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Abstract

Decisions about noisy stimuli require evidence integration over time. Traditionally, evidence integration and decision
making are described as a one-stage process: a decision is made when evidence for the presence of a stimulus crosses a
threshold. Here, we show that one-stage models cannot explain psychophysical experiments on feature fusion, where two
visual stimuli are presented in rapid succession. Paradoxically, the second stimulus biases decisions more strongly than the
first one, contrary to predictions of one-stage models and intuition. We present a two-stage model where sensory
information is integrated and buffered before it is fed into a drift diffusion process. The model is tested in a series of
psychophysical experiments and explains both accuracy and reaction time distributions.
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Introduction

Decision making is of crucial interest in many disciplines such as

psychology [1,2], neuroscience [3–5], economics [6,7], and machine

learning [8]. Binary decision theories relate to situations where an

observer (or machine) is confronted with one of two possible noisy

stimuli ‘A’ and ‘B’. A decision has to be made whether ‘A’ or ‘B’ is

present. For example, human readers have to decide whether a

handwritten character is an n or a u; a trader has to decide whether

to sell or to keep; a monkey has to decide whether dots on a screen

are moving to the left or to the right [9]. While engineering and

economical decision theories focus on how to compute optimal

decisions [6,7,10], psychology and neuroscience investigate the

actual decision making process in humans and animals [9,11–14].

Decision making is usually assumed to be a one-stage process

where evidence integration and decision making are identical (but

see [15,16]). In a standard accumulator model each bit of evidence

is integrated and a decision is reached once the accumulated

evidence for one of the two response alternatives crosses a

threshold [13,14,17–33]. If the evidence itself is noisy, then the

accumulation of evidence for each of the two stimulus alternatives

leads to a diffusion-like process. For example, in the well-known

random motion paradigm [9], moving dots appear at random

moments in time, so that evidence for leftward or rightward

moments arrives probabilistically and the accumulator is expected

to evolve along a stochastic path that can be approximated by a

drift-diffusion process. This is in good accordance with experi-

mental studies where neurons in the macaque lateral intraparietal

cortex (LIP) increase firing rates along a noisy trajectory up to the

moment of decision [9,32–34]. Since evidence is very noisy in this

case, and arrives slowly over time, the decision process is rather

slow [9]. Most experimental [9,11,12] and theoretical work on

decision making [5–8] focuses on paradigms where noisy stimuli

are presented for long durations, e.g. until a response is elicited (for

exceptions see [31,32]).

In other paradigms, where stimuli are less noisy, decisions can

be extremely fast. For example, humans only need a fraction of a

second to recognize objects such as animals in a picture [35]. This

astonishing speed is also evident in sports such as table tennis or

soccer requiring rapid reactions to moving balls. In these

examples, the brain has to decide rapidly upon visual information

available for only a hundred milliseconds or less. Note that even in

these scenarios where stimuli are of high contrast (‘‘low noise’’), the

responses of the observers can still be ‘‘noisy’’.

Here, we first show psychophysically that one-stage models of the

noisy accumulator or drift-diffusion type cannot explain the results of

feature fusion experiments where two stimulus alternatives are

presented in rapid succession for durations in the range of 20–

160 ms. Second, we propose, instead, a two-stage model, where

evidence integration is separated from a noisy drift-diffusion decision

making process. Our results reveal additional aspects of the dynamics

of decision making that are hidden in standard experimental

paradigms where only one stimulus alternative is presented per trial.

Results

In our psychophysical experiments we worked with visual

stimuli comprising two vertical bars with a small horizontal offset

either to the left or to the right (Vernier stimulus, Figure 1). The

contrast of the bars and the horizontal offset was chosen such that,

after flashing the stimulus for 10 ms, human observers can reliably

identify (accuracy above 90 percent correct) whether the lower

vertical bar is offset to the left or right with respect to the upper

vertical bar.
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Next, we presented a sequence of two Vernier stimuli. As a

reference we performed an experiment where the presentation of a

first Vernier stimulus ‘A’ for 10 ms was separated from the

presentation of a second Vernier stimulus ‘B’ by an interstimulus

interval (ISI; blank screen) of variable duration. If the ISI was 50 ms,

observers easily distinguished the two stimuli and could report, with

an accuracy of above 90 percent correct, whether the first or the

second Vernier stimulus was offset to the right. If the interstimulus

interval was shorter, the accuracy dropped (Figure 1). The high

precision of the subjects in spite of the short stimulus duration

suggests that – in contrast to e.g. traditional random dot stimuli – the

stimulus is highly informative with relatively little stimulus noise.

If the ISI is 0 ms, i.e. the two verniers are presented in

immediate succession, feature fusion occurs [36]. Observers

perceive only one single vernier with a smaller offset because the

vernier offsets integrate and partially cancel each other out

(Figure 2A; [37,38]). Our feature fusion experiments with Vernier

stimuli are analogous to classic feature fusion experiments with

color. For example, observers perceive one single yellow disk when

a red disk is rapidly followed by a green disk [39].

