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Abstract

Kinetic models of metabolism require detailed knowledge of kinetic parameters. However, due to measurement errors or
lack of data this knowledge is often uncertain. The model of glycolysis in the parasitic protozoan Trypanosoma brucei is a
particularly well analysed example of a quantitative metabolic model, but so far it has been studied with a fixed set of
parameters only. Here we evaluate the effect of parameter uncertainty. In order to define probability distributions for each
parameter, information about the experimental sources and confidence intervals for all parameters were collected. We
created a wiki-based website dedicated to the detailed documentation of this information: the SilicoTryp wiki (http://
silicotryp.ibls.gla.ac.uk/wiki/Glycolysis). Using information collected in the wiki, we then assigned probability distributions to
all parameters of the model. This allowed us to sample sets of alternative models, accurately representing our degree of
uncertainty. Some properties of the model, such as the repartition of the glycolytic flux between the glycerol and pyruvate
producing branches, are robust to these uncertainties. However, our analysis also allowed us to identify fragilities of the
model leading to the accumulation of 3-phosphoglycerate and/or pyruvate. The analysis of the control coefficients revealed
the importance of taking into account the uncertainties about the parameters, as the ranking of the reactions can be greatly
affected. This work will now form the basis for a comprehensive Bayesian analysis and extension of the model considering
alternative topologies.
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Introduction

Kinetic models of metabolism require quantitative knowledge of

detailed kinetic parameters (e.g. maximum reaction rates, enzyme

affinities for substrates and regulators). However, our knowledge

about these parameters is often uncertain. When the parameters

are measured, various sources of error can affect the results:

experimental noise at the technical and biological levels,

systematic bias introduced by parameters being measured in vitro

instead of in vivo or by the choice of specific experimental

conditions (pH, temperature, ionic strength, etc.). Moreover, a

substantial number of important parameters have never been

measured and the estimates included in models are based either on

values measured in closely related species or on the general

distribution of similar parameters [1]. Few general methods for

dealing with this uncertainty have been suggested [2–6].

Here we present an analysis of the effect of parameter

uncertainties on a particularly well defined example of a

quantitative metabolic model: the model of glycolysis in blood-

stream form Trypanosoma brucei [7] (see Fig. 1). This ordinary

differential equation (ODE) model is mainly using parameters

measured on purified enzymes rather than fitted, and, since its first

publication in 1997, it has been updated [8] and extended [9–11]

several times, making it one of the most highly refined dynamic

models of a metabolic pathway published to date. The model has

been successfully used to predict the ‘‘turbo explosion’’ that would

happen in the absence of the glycosome, the subcellular

compartment in which the first seven enzymes of glycolysis are

localized in T. brucei [8]. This important property was confirmed

experimentally more than 10 years after the model was initially

proposed [11]. In this paper we used the last updated version of

the model published [11] with slight modifications to take into

account the equilibrium constants of all reactions (see methods).

Explicitly considering the uncertainties of parameters in the

analysis of the model allowed us to gain interesting new insights

into its behaviour. Most importantly, our analysis allowed us to

quantify the degree of confidence concerning diverse properties of

the system, including the hierarchy of control which is relevant for

prioritizing potential drug targets. The resulting quantitative

profile of model uncertainties, including the identification of
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major fragilities and areas in need of further examination, provides

a solid basis for future model extensions. These will in turn

introduce new uncertainties and should be dealt with using the

same general framework established here.

Results

Collecting information
In order to specify the uncertainty associated with each

parameter, we gathered all available information relating to the

sources of the values used in the model. Information included data

on how kinetics were measured, the number of replicates and the

standard error of mean values when available, additional

calculations used to estimate the parameter from the observed

values, and any ‘‘corrections’’ for additional factors such as

temperature or pH. For this purpose, we created the ‘‘SilicoTryp’’

wiki, a MediaWiki-based (http://www.wikimedia.org) website

dedicated to the detailed documentation of the sources of

parameters used in the latest version of the model of glycolysis

in T. brucei (http://silicotryp.ibls.gla.ac.uk/wiki/Glycolysis) [10].

Each reaction is described on its own page, which contains the rate

equation and the detailed references and calculations for each

parameter (see Fig. 2 for an example).

From the information collected, probability distributions could

be inferred for each parameter as described in Methods.

supplementary text S1 shows the estimated distributions for all

parameters.

The effects of uncertainty
To model the effect of uncertainty, we sampled values for each

parameter according to its probability distribution, generating a

ensemble of alternative models. Together these alternative models

accurately represent our degree of uncertainty about the correct

parameters, assuming that our knowledge of each parameter value

is independent of the other parameters (see Methods for one

example, the equilibrium constant, where this assumption is

violated and needs to be accounted for). This collection of models

can then be used to analyse model behavior and the associated

uncertainties. The same properties that were studied with the fixed

parameter version of the model can be studied with each

alternative model. The distribution of the results shows the

robustness and the degree of certainty we have about the inferred

model properties (e.g. the steady-state concentrations of the

metabolites and the control coefficients) considering our current

knowledge about the parameters and the topology of the model.

