the first step) and without any feedback

(Network A in Fig. 7). It is known that at the stationary state, the

probability distribution function of the whole system takes a

product form and that inter-species covariance vanishes [23–25],

resulting in the cancellation of the net effect of noise propagation

[22]. This cancellation is related to network structure; the product

form distribution was derived for mass-action systems (and some

non-mass-action systems) [24] that satisfy the deficiency zero

theorem [26]. This theorem is only dependent on the network

structure. Furthermore, it was shown that each individual

concentration distribution satisfies the Poisson distribution func-

tion [23,24]. This indicates that the mean and noise levels are

inversely related and that their control vectors are anti-parallel.

Therefore, orthogonal control of the mean and noise levels cannot

be achieved for any metabolites: X1, X2, and P. We verified this by

computing the control vectors; for example, the control vectors for

P were obtained in the parameter space of (p3,p4,p5,p6):

C SPT~(1,0,0,{1) and C VP
~({1,0,0,1):

These vectors are anti-parallel, so control efficiency becomes zero.

This fact implies that low control efficiency can be predicted by

examining stoichiometry and topology.

Second, consider an end-product inhibition: negative feedback

from P to the synthesis of X1 (Network B in Fig. 7). The

covariances between metabolites were computed by using Eq. (8).

The covariances between X1 and P and between X1 and X2 were

found not to vanish. This implies that the stationary state does not

take a product form distribution and that the Poisson distribution

does not appear, either (the deficiency zero theorem [26] does not

apply here, unless the mechanism of the feedback is expressed in

terms of chemical reactions). Therefore, the control vectors will be

no longer anti-parallel, providing the possibility of orthogonal

control. The control vectors were computed:

C SPT~({0:19,{0:11,{0:11,0:41) and

C VP
~(0:33,0:00,0:00,{0:33):

The control efficiency was significantly increased to 0.47, when

compared with Network A.

Third, we consider the enzyme fluctuations in E in the absence

of negative feedback (Network C in Fig. 7). For this system, the

product form distribution does not hold since the system is not

weakly reversible (Text S1) [26] and the deficiency zero theorem

does not apply. Noise originating from E can be observed in

metabolite fluctuations. The control vectors for P were computed:

C SPT~({0:02,0:25,0:25,0:26) and C VP
~(1,0,0,{1):

The control efficiency was further increased to 0.72, when

compared with Network B.

Finally, we allow both the noise propagation from E and the

end-product inhibition. The control vectors were computed:

C SPT~({0:41,0:10,0:10,0:54) and

CVP
~(0:33,0:00,0:00,{0:33):

The control efficiency was decreased to 0.41, when compared with

Network B and C. This is because the signs of the second and third

elements of C SPT are opposite for Network B and C.

In the metabolic networks we consider, the application of

extrinsic noise in E or the end-product inhibition significantly

enhanced the control efficiency. This implies that in the case when

orthogonal control cannot be performed with a high efficiency,

perturbations in the network structure such as stoichiometry and

topology can enhance the control efficiency. The result presented

here, however, may not be directly applicable to gene regulatory

networks, since gene expression processes occur in cascades of

transcription and translation and thus they are not weakly

reversible (similar to the case of the Network C).

Iterative noise reduction
This section describes a computational protocol for iterative

noise reduction. Since our analysis is based on differential

sensitivities, infinitesimal perturbations can be continuously

applied along the perturbation direction quantified by lN , to

achieve a finite-size perturbation. At the first level of approxima-

Figure 7. Linear metabolic pathways. For the network A and B, the
enzyme level E was fixed to p1=p2 . For the network C, the enzyme level
was allowed to fluctuate due to its random synthesis and degradation.
The parameter values: p1~0:1 min{1, p2~0:01 min{1 , p3~2 min{1 ,
p4~0:01 min{1 , p5~0:01 min{1 , p6~0:01 min{1 , Km~1000. Here, we
consider the number of molecules is dimensionless.
doi:10.1371/journal.pcbi.1002344.g007
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tion, the finite but small enough size of perturbations can be

applied iteratively. We consider again the previous metabolic

network models.