Dominance of the second stimulus
In experiment one, vernier stimulus ‘A’, offset either to the left or

right, was immediately followed by a second vernier stimulus ‘B’ with

opposite offset direction (right or left, respectively). The durations TA

and TB of both verniers were equal, i.e. TA~TB, but varied from 10

to 80 ms, each. Vernier stimulus ‘B’ dominates the percept the

stronger the longer both vernier stimuli ‘A’ and ‘B’ are presented

(Figure 2D). For example, when the two vernier stimuli are presented

for 20 ms each, observers report a percept corresponding to stimulus

‘B’ in 60% of the trials, while ‘A’ is reported in only 40% of the trials.

When the two stimuli are presented for 40 ms each, observers report

a percept corresponding to stimulus ‘B’ in 67% of the trials, while ‘A’

reported in only 33% of the trials.

We wondered whether the dominance of the second stimulus

could be explained by classical noisy accumulator models, also

called Drift-Diffusion models. In the standard, one-stage Drift-

Diffusion Model [20,22,23,27], evidence for ‘A’ or ‘B’ translates

directly into the drift rate (upward for ‘A’, downward for ‘B’) of a

decision variable X (Figures 2B, C). As usually, we added noise to

the drift process leading to a random walk of the trajectory. The

noise accounts for both noisiness of the evidence itself (an

important aspect in the moving-dot paradigm [9,33,34,40]) and

internal noise in the brain. After presentation of both stimuli, the

drift goes back to zero. A decision is made when X hits the upper

(for ‘A’) or lower bound (for ‘B’).

In this one-stage model, dominance of stimulus ‘A’ is the stronger

the longer the presentation times of ‘A’ and ‘B’, TA and TB

respectively. This is in striking contrast to the experimental results.

We found that the qualitative nature of the results is independent of

the specific choice of parameters of the one-stage drift diffusion

model: for all tested parameters, the dominance of the second

stimulus decreased with increasing duration (whereas the dominance

of the second stimulus increased in the experiments). Whereas, for

certain, fixed stimulus durations, we could achieve dominance of the

second stimulus with specifically optimized parameters, we could

never achieve dominance of the second stimulus for the entire range

of stimulus durations with one set of parameters.

We explored whether minor modifications of the one-stage

drift-diffusion model can explain the dominance of the second

vernier. For example, we replaced the noisy accumulator by a

noisy leaky accumulator. However, this did not change the results

qualitatively. We then tested a very basic two stage model. During

stimulus presentation, the stimulus served as the drift in a noisy

leaky integrator model. After stimulus termination, the leak was

artificially set to zero and the integration continued as a free,

unbiased noisy diffusion process. In other words, the result of the

leaky evidence integration served as initial condition for the leak-

free diffusion process. While qualitatively such a drift-diffusion

model explains the dominance results well (Supporting Figure

S3B), we suggest an alternative model, which accounts very well

for both the dominance and the reaction time distributions.

In this two-stage model, the evidence integration enters the

second stage as a drift rate rather than as a bias in the initial

condition. (a) During stage one, evidence integration is leaky and

dominated by the intrinsic noise of the stimulus. The variable of

noisy evidence integration is E(t). (b) Stage two starts after a fixed

time Tstart after stimulus onset and ends when a second variable

X (t) hits the upper or lower decision threshold. (c) The variable

E(t) of the leaky integrator of stage one sets the drift in the (leak-

free) drift-diffusion model of stage two.

Figure 1. Reference Experiment. Upper panel: A left or right offset
vernier was presented for 10 ms followed by a variable blank
background (ISI, here shown for 20 ms) and, then, by a second vernier
for 10 ms. Lower panel: Observers were asked to indicate whether the
first or second vernier was offset to the right. Performance improves
quickly with increasing ISI, reaching ceiling performance at 50 ms.
doi:10.1371/journal.pcbi.1002382.g001

Author Summary

In models of decision making, evidence is accumulated
until it crosses a threshold. The amount of evidence is
directly related to the strength of the sensory input for the
decision alternatives. Such one-stage models predict that if
two stimulus alternatives are presented in succession, the
stimulus alternative presented first dominates the decision,
as the accumulated evidence will reach the threshold for
this alternative first. Here, we show that for short stimulus
durations decision making is not dominated by the first,
but by the second stimulus. This result cannot be
explained by classical one-stage decision models. We
present a two-stage model where sensory input is first
integrated before its outcome is fed into a classical
decision process.
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The combination of (b) and (c) implies that, for long stimuli,

stage two is a drift-diffusion model with time-dependent drift set by

the momentary value E(t) of the integration variable of stage one.

In case that the total duration of the stimulus is shorter than the

time needed to reach the decision threshold in stage two, the value

of the leaky integrator of stage one at the end of the stimulus is

written into a buffer and this buffered value serves, during the

remaining time, as the (constant) drift for the diffusion process in

stage two until a decision is reached. In the limit that stimuli are

shorter than Tstart, stage two has therefore a constant drift. In the

limit that stimuli are presented for times much longer than Tstart

(so that Tstart is negligibly short compared to the stimulation time),

our two-stage model becomes equivalent to a standard one-stage

drift-diffusion model with a time-dependent drift that is given by

the low-pass filtered version of the input signal. However, for very

short stimuli, the prediction of our two-stage model is remarkably

different from that of a standard one-stage model – and these

ultra-short stimuli are at the center of our study.