Reaching steady-state. The first property of the models that

we analyzed is whether or not a steady-state is reached in a

reasonable time. Our simulation uses the steady-state of the model

with the fixed set of parameters to set the initial concentrations of

the metabolites. From this initial state, each model is simulated

until steady-state is reached. Considering the generous threshold

we set for these simulations, steady-state should be reached

rapidly. Yet, only 33% of the 10,000 models reached steady-state

within 50 simulated minutes or less, and only 36% within 300

simulated minutes. As shown in Fig. 3, models that could not reach

steady-state within 300 minutes had all produced a very high

concentration of either 3-phosphoglycerate (3-PGA) or pyruvate.

The accumulation of these metabolites to unreasonable

concentrations indicates that the models contain fragilities.

These cases are studied in more detail below (section Effects on

steady-state concentrations).

Effects on steady-state flux. In bloodstream form T. brucei,

glucose is mainly converted to pyruvate in aerobic conditions,

while it is divided equally between pyruvate production and

glycerol production under anaerobic conditions [12,13]. These

flux distributions were also observed in cultured cell [14] and

reproduced by the model [7] (anaerobic conditions are modelled

by setting the Vmax of glycerol 3-phosphate oxidase (GPO,

reaction used to model the mitochondrial glycerol 3-phosphate

dehydrogenase coupled with the trypanosome alternative oxidase)

to zero, the only model reaction requiring oxygen; the

experimental measurements correspond to its inhibition as T.

brucei does not survive total anaerobic conditions [9]).

This property is well-conserved in all our models using the full

range of plausible parameter values (see Fig. 4). As expected, the

effect of uncertainty is more important in aerobic conditions: for

most of the models that do reach steady-state within 300 minutes,

the proportion of glucose that ends in glycerol varies between 0

and 20% (mean + standard deviation of the models that reaches

steady-state within 300 minutes: 9:1+5:9%). In contrast, under

anaerobic conditions, the glycolytic flux is always shared 50/50%

between the production of glycerol and pyruvate (50:0+
4 � 10{4%; the small error is most probably due to numerical

rounding effects).

Indeed, anaerobically, the flux distribution is entirely deter-

mined by the topology and stoichiometry of the model: the 6-

carbon product derived from glucose (fructose 1,6-bisphosphate) is

split into two 3-carbon products by aldolase. Anaerobically, the

NADH formed in the pyruvate branch can only be reoxidized to

NADz in the glycerol branch [7]. Hence the 50/50% split is

independent of the parameters of the model as expected from the

topology of the model. Under aerobic conditions, glycerol 3-

phosphate is mostly reoxidized using the mitochondrial glycerol 3-

phosphate dehydrogenase (GPO) and then re-routed through the

pyruvate branch via triose-phosphate isomerase [7]. However, a

small proportion of the flux ends with the production of glycerol.

This small proportion depends on the parameters used in the

model. No single parameter can easily predict the proportion of

the flux that ends in the production of glycerol.

The fixed-parameter version of the model (i.e. the model with

the set of parameter defined to be as close as possible to the model

described in [10]) predicted only a very small portion of the

Author Summary

An increasing number of mathematical models are being
built and analysed in order to obtain a better understand-
ing of specific biological systems. These quantitative
models contain parameters that need to be measured or
estimated. Because of experimental errors or lack of data,
our knowledge about these parameters is uncertain. Our
work explores the effect of including these uncertainties in
model analysis. Therefore, we studied a particularly well
curated model of the energy metabolism of the parasite
Trypanosoma brucei, responsible for African sleeping
sickness. We first collected all the information we could
find about how the model parameters were defined on a
website, the SilicoTryp wiki (http:///silicotryp.ibls.gla.ac.uk/
wiki/). From this information, we were able to quantify our
uncertainty about each parameter, thus allowing us to
analyse the model while explicitly taking these uncertain-
ties into account. We found that, even though the model
was well-defined and most of its parameters were
experimentally measured, taking into account the remain-
ing uncertainty allows us to gain more insight into model
behavior. We were able to identify previously unrecog-
nised fragilities of the model, leading to new hypotheses
amenable to experimental testing.

Modelling Glycolysis under Uncertainty
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glycolytic flux through the glycerol branch, while a wider range of

plausible values are permitted when parameter uncertainty is

considered. Indeed, a wide range of aerobic flux distributions has

been measured experimentally: from a few percent glycerol

measured by [14] to about 9% glycerol measured by [15]. This

range of observed biological variety can be explained using the

variety of kinetic parameters included in our collection of models,

or by partial anaerobiosis leading to a mixture of oxygenation

states in individual cells within the population measured.

Effects on steady-state concentrations. Using our

collection of models, we are able to see the effect of parameter

uncertainties on the steady-state concentration estimates.