We performed the noise reduction control in the following

sequence.

1) Compute control vectors for the mean and noise levels of P:

C SPT and C VP

.

2) Compute an orthogonal-control vector l and normalize it to

determine the direction of parameter perturbation. The

normalized l is denoted by lN . In Fig. 8, the original

parameters (p0~(0:1,0:01,2,0:01,0:01,0:01)min{1) were

perturbed along the direction of lN~(0:69,{0:23,{0:55,
{0:14,{0:14,0:14).

3) Perturb the parameters by a lN , with a a proportionality

constant that determines the size of the perturbation. Set the

new value of pi by pi(1zalN
i ) for all i.

We compare two cases with and without iteration. First, we

performed a single large perturbation: a~1. The noise was

decreased by 36% (0:011?0:0070), and the mean level by 11%

(1000?890). This non-negligible change in the mean level is due

to the fact that the size of the perturbation is large enough that our

analysis based on differential sensitivity becomes inaccurate.

Second, we performed a series of small but finite perturbations:

a~0:2 with 5 iterations by repeating the procedure (1)–(3). The

noise level was significantly reduced by 50% (0:011?0:0096?
0:0083?0:0073?0:0063?0:0055), with a minor mean level

decrease of 1.4% (1000?996?993?990?987?986), as shown

by the change in the probability distribution functions of P
(Fig. 8C).

The protocol we describe is mathematically equivalent to a first

order Euler approximation to find the parameter trajectory

satisfying the control aim fdyi

yi

g, since the next parameter values

are determined by the slope (lN ) calculated at the current

parameter values. The mean values deviate from the desired

constant level on the order of magnitude of a2: One Euler

step updates parameters from p to pzd p, causing the

mean value, here denoted by y, to change from y(p) to

y(pzd p)^y(p)z
P

i yCy
pi

dpi

pi

z
1

2

X
ij

L2y

LpiLpj

dpidpj , where the

second term in the right hand side vanishes since
d p

p
was set to be

perpendicular to Cy
p. Therefore, the magnitude of the change is of

the order of a2.

Discussion

In this paper we describe a systematic method for orthogonal

control of noise and mean levels and provided its applications. In

addition to these examples, our work can also be useful in synthetic

biology.

In synthetic biology, biological organisms are engineered via

design and construction of new useful biological functions that do

not exist in nature. In synthetic gene regulatory networks (gene

circuits), the signals are often considered the concentrations of

transcription factors. Their copy numbers can be so low that their

fluctuations are significant, meaning that the signals can be very

noisy [54]. This causes cell-to-cell variability in gene expression

levels and potentially their related phenotypes at the population

and individual levels. In addition, the noise, both extrinsic and

intrinsic, can propagate through a synthetic network [17], possibly

preventing the predictable modular construction of circuits. From

an engineering perspective, gene circuits have been designed and

constructed based on the concept of modularity [33,34,55–60], to

ensure predictable behavior when combining modular circuits.

The reliability and predictability can be enhanced via simulta-

neous control of mean and noise levels by increasing signal-to-

noise ratios and by suppressing unwanted noise propagation.

Noise control can also be used to improve gene circuit function.

The properties of gene circuit components such as input-output

responses can be engineered by exploiting noise. For example,

noise can improve the sensitivity in a system response with respect

to an input change via stochastic focusing [40,53]. The noise can

also help input signals be reliably transferred to output signals at a

certain optimal level of intrinsic or input noise via stochastic

resonance [61,62]. These beneficial effects can be readily realized

when the noise and mean levels can be independently controlled to

their optimizing values.

For the p53 study, a frequency-domain analysis can be

performed as an alternative approach. We can apply a Fourier

transformation on Eq. (9), obtain its power spectral density, and

compute control coefficients for the spectral density. The

magnitude of the main spectral peak can be examined to quantify

the oscillation amplitude, and the frequency corresponding to the

main spectral peak can be used to determine the oscillation period.