The results on stimulus dominance during the feature fusion

paradigm with two short Verniers can indeed be explained by the

two-stage model (Figures 2E, F). Since our stimuli are compar-

atively strong (over 90 percent accuracy for stimli presented

separately), we consider the limit where the evidence integration in

stage one is noise-free. Hence, in the first integration stage, evidence

for stimulus ‘A’ and ‘B’ is simply accumulated in a noiseless

forgetful (leaky) integrator (see also [30]). The time scale of

forgetting is related to the time over which an ideal observer

expects stimuli to remain constant (see Materials and Methods).

The second phase, the decision stage starts at a fixed time Tstart and

consists of a standard drift-diffusion model without leak (Figure 2F,

bottom panel). For a sequence of two short stimuli, the stimulation

ends before Tstart so that at the termination of the second stimulus

(Twrite), the output of the evidence integration is written into a

buffer and fed later from the buffer as a constant drift rate into

stage two. The two-stage model captures the dominance of the

second vernier very well (Figure 2G).

Reaction times
The critical test for models of decision making is to account for

reaction time distributions rather than accuracy [20]. We therefore

wondered whether the two-stage model captures the reaction time

distributions in the fusion experiments. In experiment two,

stimulus ‘A’ (the first vernier stimulus) was presented for a

duration TA, immediately followed by stimulus ‘B’ (a vernier with

opposite offset) of duration TB with TAzTB~40ms (Figure 3A).

Parameters of the two-stage model were adapted individually for

each observer and kept fixed across all stimulus conditions. The

dominance of the first vernier stimulus increased when TA

increased (Figure 3B). Reaction times for strongly biased situations

(e.g. where the first vernier stimulus is much longer than the

second one or vice versa) are faster (75% of decisions made before

560 ms) than those in conditions with dominance around 50%

(75% of decisions made before 610 ms) leading to an inverted-U-

shaped curve of the reaction time quantiles (Figure 3C). The same

pattern is observed when responses for the first and second vernier

stimulus are analyzed separately (Figure 3D).

Median response times varied strongly across the 13 observers

(Figure 4A). We separated the observers into a group of fast

responders (median reaction time ,500 ms) and one of slow

responders (median reaction time .500 ms). While the reaction

times of both groups show an inverted U-shape function, the

qualitative picture is different between slow and fast responders. If

the first vernier stimulus is presented for a short time only, fast

responders are particularly fast whereas slow responders are

particularly slow. The two-stage model qualitatively reproduces

this behavior (Figures 4B,C, Supporting Figure S1).

Evidence integration in stage one as drift in stage two
For each stimulus condition, the outcome of the leaky integration

in the first stage serves as a drift of the leakfree drift-diffusion model

during the second stage of the two-stage model. For short stimuli,

like the ones considered so far, where the stimulus ends before the

integration, the result of stage one is written into a buffer and used as

a constant value of the drift in the decision stage. In other words, the

evidence at stimulus termination serves as drift value, rather than as

an initial condition of stage two.

As an alternative, we have also analyzed a drift-diffusion model

where the drift was taken as a free parameter, optimized for each

stimulus condition independently so as to optimally predict the

distribution of reaction times. The drift predicted from this model

Figure 2. One-stage and two-stage models of decision making. (A) A vernier (stimulus ‘A’) is followed by a second vernier (stimulus ‘B’). The
first vernier is either offet to the right (as shown) or to the left (not shown). The second vernier stimulus is always offset to the opposite side. Only one
vernier is perceived and the offsets of the two vernier stimuli fuse. The perceived offset of the fused vernier is more strongly influenced by the second
than the first vernier when the duration TA and TB of stimulus ‘A’ and ‘B’ are equal, TA~TB. (B) One-stage model. After a sensory delay, the stimulus
input is directly fed into the decision stage as the drift rate of a decision variable which is subject to a random walk. When the decision variable hits
the upper boundary (a), the decision is for the offset of the first vernier (stimulus ‘A’). When it hits the lower boundary (b), the decision is for the offset
of the second vernier (stimulus ‘B’). A motor response is executed accordingly. Variability in the drift leads to different reaction times (red and blue
curves show reaction time distributions). It is important to note that observers push one button for left responses and one for right responses. In this
figure, however, button ‘A’ is a symbol denoting responses according to the first vernier stimulus (either left or right) and button ‘B’ according to the
second vernier stimulus. (C) Upper panel: After preprocessing and signal transmission of duration Tpre0 (sensory delay), the one-stage model translates
the time course of the input directly into a time-varying drift rate of the decision process. Bottom panel: The time-varying drift rate directly drives the
drift-diffusion process leading to trajectories which first increase and then decrease (orange trajectory, TA = 10 ms; purple, TA = 40 ms). The earlier
the decision variable hits one of the boundaries, the faster the reaction times. For short TA (e.g. 10 ms) the trajectory does not reach any of the
boundaries (a, b) during stimulus presentation. One of the boundaries is reached after a random walk (orange line and reaction time distributions).
For longer durations, the trajectory (purple line) more likely hits the upper than the lower boundary, leading to a decision for stimulus ‘A’. In few
cases, a decision for stimulus ‘B’ is made because of the noise (purple reaction time distributions). (D) Experiment 1. In the psychophysical
experiments, dominance is quantified as the percentage of responses which are in accordance with the first vernier. According to the one-stage
model, vernier dominance increases when total stimulus duration increases (blue line), in stark contrast to the performance of human observers
(green line; mean dominance across observers; error bars represent standard error of means, SEM). For the model, dominance is quantified as the
percentage of trials in which the diffusion process hits the upper boundary (a). (E) Two-stage model. The input is first integrated, before it is buffered
and fed as a constant drift into the drift-diffusion process. (F) The input is delayed by Tpre and integrated with a leak. The value of the first stage is
read out after stimulus termination Twrite , written into a buffer, and fed as a constant drift rate into the diffusion process at times greater than Tstart.
Longer input durations lead to stronger negative drifts. Hence, the probability to hit the lower boundary b increases with increasing vernier durations.
(G) Performance of the two-stage model (purple line) is similar to the performance of human observers for total durations up to 80 ms (green circles,
same human data as in D).
doi:10.1371/journal.pcbi.1002382.g002
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(which has more degrees of freedom) is statistically not different (as

