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Abstract

Determining the functional structure of biological networks is a central goal of systems biology. One approach is to analyze
gene expression data to infer a network of gene interactions on the basis of their correlated responses to environmental
and genetic perturbations. The inferred network can then be analyzed to identify functional communities. However,
commonly used algorithms can yield unreliable results due to experimental noise, algorithmic stochasticity, and the
influence of arbitrarily chosen parameter values. Furthermore, the results obtained typically provide only a simplistic view of
the network partitioned into disjoint communities and provide no information of the relationship between communities.
Here, we present methods to robustly detect co-regulated and functionally enriched gene communities and demonstrate
their application and validity for Escherichia coli gene expression data. Applying a recently developed community detection
algorithm to the network of interactions identified with the context likelihood of relatedness (CLR) method, we show that a
hierarchy of network communities can be identified. These communities significantly enrich for gene ontology (GO) terms,
consistent with them representing biologically meaningful groups. Further, analysis of the most significantly enriched
communities identified several candidate new regulatory interactions. The robustness of our methods is demonstrated by
showing that a core set of functional communities is reliably found when artificial noise, modeling experimental noise, is
added to the data. We find that noise mainly acts conservatively, increasing the relatedness required for a network link to be
reliably assigned and decreasing the size of the core communities, rather than causing association of genes into new
communities.
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Introduction

Gene regulation networks represent the set of regulatory

interactions between all genes of an organism. These networks

can contribute to our understanding of the development of

organisms and how they integrate internal and external signals to

coordinate gene expression responses [1,2]. Moreover, knowledge

of gene regulation networks allows communities of closely

interacting genes to be identified. Once identified, such commu-

nities are an important resource for developing hypotheses for the

function of uncharacterized genes and can provide insight into

patterns of regulatory network evolution and function [3–8].

Examining the relationships between communities can also reveal

a hierarchical set of interactions, which is thought to be a

fundamental organizing principle in many biological systems [9–

11]. For all these reasons, determining gene regulation networks

and their functional organization remains a major goal of systems

biology.

The increasing availability of gene expression data has spurred

development of a number of approaches that aim to determine

the underlying structure of the transcriptional regulatory network

[2,3,7,12–16]. Most of these techniques fall into the broad

categories of correlation-based methods, information-theoretic

methods, Bayesian network predictions, or methods based on

dynamical models. These approaches generally infer regulatory

links between the nodes (genes) of the network on the basis of the

level of correlation in their transcriptional response to a series of

environmental and genetic perturbations. The strength of the

links is either weighted by the correlation value, or is unweighted

and the links are assumed to exist only if the correlation exceeds a

threshold value. Once the links are assigned, the network

becomes well defined. However, variation in the application of

each method can produce differences in the link weight between

pairs of nodes. Additionally, if the threshold for placing links is

varied even slightly there can be significant differences in the

network structure inferred from a given data set [17]. Identifi-

cation of groups of interacting node (gene) communities poses an

additional challenge. Communities can be identified using

computational methods developed in network science [18]. These

methods include hierarchical clustering [19–21], clique based

clustering [22–25], core-pheriphery [26–28], K means clustering

[29], principal component analysis [30,31], label propagation

[32,33], statistical mechanical approaches [34,35], and modular-

ity maximization methods [36–40]. Often these algorithms

agglomerate or divide the nodes of a network into groups based

on either the links of the network or the strength of the
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correlation value between pairs of nodes. However certain

algorithm parameters, such as the number of groups, are often

required as user inputs and can become increasingly difficult to

predict as the size and complexity of the network grows. In

addition, there can be considerable variability in the community

detection process due to approximations and stochastic elements

of the computational algorithms.

Here, we present methods for determining the hierarchical

organization of genetic regulatory networks and for detecting

functional communities of genes that are robust to variability in

both gene expression data and community detection parameters.

We apply a recently developed community detection method

[40] to regulation networks inferred from a compendium of E.

coli expression profiles using the context likelihood of relatedness

(CLR) algorithm [3]. This method uses the mutual information

in the data sequence for pairs of genes to construct a ‘‘Z-score

matrix’’ that describes the relatedness of each gene pair. We then

choose a threshold Z-score value and construct a network by

creating links between pairs of genes whose relatedness exceeds

this value. However, rather than choose one threshold value, we

investigate the network using a range of threshold values. The

combination of using the CLR method and varying the threshold

value used to create the network captures non-linearities

inherent in the network structure. We identify communities

using a leading eigenvalue method with final tuning [40]. This

method identifies communities by partitioning the network so as

to maximize its modularity. The optimization algorithm used by

this method, when applied to a series of widely studied networks,

produces the partitioning with the largest modularity of any

known fast algorithm for networks up to a few thousand nodes in

size [40].

As mentioned above, there is variability in the community

detection process. Indeed, numerous network partitions can give

modularities close to the maximum and these partitions can be

structurally diverse [41]. Rather than treat this property as a

disadvantage, we use the stochasticity to find correlations between

different runs of the community detection algorithm. We consider

a core community, as those nodes that are consistently assigned to

the same community over multiple partitions of the network. This

ensemble analysis of partitionings to find correlations between

different sets of network partitions, combined with varying the

threshold value used to create a network, enables us to investigate

relationships between communities at different threshold values.

We define community relationships as hierarchical if communities

at a higher threshold value are contained within communities at a

lower threshold value. This method not only allows us to find the

hierarchical organization of communities within the network, but

also to determine if a network is, in fact, hierarchical – a feature

that is not forced upon the network by the method.