Figure 1. Aerobic glycolysis in bloodstream form T. brucei. Abbreviations: Metabolites: Glc-6-P = Glucose 6-phosphate, Fru-6-P = Fructose 6-
phosphate, Fru-1,6-BP = Fructose 1,6-bisphosphate, DHAP = dihydroxyacetone phosphate, GA-3-P = glyceraldehyde 3-phosphate, Gly-3-P = glycerol 3-
phosphate, 1,3-BPGA = 1,3-bisphosphoglycerate, 3-PGA = 3-phosphoglycerate, 2-PGA = 2-phosphoglycerate, PEP = phosphoenolpyruvate. Reactions:
1 = transport of glucose across the cytosolic membrane, 2 = transport of glucose across the glycosomal membrane, 3 = hexokinase,
4 = phosphoglucose isomerase, 5 = phosphofructokinase, 6 = aldolase, 7 = triosephosphate isomerase, 8 = glyceraldehyde 3-phosphate dehydroge-
nase, 9 = phosphoglycerate kinase, 10 = transport of 3-PGA across the glycosomal membrane, 11 = phosphoglycerate mutase, 12 = enolase,
13 = pyruvate kinase, 14 = transport of pyruvate across the cytosolic membrane, 15 = glycerol 3-phosphate dehydrogenase, 16 = glycerol kinase,
17 = DHAP-Gly-3-P antiporter, 18 = glycerol-3-phosphate oxidation, 19 = ATP utilisation, 20 = adenylate kinase.
doi:10.1371/journal.pcbi.1002352.g001

Modelling Glycolysis under Uncertainty
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Considering only the models that reach steady-state within 300

simulated minutes, several cases can be distinguished (see Fig. 5

and supplementary text S2):

N For many metabolites, steady-state concentrations are well-

conserved in all plausible models and their distribution is

approximately log-normal: glucose 6-phosphate, fructose 6-

phosphate, glycosomal glyceraldehyde 3-phosphate, cytosolic

and glycosomal dihydroxyacetone phosphate and glycerol 3-

phosphate, mathrmNADz, NADH, 2-phosphoglycerate and

phosphoenolpyruvate. These distributions may be expected,

given that most of the parameters are sampled from log-

Figure 2. Example of a page of the SilicoTryp wiki. Each reaction of the model has its own page. On this page, the rate equation is specified
and a table includes all parameters with their detailed source and calculations when necessary.
doi:10.1371/journal.pcbi.1002352.g002

Figure 3. Steady-state concentration of pyruvate as a function
of the concentration of 3-phosphoglycerate at steady-state or
t = 300 minutes if steady-state is not reached before. The
contour lines indicate when steady-state was reached (in minutes of
simulated time). If steady-state was not reached before, simulations
were stopped at 300 minutes (see Methods). When a model did not
reach steady-state before 300 minutes, the concentrations of pyruvate
and/or 3-phosphoglycerate reached unreasonably high concentrations
(black contour lines). Note that the models that do not reach steady-
state within 300 minutes because of 3-PGA accumulation will
eventually reach steady-state at very high 3-PGA concentrations if the
simulations are run much longer. This is not the case for the models
that show pyruvate accumulation. Since pyruvate kinase is not product-
sensitive in the model, nothing stops the accumulation of pyruvate and
steady state is never reached (see supplementary Fig. S1 for example of
simulations).
doi:10.1371/journal.pcbi.1002352.g003

Figure 4. Effect of the uncertainties on the distribution of the
glycolytic flux between the production of pyruvate and
glycerol. The glycolytic flux is defined as the sum of the fluxes
producing glycerol and pyruvate. The black lines represents the
percentage of the glycolytic flux in the pyruvate branch (top) and the
glycerol branch (bottom) in the fixed parameter model. The red line is
the distribution of the percentage of the glycolytic flux in the collection
of models generated from the parameter probability distributions. The
division of the flux between the pyruvate branch and the glycerol
branch is well conserved. The effect of the uncertainties of the
parameters is almost non-existent in anaerobic conditions (simulated by
setting the glycerol 3-phosphate oxidase Vmax parameter to 0). In
aerobic conditions the effect is more important, indicating that this
division is not entirely due to the topology of the model in this case.
doi:10.1371/journal.pcbi.1002352.g004

Modelling Glycolysis under Uncertainty
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normal distributions and thus approximately log-normal

distributions for the steady-state concentrations are expected

too.

N For several metabolites, steady-state concentrations do not

follow approximate log-normal distributions, although their

steady-state concentrations are distributed within a range of

values consistent with physiological metabolite concentrations.

These include glycosomal and cytosolic ATP, ADP, AMP,

glycosomal and cytosolic glucose, fructose 1,6-bisphosphate

and glycosomal 1,3-bisphosphoglycerate. For example, the

concentration of glycosomal ATP and AMP is predicted to be

between 0 and 6 mM (see Fig. 5 B. for ATP), compared to the

fixed-parameter values of 4.2 mM and 0.25 mM respectively.

The concentration is bounded by the fact that the total

adenine nucleotide concentration in the glycosome is set to

6 mM in the model. Given the uncertainty regarding the exact

parameters, any ratio between ATP and AMP seems possible

and consistent with our parameter knowledge.

N For two metabolites, 3-phosphoglycerate and pyruvate, the

steady-state concentration distribution has a long, heavy tail,

indicating that some combinations of plausible parameter

values can lead to extreme predicted concentrations (several

hundreds to thousands of mmol=l, see Fig. 3). These cases

were studied in more detail as they point to interesting

fragilities in the existing model, which indicate a need to refine

our knowledge of some parameters and/or model topology.