determined by a two way repeated measures analysis of variance)

from our two-stage model where the drift is not a free parameter

but the result of stage one. This finding suggests that the simple

preprocessing by leaky integration correctly determines the drift

rate (Figure 4D).

Further above we had reported that a qualitative fit of the

dominance was possible by a noisy leaky integrator, if the leak was

set to zero at the end of the stimulus. In such a model, the result of

the leaky evidence integration serves as the initial value for a free

diffusion process. The results of Figure 4D, however, indicate that

the result of the leaky integration in the first stage should be used

as the drift, and not as an initital condition for the diffusion in stage

two. The results of Figure 4D can therefore be considered as a

strong argument in favor of the two-stage model. In the following,

we consider other aspects of the two-stage model.

Writing into the buffer
If the writing into the buffer is triggered at stimulus termination,

as assumed in the two-stage model, the question arises why the

switch from ‘B’ to the background, but not that from stimulus ‘A’

to ‘B’, triggers the transition from stage one to stage two in the

two-stage model. We suggest that the large change from a vernier

stimulus to background is ‘‘interpreted’’ as stimulus termination

because there is a strong neural off-transient for a change from ‘A’

to a blank screen, whereas there are no on- and off-transients for a

change from ‘A’ to ‘B’, respectively [41]. This is well in accordance

with a Bayesian approach (see Supporting Figure S2) suggesting

that feature integration should terminate when it becomes unlikely

that the momentary stimulus is a continuation of the previous

stimulus. The readout in the two-stage model should therefore

start when a novelty value of the momentary stimulus crosses a

predetermined threshold (cf. Supporting Text S1).

We tested this prediction by the psychophysical experiment in

Figure 1, where the first vernier stimulus was followed by a blank

background (interstimulus interval; ISI) before the second vernier

was presented. With an ISI of 20 ms, the two vernier stimuli,

presented for 10 ms each, became individually discriminable.

Observers could tell whether the first stimulus was offset to the left

or to the right by motion cues [41,42]. However, for a sequence of

‘A’ immediately followed by ‘B’ with TA~TB~20ms, verniers are

not individually visible even though the total duration is 40 ms as

in the sequence with the 20 ms ISI. This suggests that in the

condition with the 20 ms ISI the termination signal of the first

vernier stimulus stopped evidence integration and wrote the result

into a buffer, for later use in stage two, whereas evidence was

integrated across the two vernier stimuli in the experiment without

the blank, before the final result was written into a buffer.

Figure 3. Experiment 2. (A) A vernier (stimulus ‘A’) of duration TA is followed by a second vernier with opposite offset direction (stimulus ‘B’) of
duration TB~40ms{TA. (B) The longer the first vernier stimulus is presented, the stronger is its dominance (green circles). If first and second
verniers are of the same duration, the second vernier dominates performance, i.e. performance is below 50% (dashed line). Relative vernier duration,
TA=40ms, is plotted on the abscissa, mean vernier dominance across observers is plotted on the ordinate. The two-stage model (purple line) fits the
psychophysical data well. (C) The 10% (downward pointing triangles) and 25% fastest responses (squares) vary only slightly with the relative vernier
duration. The median (circles), the 75% quantile (diamonds) and 90% quantile show a strongly inverted U-shaped pattern (mean across observers).
When either the first or the second vernier clearly dominate performance, response times are shorter than when first and second vernier are equally
long (relative vernier duration 0.5). The two-stage model (purple lines) fits the psychophysical data well. (D) Mean response times across observers for
the responses to the first vernier (red circles) and the second vernier (blue circles) show a similar pattern. The two-stage model captures this behavior
well (solid lines). Error bars represent SEM.
doi:10.1371/journal.pcbi.1002382.g003
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Start of the drift-diffusion process
In our experiments with ultra-short stimuli, the time Tstart

where the read-out from the buffer starts, occurs after stimulus

termination (and is included in the non-decisional time TND. We

also tested a model where the decision process was triggered at

stimulus termination, i.e., at the same moment when the result of

evidence integration is written into the buffer (i.e. Tstart~Twrite).

Such a model predicts that reaction times increase with total

stimulus duration (data not shown), which disagrees with our

observation that, for a given level of dominance, the mean reaction

times remain largely constant for total stimulus durations of 20 ms,

40 ms, and 80 ms (Supporting Figure S3 D).