Comparisons of independent gene expression experiments often

find considerable inter- and even intra-experiment variation,

which can amplify stochastic aspects of the community detection

process [42–44]. While variation can be minimized by standard-

izing the platform and analysis pipeline used, the low-replication

common to many gene expression studies, means that the variance

of each individual gene expression estimate is typically quite high.

To investigate the effects of experimental noise on our ability to

assign genes to core communities, we constructed artificial data

sets with various levels of experimental noise. At each noise value,

multiple runs of the community detection process are performed,

allowing us to determine the sensitivity of core community

structure to realistic levels of expression variation. We find that

increasing the value of expression noise had a similar effect to

increasing the relatedness cutoff value used to create the network.

Noise decreases the size of the core communities, leaving only the

most strongly related genes as consistent members, but does not

tend to assign genes into new core communities. To test whether

the communities predicted by our methods are biologically

relevant, we test whether they significantly enrich for gene

ontology (GO) terms identified in E. coli. We find that, in many

cases, there are statistically significant matches between a core

community and GO term, indicating that communities are

biologically relevant. Thus, the methods we present to investigate

genetic regulatory networks and to determine the hierarchy of

their functional communities appear robust to the variability in the

community detection process and to the existence of experimental

noise.

Results

Inferring gene interaction networks from expression data
We used the CLR algorithm to infer direct and indirect

regulatory interactions between E. coli genes on the basis of the

similarity of their expression response in 466 experiments in the

Many Microbe Microarrays Database (M3D) [45]. The resulting

CLR relatedness matrix can be used to define a network with

weighted links between genes. In principle this network can be

analyzed to find its community structure. However, doing so

would not allow an exploration of hierarchical community

organization. Instead, we apply a threshold value of relatedness,

fmin, above which a regulatory interaction is inferred. The result

is an unweighted, undirected network where links between genes

indicate regulatory correlations. Note that these correlations do

not necessarily imply direct interactions. A link may indicate

indirect interactions, as may occur between two genes if they are

both regulated by a third gene. In this way the CLR network

differs from annotated regulatory networks (e.g., for E. coli

RegulonDB [46]) that include only direct regulatory links. The

threshold value fmin that is chosen has considerable effect on the

network that is created and on its community structure. The

distribution of relatedness value, f , of pairs of genes is shown in

Author Summary

One of the fundamental themes in biology is the
hierarchical organization of its constituents. At higher
levels of a hierarchy new properties emerge due to the
complex interaction of constituents at lower levels. This
same organization is expected to be found in genetic
regulatory networks. If so, determining this hierarchal
structure would aid in understanding the properties and
functional processes of the networks. With the increasing
availability of genetic expression data, developing meth-
ods to infer the underlying genetic regulatory network and
detect functional communities within the network is an
important goal of systems biology. Unfortunately, noise in
expression data creates variability in the inferred network
and the stochastic nature of community detection creates
variability in the functional communities detected with
existing methods. Here, we present methods for exploring
the hierarchical organization of genetic regulatory net-
works that robustly detect core functional communities.
We test the methods and demonstrate their validity, by
applying them to Escherichia coli genetic expression data,
finding a hierarchy of functionally relevant communities
and then comparing those communities to the known E.
coli functional groups. We then give examples of how our
methods can be used to infer regulatory interactions
between genes.

Robust Hierarchical Functional Community Detection
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Figure 1A. Clearly, increasing the cutoff value significantly

reduces the number of links in the network. At fmin~2 all 4,297

genes are in the largest connected component and therefore the

network is fully connected (Fig. 1B). At approximately fmin~4,

the inferred network begins to break up and at fmin~6, the size of

the largest connected component is substantially reduced and a

number of isolated components exist. Thus, fmin~4 is approx-

imately the critical value at which the network remains largely

intact as one connected network. In the work below we consider

networks inferred from fmin values of 2, 4 and 6. These values

correspond to points on, and at either side of the critical threshold

value. A list of the links in the network fmin~4 and fmin~6 is

given in Dataset S1.

Identifying communities and their hierarchical
organization

We used a recently developed extension of the leading

eigenvalue method to determine the community structure of the

inferred E. coli regulatory network [37]. This method aims to

identify a partitioning of nodes into a disjoint set that maximizes

network modularity. Modularity, Q, is defined as the fraction of

links that connect nodes in the same community minus the fraction

expected if the partitioning and the degree sequence of the

network remains fixed, but the links are randomly distributed [36].

This definition of modularity quantifies the intuitive notion that

one expects there to be more links between nodes of the same

community than between nodes of different communities, adding

Figure 1. Distribution of gene relatedness and network size in the E. coli CLR network. (A) Probability distribution of relatedness values, f ,
between pairs of genes in E. coli calculated using the CLR algorithm and the full M3D dataset. (B) Size of the largest connected component for
relatedness value, f . At small values of fmin the network is fully connected but begins to break up into multiple disconnected components at a critical
value of approximately fmin~4.
doi:10.1371/journal.pcbi.1002391.g001

Robust Hierarchical Functional Community Detection
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the constraint that the number of links inside a community should

be larger than one would expect by chance. The definition is

normalized so that the maximum possible value of Q is 1. The

larger the value of the modularity found by a partitioning, the

more ‘‘modular’’ a network is. A completely nonmodular network

would correspond to Q~0. The extension of the leading

eigenvalue method that we use, known as final tuning, is an extra

step in the algorithm, related to the so called Kernigan-Lin

algorithm [47], that removes systematic biases and produces the

best results of any known fast modularity maximizing algorithm

for networks of the size considered here.