The accumulation of 3-phosphoglycerate (3-PGA) and/or

pyruvate to unreasonable concentrations causes some models to

reach steady-state at extremely high concentrations or to fail

reaching steady-state within 300 minutes. This occurs when the

maximum reaction rates (Vmax) of phosphoglycerate mutase

(PGAM) for the 3-PGA accumulation or pyruvate transport

(PyrT) for the pyruvate accumulation are smaller than their mean

values. Fig. 6 shows the percentage of models that break as a

function of PGAM Vmax (Fig. 6 A) and PyrT Vmax (Fig. 6 B). The

data show that these models break even when these parameters

have values very close to the original value used in the fixed-

parameter version of the model. Yet, these two reactions can both

be inhibited experimentally in vivo. When PGAM was inhibited

using tetracycline-inducible RNAi, diminishing Vmax to 51% of its

original value [10], no adverse effects on the viability of the

organism were observed. The pyruvate transporter can also be

inhibited substantially before the cells start dying [16]. The reason

for the newly revealed model fragilities thus could be twofold:

either the relevant parameter values are significantly higher than

the currently used values (which are fitted, not measured; [10]), or

some unknown regulatory interaction or missing reaction stabilizes

the biological system. The pyruvate accumulation is due to a

known fragility of the model: the pyruvate kinase is insensitive to

its products, which can lead to the accumulation of pyruvate when

the Vmax of its transporter is not high enough.

Figure 5. Distribution of the steady-state concentrations of
four metabolites. The cytosolic 2-phosphoglycerate and glycosomal
ATP steady-state concentrations are consistent with physiological
metabolite concentration, whereas 3-phosphoglycerate and pyruvate
sometimes reach hundreds of millimoles per liter. The value for the
fixed parameter model is indicated by a vertical black line.
doi:10.1371/journal.pcbi.1002352.g005

Figure 6. Percentage of sampled models that reach steady-
state within 300 minutes as a function of the Vmax of pyruvate
transport and phosphoglycerate mutase. (A) Percentage of
models that reach steady-state within 300 minutes as a function of
phosphoglycerate mutase Vmax (B) Percentage of models that reach
steady-state within 300 minutes as a function of pyruvate transport
Vmax. The red line is the distribution of the parameter as it is usually
sampled. The black line is the fixed-parameter value. A model which has
a value for one of these two parameters smaller than the mean will
easily fail to reach steady-state, whatever the other parameter values
and despite these Vmax values still being close to their mean. This
reveals fragilities in the model.
doi:10.1371/journal.pcbi.1002352.g006

Modelling Glycolysis under Uncertainty
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Vanderheyden et al. have measured the pyruvate efflux Vmax at

370C in bloodstream form T. brucei [17] as 499+34 nmol/min/

mg of protein (mean + SD). Assuming an activation energy of

50 kJ/mol, the Vmax at 250C would be about 230 nmol/min/mg

of protein, very close to the 200 nmol/min/mg of protein

currently used in the model. Using Vanderheyden et al.’s value

to compute the probability distribution of the Vmax of pyruvate

transport (using the corrected mean and calculating the standard

deviation as for any value with a measured mean and unknown

standard deviation; see methods), only 0.58% of models cannot

rapidly reach a steady-state because of pyruvate accumulation

(pyruvate concentration at 300 minutes higher than 100 mM),

compared to 35.4% when the Vmax is set as described in Methods).

But this still imply that even a small inhibition of the pyruvate

transporter should kill the cells, which is inconsistent with the

experimental observations [16]. Therefore, there is probably an

additional mechanism that prevents the accumulation of pyruvate

in the cytosol. Among the possible hypotheses, it is interesting to

note that alanine aminotransferase activity has been measured in

bloodstream forms by Spitznagel et al. [18] (419+10 nmol/min/

mg of protein in whole cell extracts at 370C). This enzyme, which

catalyses the reversible reaction pyruvatezglutamate<alanine
z2{oxoglutarate, was shown to be essential in bloodstream

form trypanosomes and might have a significant role in the

regulation of the intracellular pyruvate concentration.

Adding alanine aminotransferase into the model would require

adding several other reactions as well: the production and

recycling of 2-oxoglutarate and glutamate need to be incorporat-

ed, as well as the export of alanine [19,20] and probably 2-

oxoglutarate [21].

Effects on control coefficients. Control coefficients are one

of the most important high-level properties of kinetic models of

metabolism: they allow the quantification of how much influence

each reaction has on the flux of the pathway. In the glycolytic

model of T. brucei, individual control coefficients have been used to

predict the most promising trypanocidal drug targets. The T. brucei

glycolysis model published by Alberts et al. [10] indicated that the

glucose consumption flux is controlled mainly by the glucose

transporter at 5 mM of extracellular glucose (control coefficient

CGlcTc
~0:98 [10]). As the sum of the control coefficients over the

pathway is one [22], the other enzymes have no or very little

control over the glucose consumption flux in this fixed-parameter

model.

Using our collection of models, we calculated the control

coefficients for every reaction and every model (see Methods).

These control coefficients were then ranked from the highest to

the lowest. Our analysis (Fig. 7) shows that, given our uncertainty

on the parameters, we cannot be certain about the identity of the

reaction that has most control over the glucose consumption

flux. Moreover, we show that the fixed-parameter model

scenario, where almost all the control is held by one reaction -

the glucose transporter - is not the only scenario possible, but

that even at 5 mM of glucose the control might be shared by

several reactions.

Fig. 7A (red) shows the reaction that has the highest control

coefficient over the glucose consumption flux as a percentage of

the sampled model. The glucose transporter has the highest

control over the glucose consumption flux in only 40.3% of the

models. A substantial proportion of models yield either the

phosphoglycerate mutase (PGAM, 31.1%) or GAPDH (28.5%) as

having the highest control coefficient.