Two-stage model in the case of longer stimuli
For most of the stimuli considered so far, the total stimulus

duration was below 40 ms. In this case, the two stages of the model

are sequential and do not overlap. However, for longer stimuli,

evidence integration of stage one is not finished at the moment of

Tstart when the diffusive decision process in stage two is started.

Indeed, a model with fixed drift in stage two works well for stimuli

up to a total duration of 80 ms, but breaks down at 160 ms (data not

shown). However, our two stage model assumes that as soon as

stimuli extend beyond Tstart, the momentary value of the evidence

integration stage is written into the buffer and immediately used as

drift in the diffusion process of stage two. The drift is updated

continuously so that the diffusion process becomes time-varying. The

fact that a constant drift in stage two fails when the stimulus extends

over 160 ms indicates that the parameter Tstart of our model is much

shorter than 160 ms. We tested this by fitting Tstart for individual

subjects such that the mean square error in the dominance was

minimized across all stimulus durations, including the 160 ms

conditions. The optimal values for Tstart were indeed smaller than

160 ms (48+34ms, mean+std, 4msvTstartv104ms).

In the model, we explored the situation that the first stimulus

becomes much longer than Tstart. Obviously, if the first stimulus is

made very long, our two-stage model then predicts that the first

stimulus dominates.

Discussion

Most models of decision making do not account for the timing of

stimuli. Likewise, most experiments use long stimulus durations in

the range of several hundreds of milliseconds to seconds [9,31,32] or

Figure 4. Experiment 2, continued. (A) Slow and fast responders in experiment 2. Box-plots of the reaction times for all 13 observers. A vernier
stimulus was followed by a second vernier with opposite offset direction of 20 ms duration each. The lower and upper boundaries of the boxes
represent the first and third quartile of the reaction time distribution. The median and its 95% confidence interval are indicated by the central line and
the notch. Observers are ordered according to median response times. We separate observers in two groups. One group (green boxes) has median
response times faster than 500 ms (dashed horizontal line), the other group slower than 500 ms (purple boxes). (B) Mean reaction time as a function of
relative vernier duration for the first vernier (red symbols) and the second vernier (blue symbols) for fast responders (squares) and slow responders
(circles). The solid lines represent the fit of the two-stage model. (C) Reaction time histograms of a typical observer showing responses to the first vernier
(in red) and the second vernier (in blue). Responses are plotted for two stimulus conditions, where either the first vernier dominates (positive values; first
vernier stimulus was presented for 32 ms followed by the second vernier of 8 ms) or the second vernier dominates (negative values; first vernier stimulus
was presented for 8 ms followed by the second vernier of 32 ms). The solid lines are the corresponding two-stage model fits. The reaction time
distributions for the other 12 observers are shown in the Supporting Figure S1. (D) The drift of the two-stage model (purple line) compared to the
alternative two-stage model where the drift parameter was optimized for each stimulus condition independently (green circles). All other parameters are
kept constant across different stimulus conditions but are different for each observer. Error bars represent SEM for both model variants.
doi:10.1371/journal.pcbi.1002382.g004
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constant stimuli [20,22,25]. However, decision making has to occur

in many situations in less than 100 ms, for example, when driving a

car or playing soccer. Here, we have shown that rapid decision

processes show very different characteristics than decision processes

on longer time scales. For example for short stimulus durations, later

presented stimuli dominate over stimuli presented earlier. We

propose that these processes are also present in longer lasting

decision processes, but are hidden and barely measureable.

To study the dynamics of rapid decision processes, we used a

feature fusion paradigm. This paradigm relies on the well known

effect of visual integration masking [43,44] and follows partly

Bloch’s law [45]. The results of our experiments are in agreement

with earlier results on feature fusion [38] and backward masking

experiments [43], but do not agree with the traditional one-stage

models of decision making in which evidence is integrated until a

decision boundary is reached. The results of our experiment rather

support a two-stage model in which evidence integration is separate

from the actual decision process. This model is fundamentally

different from classical drift-diffusion models [20,22,23,27], race

models [18,19,25,32], attractor models [10,30,31], one-stage

models with pre-processing [28], and ‘‘parallel’’ two-stage models

[21,46]. All these models predict the first stimulus to dominate

when TA~TB in contrast to the fusion results.

The two-stage model
In our model, we assumed several components which are worth

discussion each. First, evidence integration in stage one must be

leaky. It is the leak that explains why, when the first and second

vernier stimulus are of the same duration (TA~TB), the second

vernier stimulus dominates (experiment one). The leak in our

model arises naturally from a Bayesian approach and can be

traced back to the fact that stimuli are expected to change in

natural environments. Similar to our Bayesian novelty detection

approach (cf. Supporting Text S1), the leaky evidence integration

can also be derived in the framework of Kalman filters [47–50].

Second, the accumulated evidence must transferred at an

appropriate moment and written into a temporal buffer. Such a

buffer is necessary since decisions often occur a considerable time

after the stimulus has disappeared. We suggest that the precise

moment of transfer Twrite is set by a novelty score monitored

during evidence integration (see Supporting Text S1). Such a

novelty signal and subsequent buffering explains why the two

vernier stimuli are perceived individually, if the stimuli are

separated by a blank screen (ISI), but fused into a single percept in

the absence of the blank. In this sense, feature fusion can be

interpreted as a failure to detect the onset of a new stimulus

because the new evidence is not sufficiently different to raise a

‘novelty signal’. In contrast, the switch from stimulus to

background creates a sufficiently strong transient to stop the

feature integration process (Supporting Figure S2).