Community detection algorithms, including the one we use,

contain stochastic elements that can cause different runs to give

different partitionings. Indeed, partitionings of the same network

can be structurally diverse, despite having similar modularity

scores [41]. Here, we exploit this property, by analyzing an

ensemble of partitionings and measuring their correlations. This

allows us to both find the pairs of genes that are most often

grouped together and examine the family of community structures

that can result from a modularity maximization.

At a particular fmin value, which defines a unique network, we

ran our community detection algorithm 10 times, generating a

correlation matrix where each element represents the proportion

of times gene X and gene Y are found in the same community.

We define sets of genes that are always found in the same

community as a ‘‘core community’’. We performed this procedure

for fmin~2,4 and 6, which, as discussed above, give networks that

are supercritical, critical, and subcritical, respectively. Combining

the three resulting correlation matrices generates a visual

representation of the overall structure of the network (Figure 2).

A list of genes in each core community for fmin~2,4 and 6 is given

in Dataset S3. An alternative view of the hierarchical organization

of the network, where each core community is represented as a

node, is given in Figure S2.

We find substantial differences in the community structure of

the networks inferred at different fmin values (Figure 2). As fmin is

increased, links that connect weakly related genes are removed

from the network, which can cause genes to switch communities,

and communities to merge or divide. Analysis of these changes

lead to two conclusions. First, there is a basic community structure

that is robustly determined such that many pairs of genes remain

in the same community at all three fmin values, indicated by the

block diagonal white elements. That is, there is a basic community

structure that is invariant with respect to adding or subtracting

links between weakly related genes. Second, community structure

is hierarchical. To see this, note that at fmin~2 the community

structure consists of six large communities, indicated by the blue

blocks, while at higher values it begins to break up into smaller

communities. More importantly, the relationship between com-

munities at different fmin values indicates that the structure of the

network is largely hierarchical. A hierarchical structure is revealed

when a community breaks up into subcommunities as fmin

increases. If the E. coli regulatory network was completely

hierarchical, we would see only block diagonal elements consisting

of large blue blocks that break up into purple then white sub-

blocks as fmin is increased. Communities at one value of fmin that

are subcommunities of the same community at a smaller fmin value

are therefore hierarchically closer to each other than ones that

remain in different communities at the smaller fmin value. Figure 2

indicates that the inferred E. coli regulatory network has a largely

but not completely hierarchical structure. This is apparent from

the large fraction of the blue blocks (fmin~2 communities) that

contain on diagonal purple and white blocks (fmin~4 and 6,

respectively). However, there are some red off diagonal blocks that

indicate a non-hierarchical ordering as fmin is increased from 2 to

4. Furthermore, although the purple fmin~4 blocks largely break

up into white blocks as fmin is increased to 6, there are some off

diagonal cyan and green blocks that indicate non-hierarchical

ordering. About 68% of the core community matrix elements at

fmin~4 were hierarchically in core communities at fmin~2, and

about 80% of the core community matrix elements at fmin~6
were hierarchically in core communities at fmin~4. The

organization of genes shown in this plot, is given in Dataset S4,

where the, blue, purple, and white module membership of each

gene is listed.

At fmin~2 there are only six communities, while at fmin~6
there is a mode of 965 communities with the largest consisting of

417 genes. This is consistent with the finding that at small values of

fmin the network is fully connected, while at large values the

network breaks up into a large number of small disconnected

parts. At intermediate values of the threshold, where the network

begins to break up, the community structure is complex, consisting

of a broad distribution of different sized communities. Interest-

ingly, as fmin increases so does the value of the maximum

modularity found, Qmax. At fmin~2, Qmax&0:37 indicating that

the network structure is not particularly modular, while at fmin~6,

Qmax&0:85 indicating that the network structure is highly

modular.

Community structure is robust to experimental noise
Given the relatively high experimental variation and low

replication typical of gene expression measurements, it is of

practical interest to determine whether inferred community

structure is robust to this source of noise. To address this question,

we consider a restricted set of the gene expression data comprising

the 152 experiments present in the M3D database that were

repeated at least three times. For each of these experiments, a

mean value m(X ) and a standard error s(X ) for the expression

level of each gene X is calculated. These values are used to

generate artificial datasets with a variable level of noise, c. For a

value of c~1, the artificial data sets have noise levels consistent

with the experimental data. For larger (smaller) values of c, the

artificial datasets have more (less) variability in the expression of

each gene, than the experimental data. For each of a number of

values of c, ranging from 0 to 4, 20 artificial data sets are

produced. Crucially, these data sets considered each gene and

experiment independently, thereby preserving any inherent

differences between different gene’s expression variability.

For each noisy data set, we used the CLR algorithm to infer a

regulation network at an fmin value of 2, and the community

structure was determined with the methods described above. For

each dataset, 10 different community partitionings were obtained,

giving a total of 200 partititonings for each value of c. Figure 3

shows a series of correlation matrix plots for the community

structure found for the partitioning ensembles for c~0,0:5,
1,2 and 4. The degree of noise clearly has a major impact on

community structure. Nevertheless, except at c~4, there exist

robustly determined core communities. In addition this analysis

revealed two important results. First, as the noise level c increased,

a large proportion of the genes in a core community are

partitioned into sub communities but genes rarely switch out of

their c~0 core communities. This is similar to what happens when

the threshold value for creating the network was increased

(Figure 2). Second, with one exception, the number of nodes

included in each core community decreased as c was increased

(Figure 4A). We conclude that noise acts mainly conservatively,

decreasing the size of core communities, rather than causing

association of genes into new communities.