The reason that an autocorrelation function was used instead of its

Fourier transform was that the numerical computation of the

autocorrelation and its corresponding control coefficients can be

performed without matrix inversion. Thus, it is computationally

more efficient compared to using the spectral density, although

control schemes for changing the period and amplitude might be

more complex.

Our analysis is based on sensitivity to infinitesimal parameter

changes and this was the reason that for the PHO5 promoter study

Figure 8. Noise control in a metabolic network under end-
product inhibition. (a) The metabolic network is under stochastic
fluctuations of an enzyme level E. Other enzyme level fluctuations are
neglected for simplicity. (b) Control analysis was applied to decrease
the noise level of the end product, P, without changing its mean level.
Iterative small perturbations reduced the noise level significantly with a
minor change in the mean level, as shown by the change in the
probability distribution functions of P. The original parameter values
can be found in the caption of Fig. 7.
doi:10.1371/journal.pcbi.1002344.g008
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the control parameters changed significantly depending on the

specific parameter values, where the system responses to the

parameter changes became highly nonlinear. Our approach can

be used, however, as a first level of approximation for such cases,

although the control schemes may not necessarily be the best ones.

A global picture of controllability can be obtained by computing

the sensitivities for various parameter values and determining the

landscape of the sensitivities over the parameter space. If the

landscape is flat, the proposed analysis can be applied to finite-size

perturbations.

Our analysis is also based on the linear noise approximation

[20]. The validity of this approximation needs to be verified on a

case-by-case basis: The approximation depends on how large the

noise levels in concentrations are compared to the (quasi-)linear

region of the non-linear reaction rate functions. The strength of

the noise level depends on how noise from the upstream network is

propagated into the non-linear reaction rate functions. This means

that the validity of the linear noise approximation crucially

depends on noise propagation and the upstream network as well as

the downstream non-linearity of reaction rate functions. There-

fore, the linear noise approximation needs to be tested on a case-

by-case basis. For the test, one possibility would be to use

computer simulation for an exhaustive search.

Our analysis method can be applied to more complex networks

than the systems previously considered. For example, consider the

experiment on yeast cells performed in [63], where the expression

noise of a reporter protein was controlled via transcriptional

negative feedback. The reporter gene expression showed highly-

sigmoidal dose-response in the absence of feedback, but it was

linearized with the introduction of the feedback [64,65]. The

linearized dose-response led to smaller fluctuations in the response,

when the input dose is centered around the sigmoidal region. Our

analysis may be applied, for example, to increase/decrease the

region of the linear dose-response by computing control

coefficients for the mean levels of the reporter at two or more

different input doses (e.g., three doses: d1, d2, and d3) and by

setting desired changes in the responses (dyd1
=yd1

, dyd2
=yd2

, and

dyd3
=yd3

), and by solving Eq (3) for d p=p:

Cy
p
: d p

p
~

d y

y
,

with Cy
p

� �
ij
~C

ydi
pj

and d y=y~(dyd1
=yd1

,dyd2
=yd2

,dyd3
=yd3

).

For more complex control, where multiple mean and noise levels

are controlled simultaneously, Eq. (3) can be used again to identify

control schemes computationally.

In summary, we have proposed a numerical analysis method for

adjusting noise-related phenotype by controlling system parame-

ters of mathematical models. The analysis quantifies which

parameters need to be controlled by how much, with scaled

non-dimensional values. In addition, we proposed how to improve

control efficiency by changing network structure when control

efficiency is weak. We have shown that MCA-like summation

theorems exist and that the analysis can be applied to stochastic

biological systems such as gene regulatory and metabolic networks

and not only for statics but also for dynamics.

Methods

Computation of noise levels and autocorrelations
We consider stochastic reaction systems described as continuous

time Markov processes. Stochastic fluctuations in concentrations

caused by random reaction events are assumed to be small enough

that the reaction law can be linearized with respect to the mean

values for the study of the fluctuations. Such assumption is called

the linear noise approximation [20]. Under this approximation,

the covariance matrix s can be computed by solving the Lyapunov

equation (also known as the fluctuation dissipation relationship

[17,66]):

J szsT JTzD~0, ð8Þ

with J the Jacobian matrix and D the diffusion matrix [17]. We

compute noise levels (Vs) from s:

Vs
ij~

sij

SsiTSsjT
,

where SsiT is the temporal average concentration level of the i-th
species at the steady state. The autocorrelations G(t) are defined

as

Gij(t)~ lim
t??