Third, the noisy decision process is triggered at a fixed time

Tstart after stimulus onset. If the decision process were triggered at

Twrite, reaction times would increase with stimulus duration. This

is, however, not the case (Supporting Figure S3D). From the fact

that our model assumes a fixed start time of the second stage, it

necessarily follows that we have to distinguish two different

situations: If the total stimulus duration is shorter than Tstart, we

need to bridge the time between the end of the stimulus and

decision by storing the intermediate result of evidence integration

into a buffer. This value is then used in stage two as a fixed mean

drift rate. If the total stimulus duration is longer than Tstart, the

result of stage one is used online as a time-dependent drift for all

times twTstart until the end of the stimulus (at which point it is

again ‘frozen’ and transferred into the drift-buffer.).

Our two stage model is similar to previous two stage models in

which sensory processing, e.g. motion processing or contrast

detection, precedes a decision making stage (e.g. [15,16,46]). In

our model, the sensory integration stage is leaky to account for the

dominance of the second vernier.

Leakage
Our two-stage model comprises a leaky integration stage

followed by a drift-diffusion stage. The question arises whether

or not a one-stage model with leak in the drift-diffusion process

can explain the results. However, this is not the case because in

such a model always the first stimulus dominates because the leak

pushes the decision variable X towards the starting point and not

across it (Supporting Figure S3).

Another way to integrate the leak into a one-stage model is to

directly transform the input by a leaky integrator (like our stage one)

and to use the outcome of the leaky integrator as a time-variant drift

in stage-two (Tstart~0, n(T)~c:E(T)). However, using stage one

only for pre-processing will not change the pattern of results [28]. In

such models, the decision variable also moves towards the decision

bound for stimulus ‘A’ before dropping back to chance level.

Therefore, these models also show a dominance of the first stimulus.

Window of integration
The novel features of the two-stage models are observable well

only for stimuli in the range of up to about 100 ms. This duration

is in line with the duration of visual integration found in other

studies [51–53]. One of the paradoxical aspects of our model is

that the second stage starts at a fixed time Tstart. Obviously, if the

duration of a stimulus extends beyond Tstart, then the stage of

evidence integration and that of stochastic decision making (stage

two) will overlap and the separation into two distinct phases

disappears (see Supporting Text S1). Therefore it is not surprising

that for longer stimulus durations standard one-stage models work

well [27,29,54].

External and internal noise
In our model, a deterministic filter (leaky integrator) is applied

in stage one to a step-like input, representing a noiseless stimulus.

This is the limiting case where the stimulus is considered to be of

high contrast. In a more realistic scenario the stimulus itself is

noisy. The stochasticity of stimuli leads, after stage one, to a noisy

result of evidence integration, which is written into the buffer and

then used as drift for stage two. This noisy result is modeled by the

variance of the drift constant of stage two. It is therefore tempting

to relate the stochasticity of drift constants to sensory or physical

noise. The stochasticity of stage two may be related to internal

noise in the brain [32,55]. What is the advantage of adding a

separate noisy decision process? It is well known that human

observers can manipulate the speed-accuracy trade-off according

to instruction or reward scheme by a change in strategy

corresponding to a shift of the initial condition, z, or the decision

thresholds in the drift-diffusion process [13,54].

Accumulators in decision making and motor preparation
Neurons in the superior colliculus [56], the LIP [9,32,33], the

pre-motor cortex [57,58], and the dorsoventral lateral prefrontal

cortex [11,12,59] were shown to be involved in decision making.

The firing rate of these neurons increases as long as stimuli are

displayed. This ramping activity may relate either to evidence

accumulation (‘‘stage one’’) or to decision making (‘‘stage two’’).

Future experiments with feature fusion stimuli may be used to

decide between these two alternatives.

Paradoxical Evidence Integration
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Summary
In summary, it is often (intuitively) assumed that visual input

directly translates into decisions. A stimulus presented first should

drive decisions stronger and faster than a later stimulus (first in, first

out). This is obviously correct when the two stimuli are long,

because a decision may be reached even before the second stimulus

can influence decision masking. In this case, we can assume that

evidence integration and decision making are the same. However,

for short stimuli this is not the case. Evidence integration and

decision making can only be disentangled, when the two stimulus

alternatives are presented within one trial (feature fusion) but not

when only one stimulus is presented per trial, as it is usually. The

distinction between evidence integration and decision making is

described well by our two-stage model, where rapid stimuli are

integrated and buffered before the decision process starts.

Materials and Methods

Ethics statement
All participants signed informed written consent. The study was

approved by the Commission cantonale (VD) d’éthique de la

recherche sur l’être humain (Lausanne, Switzerland) and conducted

according to the principles expressed in the Declaration of Helsinki.

Observers
A total of 24 observers (8 female, aged 21–32 years) signed

informed written consent. Participants had normal or corrected-

to-normal visual acuity as measured by the Freiburg visual acuity

test [60]. All but two observers (the first and second author) were

naive to the purpose of the study. Naive observers were paid

students from local universities.