Robust Hierarchical Functional Community Detection
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Communities enrich for functionally related genes
We have thus far demonstrated that our computational methods

can robustly identify a community structure in the E. coli

regulatory network. An important remaining question is whether

this structure is biologically relevant. To test this, we first

examined the simple expectation that genes in the same operon,

and that therefore share at least one promoter control region, will

tend to group together in the same community. Even using the

Figure 2. Correlation matrix showing community structure found in the E. coli network with relatedness threshold values
fmin~2,4 and 6. Genes are ordered in the same sequence along the x and y axes beginning in the upper left corner, and this ordering is the same for
all three relatedness values (gene order is given in SI). The matrix element in the position (X ,Y ) is colored blue, red, or green if genes X and Y are in
the same community at threshold values 2, 4 or 6, respectively. The density of the color indicates the strength of the correlation in the partitionings of
the pair of genes. For example, considering the correlation between a pair of genes in the 10 replicate partitionings performed on the fmin~4
network, dark and light red indicates that the pair of genes are always and rarely found to be in the same community, respectively. The red, green
and blue colors corresponding to fmin~2,4 and 6 thresholds, respectively, are combined to indicate the correlations of each pair of genes at all three
threshold values. Thus, the color of the matrix element in the position (X ,Y ) is white if genes X and Y are in the same community at all three
threshold values. It is purple (yellow) if the two genes are in the same community at thresholds 2 and 4 (4 and 6), but not at threshold 6 (2) and it is
black if the two genes are not in the same community at any of the three threshold values. A list of the order of genes is given in Dataset S2. A full
size version with each pixel representing a distinct pair of genes is given in Figure S1.
doi:10.1371/journal.pcbi.1002391.g002

Robust Hierarchical Functional Community Detection
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very stringent requirement that all genes within an operon be in

the same community and not accounting for the presence of

secondary promoters that are internal to the operon and might act

to decouple operon regulation, we find that genes within an

operon are much more likely to group together that expected by

chance (Permutation test, pv0:001)(Figure S4). For example,

given the number and size of communities found at fmin~6,

approximately 1% of operons remain together if individual genes

are assigned to communities randomly, compared to w45% in the

community assignments determined by the final tuning algorithm.

Next we asked whether the community structure inferred by our

method groups genes with similar biological functions. To do this,

we tested whether the identified communities significantly enrich

for any of the gene ontology (GO) terms identified in E. coli [48–

50]. (Note only core communities larger than 10 were considered

because the method we use to partition the network will not

accurately identify small communities [51].) We found 147, 239

and 288 statistically significant matches between core communities

and GO terms for communities identified at fmin values of 2, 4 and

6, respectively. Table 1 details these results for the 25 most

enriched relationships found at fmin~4 (complete tables of GO

enrichments at fmin values of 2, 4 and 6, and GO terms used are

given in Dataset S7 and Dataset S8, respectively). Note that many

genes are described by multiple GO terms, e.g., the gene flgM is a

member of all terms in the GO hierarchy: ‘flagellin-based

flagellum basal body, rod’?‘flagellin-based flagellum’?‘flagellum’

‘flagellum’ so not all enrichments are independent. Nevertheless,

our network partitioning results in communities that significantly

enrich for many GO terms, suggesting that the gene groupings are

biologically meaningful.

Figure 4B shows the number of statistically significant GO term

enrichments as a function of noise level, c. Interestingly,

enrichment peaks at a noise level of c~1, which corresponds to

the artificial data with noise level consistent with that of the

experimental data. This is presumably due to the fact that the

mean expression values found from the experimental data are

estimates, so that a noise value of c~0 will give a precise, but not

necessarily accurate estimate of gene expression. As discussed

above, increasing the noise in the artificial datasets causes the size

of the core communities to decrease. Interestingly, the c~0 core

community that dissolves the quickest, core community 5

(numbered beginning in the upper left hand corner of

Figure 3A), contributes only one significant GO term enrichment

at c~0 (full details in Dataset S9). Finally, we note that there are

some differences in the identity of core communities when the

restricted set of 152 experiments is compared to those generated

using the full experimental data (at fmin~2). Nevertheless, as

mentioned in Ref. [3], the CLR algorithm can produce nearly

equivalent results as the full data set when a small, yet diverse set of

expression profiles is chosen. This fact highlights the importance of

judiciously choosing experimental conditions when the data set is

small.

Inferring candidate regulatory interactions
Partitioning of regulatory networks into communities of genes

with similar responses to genetic and environmental perturbations

can be used to identify candidate new regulatory interactions

between genes. To this end, we consider the communities that

most significantly enriched for a GO Term at fmin~4 and fmin~6,

and compare the relatedness network among the genes within

each community to the subnetwork of known regulatory

interactions involving these genes presented in RegulonDB. We

stress, however, that what follows are simply two examples. Our

results, given in the supporting information, contain a wealth of

other gene communities whose interactions can be analyzed in a

similar manner.