In 1999, Bakker et al. [23] estimated the control coefficient over

the oxygen consumption flux of the glucose transporter experi-

mentally (at 5 mM of extracellular glucose) as being between 0.3

and 0.5. In the fixed-parameter model, the Vmax of the glucose

transporter was fitted to this control coefficient (0.4) by Alberts et

al. [10]. In 17.3% of our models, the glucose transporter has the

highest control coefficient over the oxygen consumption flux

(Fig. 7A (blue)). Among these models, the control coefficient of the

glucose transporter varies between 0.2 and 1.0; when another

reaction has the largest control coefficient, the control coefficient

of the glucose transporter is always lower than 0.4. A similar

distribution of the control coefficient is observed over the glucose

consumption flux. No single parameter alone can explain the wide

range of values of CGlcT . It has been shown, however, that the

extreme sensitivity of CGlcT to various parameters can be

attributed to the large difference between the Km values of the

glucose transporter and the next enzyme, hexokinase, towards

intracellular glucose [24].

Fig. 7B represents the number of reactions that exert some

control over the glucose consumption flux (defined as the

reactions with control coefficients above 0.001) as a percentage

Figure 7. Control coefficients in the collection of models. (A) Percentage of models which have either the glucose transporter (GlcTc),
phosphoglycerate mutase (PGAM) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the reaction with the highest control coefficient either
over the glucose consumption flux (red) or the oxygen consumption flux (blue). (B) Percentage of models vs. the number of reactions that have a
control coefficient higher than 0.001. The color inside the bars represents the proportion that has either the glucose transporter, PGAM or GAPDH as
the reaction with the highest control coefficient over the glucose consumption flux within these subgroups.
doi:10.1371/journal.pcbi.1002352.g007

Modelling Glycolysis under Uncertainty
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of the sampled models. For 21% of the sampled models, only one

reaction controls the glucose consumption flux and this reaction

is most of the time the glucose transporter, as is the case in the

fixed-parameter model. When PGAM exerts most control over

the flux, it shares the control with at least one other reaction.

When GAPDH exerts most control over the flux, it shares the

control with at least four other reactions. Interestingly, the

activity of GAPDH has been reported to be inhibited by an

unknown compound [25]. If this inhibition is physiological and

also occurs in vivo, it might have an important role in the control

of glycolytic flux. Indeed, partial inhibition of GAPDH has

already been shown to decrease the glycolytic flux and kill the cell

[26]. The fact that PGAM exerts the most control in some models

might reflect our lack of knowledge about the parameters

describing the rate of this reaction. Further analysis of the

kinetics of this reaction is necessary to know whether it really

exerts some control over the glycolytic flux and thus represents

interesting potential drug target.

In the fixed-parameter model, shared control was only seen at

glucose concentrations higher than 5 mM [8]. Taking our

uncertainty about the parameters values into account shows that

this might be the case already at 5 mM of glucose, as has already

been suggested by the preliminary analysis of the sensitivity of

control coefficients to variations in Vmax values in this model [8].

Improving our knowledge about GAPDH and PGAM parame-

ters will allow us to know with a higher degree of confidence if

only one of these scenarios is relevant in vivo or if a similar

diversity can be found in a parasite population. This knowledge

will be essential to predict if a single glycolytic drug target is

sufficient or if multiple reactions need to be inhibited to control

parasite infections.

Discussion

Dynamic models of metabolism are powerful tools to infer

interesting and often unexpected properties of cellular physiology.

However, the data used to build models from diverse sources can

lack accuracy and precision. Here we demonstrate how model

output can vary when the uncertainties associated with incomplete

and variable datasets are explicitly considered in studying a model.

We took as an example the well characterised model of the

compartmentalised glycolysis in the parasitic protozoan T. brucei. It

should be noted that our assessment of the effect of parameter

uncertainty on the conclusions that are possible is very

conservative. Whenever possible, we have restricted our uncer-

tainty estimates to the level of experimental uncertainty seen

within a single assay. This ignores the systematic effects of

differences in, e.g., temperature, pH or ion compositions, or biases

introduced in sample preparation, all of which would increase

uncertainty as can also be seen when parameter values from

different laboratories are compared. However, even with these

relatively limited uncertainties, we were able to assess the

robustness and variability of various properties of the model.

The first property that we studied is the ability of the model to

reach steady-state rapidly. Surprisingly, a significant proportion

(60%) of the models we generated by sampling the parameters did

not allow the model to reach steady-state within 300 minutes, due

to the accumulation of either 3-phosphoglycerate or pyruvate in

the cytosol. This phenomenon could be attributed to two

individual parameters, the maximal reaction rates of phospho-

glycerate mutase and pyruvate transport which, when operating

below their mean value (but still very close to it), caused the

accumulation of two metabolites (3-phosphoglycerate and pyru-

vate respectively). For the pyruvate transporter, the analysis

suggested a mechanism that could avoid this problem: alanine

aminotransferase has been shown, unexpectedly, to be essential in

bloodstream form T. brucei [18], and its activity comparable with

the rate of pyruvate efflux. This would be sufficient to exert a

substantial influence on the intracellular pyruvate concentration.