Setup
Stimuli were presented on a Tektronix 608 X-Y display or a HP

1332A X-Y display. Both X-Y displays were equipped with a P11

phosphor and controlled by a PC via a fast 16 bit DA converter.

Stimuli were presented at 80cd=m2, a 1 MHz dot rate, a 500 Hz

refresh rate, and a dot pitch of 200mm. Viewing distance was 2 m.

The room was dimly illuminated by a background light (*0:5lx)

to prevent adaptation to scotopic vision. Stimulus contrast was

close to 1.0. In each experiment, the conditions have been

presented randomly interleaved to reduce the influence of

hysteresis, learning, or fatigue in the averaged data.

Stimuli
The vernier stimuli were composed of two vertical segments.

Each segment was 109 (arc min) long, 0.59 wide, separated by a

vertical gap of 19. A small horizontal offset was inserted between

the upper and the lower segments (Figure 2A). Horizontal offset

sizes ranged from 300 to 400 (arc sec). Offsets were chosen

individually to be at least twice the offset size of the offset

discrimination threshold for a single vernier stimulus of 20 ms

duration as determined using the adaptive PEST procedure [61].

A sequence of two vernier stimuli with opposite offset directions

was presented foveally in rapid succession. The offset direction of

the first vernier (stimulus ‘A’) was chosen randomly in each trial

(left or right). The second vernier (stimulus ‘B’) had an offset

direction opposite to that of the first vernier. If, for example, the

first vernier stimulus was offset to the left, the second vernier was

offset to the right, and vice versa. Observers perceived only one

fused vernier and were asked to report the position of the lower

segment with respect to that of the upper segment by pressing one

of two push buttons. Observers were instructed to respond as

rapidly as possible, but also as accurately as possible. No feedback

about performance was given. Naive observers did not know that a

sequence of two vernier stimuli was presented.

Performance measure
We computed dominance, defined as the proportion of trials on

which the response matched the offset direction of the first vernier

stimulus. Thus, values above 50% indicate dominance of the first

vernier (stimulus ‘A’); values below 50% indicate dominance of the

second vernier (stimulus ‘B’). 50% vernier dominance is the point

of subjective equality, i.e. first and second vernier stimulus equally

contribute to performance.

Experiment 1
First vernier stimulus (‘A’) and second vernier (‘B’) were

presented in immediate succession (Figure 2). Both vernier stimuli

had either the same duration or the duration of one of the verniers

was four times longer than the other. The total duration of the first

and second vernier was 20 ms, 40 ms, 80 ms, or 160 ms. All

conditions were presented in a random order. Every condition has

been repeated 400 times per observer.

Experiment 2
As Experiment 1, except for that the duration TA of the first

vernier was varied in 12 steps between 0 ms and 40 ms. The total

duration TA+TB always summed up to a total of 40 ms (Figure 3A).

Every condition has been repeated 400 times per observer.

Reference experiment
In Figure 1, an ISI was inserted between the first and second

vernier stimulus. Observers were informed about the experimental

design and asked to indicate whether the first or second vernier

stimulus was offset to the right.

Reaction time analysis
Reaction times below 300 ms or above 1200 ms were excluded

from analysis to reduce the impact of motor errors and unattended

trials (less than 3% of the trials).

Model
We model the stimuli by a time-varying input signal stim(t),

which is +1 during the presentation of stimulus ‘A’, 21 for stimulus

‘B’ and 0 otherwise. In the evidence accumulation stage of the two-

stage model, the stimulus is subjected to leaky integration:

dE=dt~{E=tzstim: Since our stimuli have high contrast, the

evidence integration is modeled as a noise-free process.

For times larger than Tstart the integrated evidence E(t) is fed as

the drift into the noisy drift-diffusion model at stage two. We

distinguish two different cases. a) Stimuli are shorter than Tstart. At

the termination of stimulus ‘B’ (Twrite) the integrated evidence E(t)
is stored and written into a buffer. Later, for twTstart the buffered

value is used as the mean drift rate n~c:E(Twrite) with a fixed

scaling factor c for the decision stage, which encompasses a

standard drift-diffusion model. b) Stimuli are longer than Tstart. In

this case the momentary evidence E(t) is used as the mean drift

n(t)~c:E(t) for twTstart. Again, at the end of the stimulus, the last

value of the evidence is buffered and used as drift henceforth.

During stage two, in every trial, a decision variable X (t) is

initialized at X (Tstart)~z and evolves according to the Langevin

equation dX~ndtzdW , where n is the drift rate and dW is a

Wiener process, which introduces noise to the decision process. A

decision is made when the decision variable X reaches one of two

decision boundaries X (TD)~a (decision ‘A’) or X (TD)~b
(decision ‘B’). The associated reaction time is the sum of a non-
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decisional time TND (which accounts for sensory delay Tpre, and the

evidence integration and buffering times as well as motor delays)

and the time TD when the decision variable X reaches the

boundary. We used the Ratcliff extension [20] of a standard drift

diffusion model, in which the non-decisional time TND, the initial

condition z and the drift rate n vary stochastically from trial to trial.

The non-decisional time TND is drawn from uniform distributions

with mean STNDT and width sTND
. The initial condition z is drawn

from uniform distributions with mean SzT and width sz. The drift

rate n is drawn from a Gaussian distribution with mean n0 – the

output of the first stage – and standard deviation sn. sz and sn

represent noise in the evidence accumulation.