The community with the most significant GO term enrichment

at fmin~4 contains 72 genes, including all 24 genes in the GO

term for bacterial-type flagellum (Table S1). Because of their co-

regulation, the remaining 48 genes in this community are

implicated as having some relevance for the development, function

or control of the E. coli flagellum. Indeed, of these genes, many

have recognized roles in environmental sensing and signal

transduction, functions that are physiologically upstream of

flagellum control. An additional 11 genes in the community do

not have any annotated function, but two of them, ycgR and yhjH,

contain domains that are consistent with flagellum related activity

and five of them (yjdA yjdZ ynjH ycgR and yhjH) are annotated as

being regulated by at least one of the two characterized regulators

present in the community (flhDC and the flagellum sigma factor,

fliA) [46,52]. One further unannotated gene, ymdA, is connected to

flhDC only in the CLR network, and is therefore a candidate for

being connected to flagellum regulation as well as having a role in

flagellum function. The pattern of connections in this community

also serves to highlight the difference between the RegulonDB

(direct regulatory links) and CLR (co-regulation) networks. We

identify ten operons that interact with FlhDC in the CLR but not

the RegulonDB network. These interactions might represent

previously unknown direct interactions, but are probably best

explained as indirect interactions mediated through their direct

regulation by FliA, which is regulated by FlhDC (Figure S5).

At fmin~6 the community with the most significant functional

enrichment contains 107 genes, including 51 of 56 genes

annotated as being structural components of the ribosome

Figure 3. Change in core community structure as noise is
increased from c~0 to c~4. The grey scale value of each element
indicates the fraction of times the two genes occurred in the same
community over replicate community partitionings. If the element is
white (black) the two genes were always (never) found in the same
community. At each noise value there are clearly white diagonal blocks
indicating sets of genes that are always found in the same community,
which we refer to as core communities. Note that, the five core
communities at c~0 (Figure 3A) are in the same order in Figure 3:B, C,
D, and E. Within each of the five core communities of Figure 3A, the
node order is allowed to change in Figure 3:B, C, D, and E in order to
display the largest subcommunity first. For each panel, he list of of the
order of genes and the core community they belong to is given in
Dataset S5 and Dataset S6, respectively. A full size version with each
pixel representing a distinct pair of genes is included in Figure S3.
doi:10.1371/journal.pcbi.1002391.g003

Robust Hierarchical Functional Community Detection
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(Table 2). This very significant enrichment suggests that the 15

genes present in the community that do not have any annotated

function might also be involved in translational processes. The

most striking aspect of this community, however, is that it contains

only one recognized regulator, fis, which, as annotated in the

regulonDB database, is involved in only a very small fraction of the

inferred regulatory interactions (Figure 5). Moreover, no recog-

nized transcription factor serves to indirectly connect regulation of

more than three of the community operons and no sigma factor is

unique to this community. These observations suggest the

presence of some other regulatory factor that is in common to

some or all of the genes in the community. One candidate for this

factor is ppGpp, a small molecule which, in association with DskA,

is known to affect regulation of many ribosome associated genes by

decreasing the stability of the RNA polymerase open complex

[53]. Indeed, a recent study directly examined the effect of ppGpp

on nine of the 51 primary promoters present in the community. In

all cases, ppGpp was shown to affect promoter activity in at least

one of the tested conditions and a comparison of global gene

expression profiles of bacteria that differed in ppGpp levels, found

Figure 4. The effect of noise on core community structure and GO term enrichment. (A) Proportion of c~0 core community nodes that
remain in a core community. (B) The number of significant GO term enrichments as a function of noise level c for networks constructed with fmin~2.
If a GO term is enriched by more than one community, each enrichment is counted separately.
doi:10.1371/journal.pcbi.1002391.g004

Robust Hierarchical Functional Community Detection
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that a further twelve promoters in the community differed in

expression by at least 2-fold in response to ppGpp [54,55].

Together, these results suggest the remaining 30 promoters in the

community as candidates to also be affected by ppGpp.

Discussion

We present unsupervised methods for determining communi-

ties of co-regulated genes and their hierarchical organization

based on expression data profiles collected under a variety of

environmental and genetic perturbations. Our methods combine

the CLR algorithm and a tunable threshold value to infer the

underlying regulatory network. We then use a statistical

ensemble analysis of the network partitionings that result from

a recently developed community detection algorithm to deter-

mine the network’s community structure. Applying our method

to E. coli expression data we obtain three key results. i).

Regulatory communities in E. coli are largely hierarchical so

that the effect of increasing (decreasing) the fmin threshold is

largely simply to split (combine) the communities found. ii) The

structure of the inferred regulatory network is robust to relatively

high experimental noise. iii) Regulatory communities signifi-

cantly enrich for functionally related gene groupings. We discuss

these findings in turn.

The technique we use applies a threshold to determine whether

mutual information between the expression responses of two genes

is sufficient to infer a connecting regulatory link. We find that the

value of this threshold influences the size and unity of the inferred

network. However, the network structure is relatively invariant to

the addition or removal of links between more weakly related

genes. We note that there at least two broad mechanisms that

might cause genes to be weakly connected in our network. First,

the relevant molecular interactions may exert weak expression

control on the regulated gene. Second, the regulatory interactions

might be environmentally dependent, being active in only a subset

of the experimental conditions. Comparison of communities

present in regulatory networks obtained at increasingly stringent

thresholds indicates that the regulatory network is largely

hierarchical such that large communities present in the low

threshold network tended to split into smaller sub-groups of

strongly related genes as the threshold was increased. By contrast,

increasing the threshold causes relatively few genes to associate in

new communities that were not subsets of the original commu-

nities.