The maximal reaction rate of phosphoglycerate mutase is difficult

to measure directly [27], therefore further experimental and

theoretical studies are required to refine our knowledge about this

reaction. Indeed, the model predicts that current values for PGAM

are probably lower than those operative in T. brucei, and some

effort should be made to determine whether the values are indeed

higher.

We then analysed the distribution of the steady-state fluxes

between the pyruvate and glycerol producing branches of

glycolysis both in aerobic and anaerobic conditions. In totally

anaerobic conditions, the distribution was very well conserved.

Indeed, this property is entirely constrained by the topology of the

model and thus this result was expected. Our analysis shows that

the distribution of the fluxes is more variable in aerobic conditions,

consistent with previously unexplained variation in experimental

observations (although changes in oxygen tension within different

cells in measured populations would create the same effect).

Further analysis of the steady-state concentrations allowed us

to distinguish the metabolites that are only moderately affected by

the parameter uncertainties and follow an approximate log-

normal distribution, such as NADz and NADH, from the

metabolites that follow a more complex distribution such as

glycosomal ATP. ATP is constrained by a conserved sum,

therefore its steady-state concentration always stays within

reasonable limits. Technical limitations mean that the concen-

tration of glycosomal ATP is not directly accessible for

experimentation (glycosomes cannot be purified efficiently

enough). Therefore, only by acquiring additional data about

the parameters of the model can assumptions about these

concentrations at steady-state be refined.

Finally, we analysed the control coefficients of each enzyme

using our collection of models. These properties are especially

important in the case of glycolysis in T. brucei, as they allow us to

identify potential drug targets. Our analysis reveals that, although

the reaction that has the most control over the glucose

consumption flux is the glucose transporter in 40.3% of the

models, two other reactions maximally control the flux in a

significant proportion of the models: PGAM (31.1%) and GAPDH

(28.5%). Moreover, the activity of GAPDH has been reported to

be inhibited by an unknown metabolite [25]; if this inhibition

occurs in vivo, it might have an important role in the control of

glycolytic flux. Interestingly, partial inhibition of GAPDH has

been shown to affect parasite growth and glycolytic flux [26], and

selective inhibitors of the T. brucei enzyme have been shown to be

trypanocidal [28]. The rest of the control coefficient hierarchy is

more variable. Either this variability is a true reflexion of biological

noise or the result of our lack of knowledge about some parameters

of the model.

The data derived from the work performed here point to several

further studies, including analysis of the role of alanine amino

transferase in the regulation of pyruvate concentration and more

exact quantification of pyruvate transport and phosphoglycerate

mutase kinetics. The detailed description of parameter uncertainty

will now form the basis for a comprehensive Bayesian analysis and

extension of the model using alternative topologies [29]. These

analyses will allow us to quantify our posterior belief about the

parameters of the model when it is confronted with new

experimental data such as measured metabolite concentrations

in different conditions.
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Methods

The model
The model used in this paper is the last updated version [10,11]

of the glycolysis model of T. brucei first published by Bakker et al. in

1997 [7] (see Fig. 1).

To allow a straight-forward sampling of parameters, the rate

equations were rewritten to contain the equilibrium constant

instead of the ratio of Vmax values (reverse over forward), using the

Haldane equation [30]. This does not change the rates, but

simplifies the sampling of the parameters, as we do not need to

check for consistency with the thermodynamic equilibrium

constant. For example, the phosphoglucose isomerase (PGI) rate

equation was:

vPGI~Vmax �

Glc6Pg

KmGlc6P

{r � Fru6Pg

KmFru6P

1z
Glc6Pg

KmGlc6P

z
Fru6Pg

KmFru6P

ð1Þ

where r~
Vmaxreverse

Vmaxforward

. The Haldane equation gives:

KeqPGI~
Vmaxforward � KmFru6P

Vmaxreverse � KmGlc6P

ð2Þ

Therefore, the rate equation of PGI can be rewritten as:

vPGI~Vmax �

Glc6Pg

KmGlc6P

� (1{
Fru6Pg

Glc6Pg � Keq
)

1z
Glc6Pg

KmGlc6P

z
Fru6Pg

KmFru6P

ð3Þ

The list of sources used to compute the values of the equilibrium

constants is available in supplementary text S3 and on the

SilicoTryp wiki (http://silicotryp.ibls.gla.ac.uk/wiki/Glycolysis).

The model in [11] considered the transport reactions between

the cytosol and the glycosome and adenylate kinase (see special

cases) to be very fast compared the other reactions of the model.

Therefore, they were not explicitly modelled. To enable

consideration of the effect of parameter uncertainty on the rate

of these transport reactions, we modelled them explicitly using

mass action kinetics. As we considered that these reactions have an

equilibrium constant of unity (no preferential accumulation or

exclusion in one of the compartments), we used a single rate

parameter for each transport reaction. For example, the transport

of glucose between the cytosol and the glycosome is modelled as:

vGlcTg~k � Glcc{k � Glcg ð4Þ

The model is available as supplementary dataset S1 (SBML file

[31]). The parameter values are as in [11]. The equilibrium

constant are calculated from the Km values and the ration of

Vmaxreverse over Vmaxforward when necessary.