As a reference, we used a one-stage model, which encompasses

a standard drift diffusion model, in which the drift rate depends on

time and is given by the input signal: n~c’:stim(t). In this model,

the drift becomes zero after the end of the stimulus. We also

simulated leaky variants of this one-stage model, for details see

Supporting Text S1.

Fitting
In the first step, the parameters STNDT, sTND

, sz, a, b, n0 and sn of

the decision stage were fitted to the experimentally obtained

cumulative reaction time distributions by minimizing the product of

the p-values of the Kolmogorov-Smirnov statistic for each stimulus

condition [62,63]. Responses to stimuli ‘A’ and ‘B’ and different

stimulus conditions were fitted simultaneously using the fast-dm

software of Voss & Voss [64]. For both experiments, fits were done

individually for each observer. In the experiment of Figures 2, all

parameters except the mean drift rate n0 and the drift variability sn

were the same in all stimulus conditions. The drift was calculated

from stage one. Drift variability was a function of stimulus duration.

In the experiment of Figures 3 and 4, only the mean drift rate was

varied across conditions and calculated from stage one. In order to

obtain the parameters c and t of the evidence integration in stage

one we ran a simulation experiment with free drift rates as in

Figure 4D. The obtained mean drift rates n0 were then used to fit

the time constant t and the scaling factor c, again separately for

each observer. This fit was done using the fit-routine of MATLAB.

Finally, to extract the optimal values for Tstart, we first used the data

of experiment 1 with stimulus durations ƒ80ms and fitted the

parameters of both stages with the described procedure. Then, we

performed a line scan of all values of Tstart and identified the value

that minimized the mean square error of the measured dominance,

now including the long duration of 160 ms.

Parameters are different for each observer, i.e. 0:34ƒSTNDTƒ

0:48, 0:15ƒsTND
ƒ0:3, 0:21ƒszƒ0:29, 0:66ƒaƒ0:96, {5:1ƒ

n0ƒ5:9, 0ƒsnƒ1:17, b~0, SzT~
a

2
and for stage one

0:06ƒcƒ0:32 and 30msƒtƒ165ms.

Supporting Information

Figure S1 Reaction time histograms of 12 observers for

responses to the first vernier (red) and to the second vernier

(blue). Responses are plotted for the two stimulus conditions

TA~32ms and TB~8ms (positive values) and with TA~8ms
and TB~32ms (negative values). The solid lines are the

corresponding two-stage model fits. The Kolmagorov-Smirnov

(KS) statistic for each fit is given.

(PDF)

Figure S2 Bayesian model of feature fusion. A–C. Stimulus ‘A’

(red bar) and ‘B’ (blue bar) are presented with durations of 10 ms

(A), 20 ms (B), or 40 ms each (C). The upper panel of each subplot

shows the posterior probability (belief) as a function of time (A - red

curve, B - blue curve, blank - black curve). The lower panels show

the novelty signal n(t), which triggers the decision process in the

two-stage model. The dashed line indicates the background

novelty 1=t. No novelty signal is generated by a direct transition

from ‘A’ to ‘B’. Only the onset of ‘A’ and the termination of ‘B’

generate novelty signals (A–C). The posterior at the end of

stimulus ‘B’ shows a preference for B, which increases with

increasing stimulus duration. D. The insertion of a blank of 20 ms

between ‘A’ and ‘B’ generates additional novelty signals at the

termination of ‘A’ and the onset of ‘B’. The blank prevents feature

fusion of ‘A’ and ‘B’: Stimulus ‘A’ has no influence on the

‘‘interpretation’’ of ‘B’.

(PDF)

Figure S3 Leaky drift diffusion model and behavior of two-stage

model for long stimuli. (A) Vernier dominance as a function of

total stimulus duration in a one-stage drift-diffusion model with

leak (for details see Supporting Text S1). The stimulus strength (i.e.

the magnitude c’ of the drift rate) is varied from 0.0 (chance level,

dashed green) to 10 (orange line) in steps of 2.5. The dominance of

the first stimulus increases with total stimulus duration for all drift

rates different from 0.0 (no drift). (B) Dominance as a function of

total stimulus duration, as in B, but for a leaky one-stage drift-

diffusion model, in which the drift is switched off at the end of the

stimulus. The model shows a dominance of the second stimulus for

intermediate stimulus durations, which converts into a dominance

of the first for long stimulus durations. (C) Dominance for the two-

stage model (purple lines), compared with the results of experiment

one (green lines). The model captures the results well and predicts

increasing dominance for long total stimulus durations. (D) Mean

reaction time corresponding to the experiment described in (A).

Trials in which observers responded for the first vernier stimulus

‘A’ (red symbols) or stimulus ‘B’ have similar reaction times, if the

total stimulus duration TAzTB is 20 ms, 40 ms, or 80 ms. For a

total duration of 160 ms, trials where observers decide for the first

vernier stimulus are faster than those where they decide for the

second vernier. The two-stage model (solid lines) captures response

times for short stimuli well, but fails to predict reaction times for

total durations of 160 ms. Error bars represent SEM.

(PDF)

Text S1 Technical Description of Alternative Models.

(PDF)
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