Table 1. The 25 most relevant relationships found for fmin~4 without noise.

P value GO term num Com size GO size In common Description

8.41e-42 9288 72 24 24 bacterial-type flagellum

9.57e-39 6826 53 37 25 iron ion transport

8.22e-38 1539 72 28 24 ciliary or flagellar motility

3.67e-35 6412 826 101 79 translation

6.51e-34 3735 826 56 54 structural constituent of ribosome

3.08e-31 3723 826 105 77 RNA binding

1.73e-29 6935 72 22 19 chemotaxis

4.30e-29 3774 72 17 17 motor activity

5.38e-29 9425 72 17 17 bacterial-type flagellum basal body

2.06e-25 19861 72 15 15 flagellum

5.61e-25 5506 53 210 31 iron ion binding

3.72e-24 19843 826 42 40 rRNA binding

6.98e-23 6811 53 79 22 ion transport

6.99e-22 30529 826 36 35 ribonucleoprotein complex

1.72e-21 5840 826 38 36 ribosome

6.62e-21 8652 247 62 32 cellular amino acid biosynthetic process

4.11e-17 5506 139 210 39 iron ion binding

6.66e-16 9055 139 116 29 electron carrier activity

7.30e-15 51539 139 98 26 4 iron, 4 sulfur cluster binding

8.22e-15 15453 300 15 15 oxidoreduction-driven active transmembrane transporter activity light-
driven active transmembrane transporter activity

1.85e-13 6865 247 70 27 amino acid transport

6.13e-13 45272 300 13 13 plasma membrane respiratory chain complex I

9.19e-13 30964 300 13 13 NADH dehydrogenase complex

1.97e-12 9060 300 21 16 aerobic respiration

2.15e-12 5515 826 875 251 protein binding calmodulin binding

The ‘‘P value’’ or random probability, calculated with a hypergeometric test with Benjamini-Hochberg correction, of the common occurrence, or overlap, of genes in an
inferred community and in a GO term for the 25 most statistically relevant relationships are listed. Also listed are the ‘‘GO term num’’ that distinguishes the GO term and
its ‘‘Description’’ in the GO database, the number of genes in the GO term ‘‘GO size’’, the number of genes in the inferred community ‘‘Com size’’, and the number of
genes they have in common ‘‘In common.’’ The complete set of the 239 relevant relationships found for fmin~4, as well as the relevant relationships found for
fmin~2 and 6, are given in Dataset S7.
doi:10.1371/journal.pcbi.1002391.t001
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Relatively high experimental noise is of considerable concern in

analysis of gene expression data. Indeed, even small differences in

preparation and sample growth conditions, or in the exact

platform and analysis procedure used, can manifest as substantial

differences in gene expression estimates [42–44,56]. To address

the influence of experimental noise on our ability identify

regulatory interactions and communities, we generate datasets

with different noise levels, calculated independently across

experiments and genes. Comparing communities identified in

networks inferred from these data sets, we find that not only are

our predictions for the functional communities robust against noise

up to double that seen in the original empirical dataset, but that

the effects of experimental noise are mainly conservative. That is,

experimental noise reduces the size of core regulatory communi-

ties but does not tend to create new communities.

For the purpose of identifying functional communities in a

biological network, we find that it is useful to study the community

structure of different networks constructed with a range of relatedness

Table 2. Genes in the community at fmin~6 that enriches GO:3735 structural constituent of ribosome.

Genes in the GO Term Genes not in GO Term

rplA, rplB, rplC, rplD, rplE, rplF, rplI, rplJ, rplK, rplL, rplM,
rplN, rplO, rplP, rplQ, rplR, rplS, rplU, rplV, rplW, rplX, rplY,

cdsA, cmk, dnaG, dusB, efp, fis, fusA, gidB, gmk, infB,
ispU, lpxB, mnmG, mrdA, murA, nusA, nusG, obgE, parE,

rpmA, rpmB, rpmC, rpmD, rpmE, rpmG, rpmH, rpmJ, rpsA,
rpsB, rpsC, rpsD, rpsE, rpsF, rpsG, rpsH, rpsI, rpsJ, rpsK,

ppa, prfC, priB, pyrH, queA, rbfA, rho, rimM, rlmN, rnhB,
rnpA, rpoA, rpoZ, secE, secG, secY, speA, speB, tff, tig,

rpsL, rpsM, rpsN, rpsO, rpsP, rpsQ, rpsR, rpsS, rpsT, rpsU, trmA, trmD, trmI, truB, truC, tsf, typA, yadB, yggN, ygiQ,
yhbC, yhbE, yhbY, yidC, yidD, yqcC

doi:10.1371/journal.pcbi.1002391.t002

Figure 5. Links connecting operons in the fmin~6 community that enriches for genes involved in ribosome structure. CLR links are in
light blue, RegulonDB links are in black. Small symbols are genes that are not in the community, but are regulators of genes that are in the
community and are therefore candidates for mediating indirect interactions between community genes. Symbol shape and color indicate attributes
as follows: red, transcription factors; dark blue, ppGpp regulated promoter by direct assay [54]; light blue, ppGpp regulated translation related
promoter by microarray [55]; pink, other; hexagon, s70 promoter; diamond, s24 promoter; square, s32 promoter; circle, unknown sigma factor. Note
that very few interactions observed in the CLR network can be explained by the direct interactions annotated in RegulonDB. The high proportion of
ppGpp sensitive promoters among operons contained in the community suggests this molecule as a good candidate for regulating the remaining
interactions. The network layout was determined by the circular layout option in Cytoscape 2.8.1, no particular significance should be attached to
operons being outside the main circle.
doi:10.1371/journal.pcbi.1002391.g005
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threshold values. At large threshold values, the nodes in each of the