Probability distributions of the parameters
In order to sample the model parameters, we needed to define a

probability distribution for each parameter. These distributions

can be defined empirically using arbitrary shapes, but for the sake

of convenience it is usually appropriate to use standard shapes (e.g.

normal or log-normal distributions) and then to estimate the

parameters of these distributions (usually the mean and standard

deviation).

Km/Ki. These parameters represent concentrations,

therefore they cannot be negative and our uncertainty about

their values is best represented by a log-normal distribution.

For each Km or Ki value of the model, the mean and standard

deviation of the corresponding log-normal distribution must be

estimated from available experimental data (indicated as lmean
and lsd ). Five situations occur:

N The parameter has been measured experimentally: a mean (m)

and standard deviation (SD) or standard error (SEM~

SD �
ffiffiffi

n
p

, where n is the number of observations) are available.

lmean~log10(m) and lsd~log10(
SEM

m
z1). If a standard

deviation is available and the number of observations is not

specified, n is supposed to be 3.

N The parameter has been measured experimentally, but only a

mean value is reported. lmean is computed as above, lsd is

computed using the average relative standard error (RSE) of all

Km values of the model for which SD or SEM is available. The

value of RSE calculated from the published data is usually

between 10 and 20%, indicating that the RSE can be expected

to be similar for those Km values where it has not been specified.

N The parameter has not been measured, and no estimate of its

value is available. When no other information is available, the

parameter is calculated from the list of Km values of all T. brucei

enzymes retrieved from BRENDA [32] (lmean~{1:1,

lsd~1:35, Fig. 8).

N The parameter has not been measured, but some indication of

its mean is available, e.g. a value measured for a phylogenet-

ically closely related species (Trypanosoma cruzi or a Leishmania

species). This heterologous mean is used to compute the lmean
as above. As this value is considered to be more uncertain than

a value measured in T. brucei, the lsd is calculated so that the

upper or lower limit of the 95% confidence interval equals the

upper or lower limit of the 95% confidence interval of all T.

brucei enzyme retrieved from BRENDA (if the heterologous

mean is higher than the mean calculated from all T. brucei

Figure 8. Distribution of the Km values retrieved from the
BRENDA database. Km values retrieved from the database (green)
and a log-normal distribution with the same mean and standard-
deviation (red) are shown.
doi:10.1371/journal.pcbi.1002352.g008
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enzyme retrieved from BRENDA, then the upper limit is used,

otherwise, the lower limit is used). However, if the 95%

confidence interval calculated is bigger than ½0:1 �mean;
10 �mean� then ½0:1 �mean; 10 �mean� is used to calculate

lsd .

The Km values of PGAM used in the published version of the

model were measured in the presence of cobalt, as this was

believed to be the cofactor used by the enzyme. However, the

nature of the metallic cofactor used by this enzyme has recently

been questioned: Fuad et al. (2011) [33] have shown that the

concentration of cobalt is too small to be relevant in vivo. For this

reason, the Km values of PGAM were set according to the earlier

measurements done by Chevalier et al. (2000) [27]: Km

(3{PGA)~0:15+0:02 mM and Km(2PGA)~0:16+0.03 mM.

Keq. The equilibrium constants, Keq, can be calculated from

the Gibbs free energy of a reaction, DGr, using equation 5:

Keq~exp(
{DGo’

r

RT
) ð5Þ

DGo’
r is expressed in J/mol and can be positive, negative or null.

Therefore, we assumed that our uncertainty about the exact value

of DGo’
r can be described by a normal distribution. As a

consequence, according to equation 5, the plausible values of the

equilibrium constant will be log-normally distributed.

As the equilibrium constant does not depend on the organism

(assuming constant temperature, pH and ionic strength), the mean

and standard-deviation of the distribution can be calculated from

the various values reported in the literature (see supplementary

text S3). When only one published value could be found, the

standard deviation was calculated using the mean relative standard

deviation of the other equilibrium constants in the model as

described above.

Vmax. The maximum rate of the reactions (Vmax) can only

have positive values. The Vmax values are linked to the equilibrium

constant and Km values by the Haldane equation. Therefore, we

assume again that our uncertainty about them can best be

described by a log-normal distribution.

For each Vmax, the mean and standard deviation of the log-

normal distribution must be defined (respectively lmean and lsd).

When the Vmax had been measured, the lmean and lsd were

calculated the same way as for the Km values. When no

information was available, the lmean was set using the value

fitted by Alberts et al. [10] for the fixed-parameter model. In these

cases, the lsd was then set so that the upper limit of the confidence

interval (95%) is 4000 nmol/min/mg protein (the largest Vmax in

the model is 2862 nmol/min/mg protein for phosphoglycerate

kinase [10]).

If the Vmax was measured in the reverse direction (Vr
max), Vr

max

is sampled. Vmax is then calculated from the sampled Vr
max, Keq

and Km values using the Haldane equation. The value used for

phosphoglycerate kinase is calculated from the measured Vr
max.

However, as two of the Km values were not measured and

therefore have large standard deviations, sampling this Vmax from

the Vr
max, Km and Keq would result in sampling values much larger

than 4000 nmol/min/mg of proteins. Therefore, the phospho-

glycerate kinase Vmax was sampled using the calculated value as a

mean, and the standard deviation was calculated so that the upper

limit of the confidence interval (95%) is 4000 nmol/min/mg

protein.