Ssi(tzt)sj(t)T{SsiTSsjT:

The autocorrelations can be computed by solving the following

ordinary equation [31]:

d G (t)

dt
~G (t) J T , ð9Þ

for all t§0, where G (0) is equal to s. From Eq. (8) and (9), the

noise levels and the autocorrelations can be computed numerically

and analytically.

Computation of stochastic control coefficients
The CCs for the noise levels and the autocorrelations can also

be computed from Eq. (8) and (9). For mathematical simplicity, we

will denote the matrix component (i,j) of
L y

L x
by

Lyi

Lxj

, with x and y

representing vectors. The Lyapunov equation (8) is invariant

under parameter perturbations from one steady state to another

corresponding to before and after the perturbation:

d(J szsT JTzD)~0:

This can be expanded by using the chain rule:

J
d s

dpi

z
d s

dpi

J Tz
d J

dpi

sz s
d J T

dpi

z
d D

dpi

~0, ð10Þ

where we have used s~sT and d s=dpi means the change in the

concentration covariance matrix due to the change in pi, which

defines an un-scaled CC for s. d J =dpi and d D=dpi can be also

expanded by applying the chain rule:

d J (s , p )

dpi

~
L J

Lpi

z
L J

L s

d s

dpi

, ð11Þ

d D (s , p)

dpi

~
L D

Lpi

z
L D

L s

d s

dpi

, ð12Þ

where d s=dpi is an un-scaled control coefficient for mean

concentration s (for notation simplicity, instead of SsT). Under

the linear noise approximation, concentration mean levels are
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obtained by using deterministic rate laws, neglecting noise

propagation to the reaction rates [40]. Thus, the un-scaled CC

can be obtained as in the deterministic MCA [27–29]:

d s

dpi

~{J{1 NR

Lv

Lpi

, ð13Þ

where NR is a reduced stoichiometry matrix [67]. Equation (13) is

substituted to Eqs. (11) and (12) and the resultant equations to

Eq.(10), to numerically estimate the un-scaled CCs for s, i.e.,

d s=d p .

Next, we obtain CCs for noise level. The noise level is defined as

Vs
jk~

sjk

sjsk

:

The un-scaled CCs for the noise level is expressed by applying the

chain rule:

dVs
jk

dpi

~
1

sjsk

dsjk

dpi

{
sjk

s2
j sk

dsj

dpi

{
sjk

sjs
2
k

dsk

dpi

: ð14Þ

By substituting Eq. (13) and the computed d s=dpi to Eq.(14), the

un-scaled CCs for the noise level, i.e., d V s=d p can be estimated

and then converted to the scaled version:

C
Vs

jk
pi

~
pi

Vs
jk

dVs
jk

dpi

:

Next, we obtain CCs for autocorrelation functions. Equation (9) is

invariant under parameter perturbations:

d

dt

d G (t)

dpi

~
d G (t) J Tð Þ

dpi

~
d G (t)

dpi

J Tz G (t)
d J T

dpi

:

Since G(t) can be estimated by using Eq. (9) and dG(0)=dpi is

equal to d s=dpi, un-scaled CCs for G (d G =d p ) can be obtained

by solving the above equation. This un-scaled CCs can be

converted to the scaled version:

C
Gjk (t)

pi
~

pi

Gjk(t)

dGjk(t)

dpi

:

A MATHEMATICA file is provided for the estimation of CCs for

noise levels in Text S2.