small disconnected pieces are highly related. These small groups

provide the most statistically significant enrichments for GO terms

and thus best identify biologically relevant communities. However, as

the threshold value used to construct a network is reduced, the

community sizes tend to increase. These enlarged communities

include other nodes that may also be relevantly related to the core

communities found at higher threshold values. Because of these

competing considerations, if only one threshold value is to be chosen

for which to make biological comparisons, we suggest that the critical

threshold value should be used, which for E. coli is approximately

fmin~4. Choosing the critical value will not only balance the above

two considerations, but as discussed earlier, also gives the most

statistically complex distribution of community structure.

The usefulness of our methods are multifold. First, the

functional community predictions of the methods can be used to

refine existing knowledge of the functional relationships of genes in

well known organisms such as E. coli. That is, the overlap of the

core communities we find to the E. coli GO Terms is not exact,

suggesting that the additional genes in our core communities that

enrich a particular GO term may themselves be candidates for

genes that should be included in that term of the gene ontology. In

this way, the predictions of our method can be used to suggest new

experiments to refine our understanding of the E. coli regulatory

system. We have explicitly demonstrated how this can be done by

analyzing two of the communities found with our methods that

significantly enrich GO terms and predicting previously unknown

regulatory interactions. Furthermore our methods can readily be

applied to expression data for other, less well studied, organisms,

and to other types of biological data, to identify functional

communities in their networks. The predictions from our

unsupervised methods will be particularly useful, for making

initial approximate predictions for the functional communities and

their organization of less well known organisms. Additionally, it

should be noted that we have applied our methods to expression

data based on an arbitrary variety of experimental and genetic

perturbations. However, the methods could instead be applied to

more targeted sets of expression data. For example, data based on

particular types of environmental perturbations, particular types of

genetic knockouts, with cells in a particular stage of the cell cycle,

or with cells in a particular developmental stage of a multi-cellular

organism. By examining more targeted data of these sorts, the

dynamics of particular functional communities can be explored.

Methods

The expression data analyzed
We analyze E. coli expression data downloaded from the Many

Microbe Microarrays Database (M3D) version 4, build 5 [45]. This

build consists of a compendium of expression profiles from 730

different experiments reporting expression of 4,298 E. coli

MG1655 genes. These experiments report the effect on gene

expression of 380 different perturbations, of which 152 were

repeated at least three times. Experiments include environmental

perturbations such as PH levels, growth phase, presence of

antibiotics, temperature, growth media and oxygen concentration,

as well as genetic perturbations. For each gene the data from the

various experiments were normalized to account for varying

detection efficiencies and differences in labeling. The values then

reported are the log2 of the normalized expression intensity.

The context likelihood of relatedness method
To identify interactions between genes we apply the context

likelihood of relatedness (CLR) algorithm [3]. Generally, network

inference is difficult because of bias from uneven condition

sampling, upstream regulation, and inter-laboratory variations in

microarray results. The CLR algorithm attempts to mitigate these

difficulties by increasing the contrast between the physical

interactions and the indirect relationships by taking the context

of each interaction and relationship into account. Links are

assigned based on the mutual information in gene expression

patterns, which, unlike simple correlation methods, can accom-

modate non-linear relationships between pair-wise gene expression

patterns. Although some other algorithms offer higher precision in

terms of recovering known regulatory links [57], CLR is attractive

for allowing identification of indirect links that might serve to

strengthen relationships between genes within co-regulated

communities. We note, however, two limitations of networks

derived from the underlying data set and CLR approach we use.

First, the expression experiments are not considered as time series,

which could give information as to the direction of regulatory

interactions [58]. Second, we do not consider combinatorial

regulatory interactions, for example, in which two or more

regulator genes must be active to regulate a target gene.

Our implementation of the CLR algorithm begins by

calculating the mutual information in the expression data for

each pair of genes. This is done by treating the data for each gene

as a discrete random variable, so that every pair of genes X and Y

is assumed to have expression levels xi and yi for each experiment

i~1,2,3, . . .. The mutual information I(X ,Y ) in the expression of

X and Y is

I(X ,Y )~
X

i,j

p(xi,yj) log
p(xi,yj)

p(xi) p(xj)
ð1Þ

where p(xi) and p(yj) are the marginal probability distributions

that the expression level of X is xi and of Y is yj , respectively, and

p(xi,yj) is the joint probability distribution that, simultaneously,

the expression levels of X and Y are xi and yj , respectively. These

discrete probability distributions are calculated from the contin-

uous expression data using B-spline smoothing and discretization.

Rather than assign an expression value to one bin, as in classical

binning, the B-spline functions allow an expression value to be

assigned to multiple bins to account for fluctuations in biological

and measurement noise. This is sometimes referred to as ‘‘fuzzy

binning’’ [59]. For N genes, this calculation results in an N|N

symmetric matrix of mutual information values. Here, to calculate

the probability distributions for E. coli we use 10 discrete bins and a

third-order B-spline function. The results do vary slightly if the

number of bins used or the order of the B-spline function is

changed. However, the results vary slowly with these parameters

and do not change any of our principle conclusions.