The Vmax of GAPDH reported in the literature [10] was

measured in crude extracts where a non-identified metabolite

seems to inhibit it [25]. The inhibition factor (F ) was estimated by

Misset et al. [25] as about three-fold and was sampled separately in

our study. As F needs to be higher than 1, it was sampled using a

log-normal distribution (with mean~2 and sd calculated so that

the upper limit of the confidence interval (95%) is 3.5) to which 1 is

added. The Vmax of GAPDH in the model is then multiplied by

this sampled inhibition factor.

The glucose transporter Vmax was set according to the

measurements of Seyfang et al. [34]. Using the Vmax at 370C
and the activation energy they measured, we estimated the Vmax of

glucose transporter at 250C to 111:7+19:1 nmol/min/mg of

protein. Note that this value is close to the fitted value used in [10]

(108.9 nmol/min/mg of protein).

Transport reactions. The model includes several transport

reactions. Among them, only the transport rates across the

cytosolic membrane have been measured. The transport rates

across the glycosomal membrane have not been characterised and

are currently modelled using mass action kinetics (i.e., as non-

saturable, non-enzymatic reactions) to maintain maximal

compatibility with the published model [10,11]. The

corresponding parameters have not been measured. The

equilibrium constant of these transport reactions is assumed to

be 1, so that only one kinetic parameter is required per transport

reaction.

No information is available about the uncertainty of these

parameters. As these parameters are strictly positive, they are

sampled using a log-normal distribution as are Km and Vmax

values. The means are set to the minimum value so that the

reaction will be within 5% of equilibrium (using the mean values

for all the other parameters). The standard deviation is calculated

so that the upper limit of the confidence interval (95%) is equal to

100 times the mean to allow a large exploration of the parameter

space.

Specific cases. Bakker et al. [7] and the following versions of

the model included adenylate kinase implicitly, considering this

reaction to be at equilibrium. We modelled adenylate kinase using

mass action kinetics, with two rate constants k1 and k2. As only the

equilibrium constant of this reaction is known, k2 is sampled using

the same methods as for the parameters of the transport reactions.

k1 is then calculated from k2 and the sampled equilibrium

constant: k1~Keq � k2.

ATP utilization is modelled using mass action kinetics with a

single rate constant. As this reaction represents all of the cytosolic

reactions that consume ATP and are not explicitly included in the

model, the rate constant of this reaction is unknown. As for

glycosomal transport reactions, this parameter was sampled

according to a log-normal distribution. The mean used is the

value fitted by Bakker et al. [7]. The standard deviation is

calculated so that the upper limit of the 95% confidence interval

equals 2 times the mean.

The glucose transport across the cytosolic membrane is assumed

to be symmetric [7] based on experimental evidence [35].

Moreover, it exhibits a trans-acceleration phenomenon [36] which

is quantify by a parameter, a in the underlying model of the

transporter kinetics. As this parameter varies between 0 and 1, it

was sampled using a logit-normal distribution. The estimated

value from Bakker et al. [7] was used as a mean. The standard

deviation was arbitrarily set so that the upper limit of the 95%

confidence interval is the mean +20%.

Parameter sampling
All parameters were sampled using the MT19937 random

number generator of Makoto Matsumoto and Takuji Nishimura

[37] implemented in the GNU Scientific Library (GSL) [38]. The

random numbers where then transformed to follow their assumed
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probability distribution using the random number distribution

function implemented in the GSL library.

Steady-state calculations
The steady states were calculated using the SOSlib library [39].

Steady-state is considered if the mean+standard deviation of the

rates of change of all metabolite concentrations is lower than a

user-defined parameter ssThreshold of SOSlib. The initial

conditions were set using the steady-state concentrations calculat-

ed using the mean values of all parameters. For any sampled

model, it is assumed that steady state should be reached within

300 minutes of simulated time (steady state detection threshold

ssThreshold~0:01, parameter PrintStep~1 per simulated min-

ute). We checked that the steady-state calculations give similar

results in COPASI [40] and PySCeS [41] using their default

parameters. We also verified that the parameter sets that do not

allow the model to reach steady state in these conditions show

accumulation of individual metabolites beyond reasonable con-

centrations (hundreds or thousands of millimol per liter, see

Results and Fig. 3).

Control coefficients
The control coefficients were computed using the methodology

described by Bakker et al. [8]. The computation of control

coefficients requires more precise steady-states calculations.

Therefore, the parameters of SOSlib were set to: maximal time

Time~100000 minutes and the threshold ssThreshold~10{6.

Supporting Information

Dataset S1 Fixed-parameter model (sbml file).

(XML)

Figure S1 Examples of simulations of models unable to
reach steady-state (within 1000 simulated minutes). (A)

Simulation of pyruvate concentration in a model unable to reach

steady-state because of pyruvate accumulation. Models of this type

will never reach steady-state. (B) Simulation of glycosomal 3-PGA

concentration in a model unable to reach steady-state because of

3-PGA accumulation. Models of this type will eventually reach

steady-state, but at extremely high concentrations of 3-PGA.

(TIFF)

Text S1 Distributions of the sampled parameters.
(PDF)

Text S2 Distributions of the steady-state concentrations
of the metabolites in mmol/l.
(PDF)

Text S3 Sources used for the calculation of the equilib-
rium constants mean and standard deviations.
(PDF)
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