Determination of lN

The Lagrange multiplier method will be used to obtain the

direction lN of parameter perturbation
d p

p
for orthogonal control

of two system variables, y1 and y2, where y1 is increased but y2

remains fixed: y1?y1(1za1) and y2?y2. For non-degerate cases,
d p

p
can be obtained by solving

C y1 :
d p

p
~a1,

C y2 :
d p

p
~0,

where Cyi is a control vector for a variable yi. If the above

equation is degenerate, the most optimal parameter perturbation

needs to be identified. The solution can be considered optimal, if

the net amount of parameter perturbations – the norm of
d p

p
– is

smallest among all possible solutions. We introduce Lagrange

multipliers q1 and q2 and the Lagrange function f :

f (
d p

p
,q1,q2)~

d p

p

����
����
2

zq1 C y1 :
d p

p
{a1

� �
zq2 C y2 :

d p

p

� �

and solve

Lf

L(dpi=pi)
~2

dpi

pi

zq1C
y1
i zq2C

y2
i ~0,

Lf

Lq1
~ C y1 :

d p

p
{a1~0,

Lf

Lq2

~ C y2 :
d p

p
~0:

The solution of the first equation,

d p

p
~{

1

2
q1 C y1zq2 C y2ð Þ ð15Þ

is substituted in the second and third equations, which can be

solved to obtain q1 and q2:

q1~AjC y2 j2,

q2~{A C y1 : C y2 ,

with

A~
{2a1

jC y1 j2jC y2 j2{ C y1 : C y2ð Þ2
:

By substituting these equations to Eq. (15), we finally obtain the

optimal paramter perturbation:

d p

p
~

a1jC y2 j2

jC y1 j2jC y2 j2{ C y1 : C y2ð Þ2
C y1{

C y1 : C y2

jC y2 j2
C y2

 !
:

This perturbation,
d p

p
, is normalized to obtain the direction of

control, which is the same as that of the control vector expressed

with Eq. (5) (since jC y1 j2jC y2 j2{ C y1 : C y2ð Þ2~jC y1 j2jC y2 j2

(1{ cos (h)2)~jC y1 j2jC y2 j2 sin (h)2
§0, and a1 is negative if y1

is considered as a noise level that is aimed to be reduced).

Constraint tolerance
When the control vector for SsT is small, SsT does not change

significantly when the parameter perturbation is directed even

toward that of the control vector. This means that the orthogonal

control can be effectively performed over a much wider set of

parameter perturbations, not just limited to the perpendicular

plane to the control vector for SsT. The norm of the control vector

for SsT indicates the percentage change in SsT caused by a unit

parameter perturbation directed along the control vector for SsT.
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As the value of the norm decreases, the degeneracy of the

orthogonal control increases.

Mathematically, when the mean value is allowed to change up

to a certain tolerance level (tol) under a unit parameter

perturbation, the perpendicular plane can be expanded up to a

certain angle (h�) from the plane (Fig. 9a), which can be

determined as follows:

h�~
sin{1 tol

jCSsTj

� �
forjCSsTj§tol

900 for jCSsTjv tol

8<
: : ð16Þ

This expanded perpendicular space (colored in Fig. 9) means that

the control efficiency � and strength k need to be re-defined: The

control vector for the noise level is projected on the expanded

perpendicular space, and for the most efficient control, projected

on the closest one. Thus, the control efficiency and strength are re-

defined by replacing the angle h to the minimal angle from CVs to

the expanded perpendicular space (see Fig. 9b–d):

h?h{h� for h§900zh�,

h?hzh� for hƒ900{h�,

h?900 for 900{h�vhv900zh�:

ð17Þ

Supporting Information

Text S1 In this document, control efficiency and strength are

shown to change depending on the level of constraint tolerance for

the yeast GAL10 promoter. The Lagevin model for the ATM-p53-

mdm2 system is described in detail. Summation theorem for auto-

correlation functions is derived. Jocobian and diffusion matrices

are obtained for both the two-state model (HIV and GAL10) and

the Langevin model (ATM-p53-mdm2). Brief discussion on why

Network C in Fig. 7 is not weakly reversible is provided. Lastly,

relationship between infinitesimal and finite perturbations in

system parameters is discussed.

(PDF)

Text S2 This document provides a MATHEMATICA file for

the estimation of CCs for noise levels.

(PDF)
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