Mutual information between a gene pair can be due to random

background effects, or a regulatory relationship. To distinguish the

relevant mutual information from its background, the CLR

algorithm compares each mutual information value I(X ,Y ), to

the distribution of the mutual information values between gene X

and all other genes fI(X ,Y ); VYg, and separately, to the

distribution of the mutual information values between gene Y

and all other genes fI(X ,Y ); VXg. The distributions are assumed

to be normal and a Z-score value, Zx and Zy, is assigned to

I(X ,Y ) for distribution X and Y , respectively. The Z-score value

of I(X ,Y ) compared to a normal distribution i, with a mean mi

and standard deviation si, is given by

Zi~
I(X ,Y ){mi

si

: ð2Þ
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Any value of Zx or Zy less than zero is set to zero. Finally, the

relatedness value between gene X and gene Y is defined as

f (X ,Y )~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

X zZ2
Y

q
: ð3Þ

For N genes, this calculation results in an N|N symmetric matrix

of relatedness values.

Once this matrix of relatedness values is calculated, we infer a

network of regulatory interactions by placing links between every

pair of genes whose relatedness value exceeds some threshold, fmin.

For a given fmin value, this procedure results in a defined

interaction network. A list of the links in the network fmin~4 and

fmin~6 is given in Dataset S1.

Network community detection methods
There are a number of different methods that can be used to

determine the community structure of a given complex network

[19–21,29–31]. Here we use a method that aims to find a

partitioning of nodes of the network into disjoint sets that

maximizes the modularity of the network. Modularity is defined

as the fraction of links that connect nodes in the same community

minus the fraction expected if the partitioning and the degree

sequence of the network remains fixed, but the links are randomly

distributed [36]. Formally, for a network partitioning that assigns

each node i to one member of a set of communities, the

modularity Q is

Q~
1

2m

X
i,j

BijdC(i),C(j) ð4Þ

where Bij~Aij{kikj=(2m) are the elements of the ‘‘modularity

matrix’’ and C(i)(C(j)) is the community to which node i(j)
belongs. Here m is the total number of links in the network, ki(kj )

is the degree of node i(j), Aij are the elements of the adjacency

matrix, and d is the Kronecker delta function. The larger Qmax,

the maximum value of Q for all network partitionings, is for a

network the more modular the network is. The largest possible

value of Qmax is one.

Unfortunately, finding the network partitioning that maximizes

Q is known to be an NP-hard problem and, thus, is computa-

tionally challenging [60]. In order to solve this problem, we use the

leading eigenvalue method combined with final tuning [40]. Final

tuning improves the approximate solution given by the leading

eigenvalue method by removing constraints that bias the results.

For widely studied example networks with up to a few thousand

nodes, the size of the genetic network of E. coli used in our analysis,

combining final tuning with the leading eigenvalue method has

been demonstrated to produce network partitionings with the

largest Qmax of any known method [40].

Creating artificial noisy datasets
To explore the effects of experimental noise we found the

community structure in artificial datasets created to mimic the

actual data with various levels of experimental noise. To generate

these datasets, we first considered a restricted set of the actual data

consisting of the 152 experiments that were repeated at least three

times in the M3D database. For each of the 152 experiments we

calculated the mean m(X ) and standard error s(X ) of the

expression level of each gene X . Assuming a normal distribution of

error, we then generated artificial data for an artificial experiment

by randomly choosing a value for the expression of each gene X
from a Gaussian distribution with mean m(X ) and standard

deviation c s(X ), where c is a positive constant. The amount of

noise in the artificial data can be adjusted by varying c with c~0
recreating the original data set. Artificial data sets were generated

at values of c ranging from 0 to 4. For each value of c, ensembles

of 20 different artificial data sets were constructed and then

analyzed.

Statistical analysis of ensembles of network partitionings
As noted above, many community detection algorithms,

including the one we use, are stochastic in nature and can give

diverse partitionings that maximize Q between different runs. We

account for this by studying statistical properties of the ensemble of

partitionings that result from repeated application of the

community detection algorithm. In particular, we study the

correlations of the partitionings in the ensemble and produced

matrix correlation plots that indicate the fraction of the pairs of

partitionings for which pairs of genes are found to be in the same

community. This ensemble analysis provides an understanding of

the robustness of the community structure found. At the same

time, it also provides information about the strength of the

modular relationship between pairs of genes. Note that this

ensemble analysis method, unlike usual modularity maximizing

methods of community detection, allows for individual genes to be

associated with more than one community. This is similar to

information that can be obtained in, for example, clique [24] and

core-periphery [26] community detection methods.

The gray scale plots of Figure 3 are the matrix correlation plots

for the statistical ensemble analysis of the 200 partitionings

constructed from the artificial noisy data for each noise value c.

The grey scale of each matrix element in the plots corresponds to

the fraction of pairs of partitionings in which the corresponding

pairs of genes are found to be in the same community. Note that

the order of genes used in a matrix correlation plot is arbitrary.

However, by judiciously choosing an ordering, modular relation-

ships become more apparent. The order of genes in Figure 3A is

such that all of the genes in the largest core community are

arbitrarily listed first, followed by a similar list of the genes in the

second, third, fourth, and fifth largest core communities. Note that

when c~0 all genes are in one of the five core communities and

therefore this list contains all genes. In Figure 3:B, C, D, and E, the

genes in each of the 5 core communities at c~0 have been

reordered, but the order of the genes with respect to these core

communities has been preserved. That is, in each of these

subfigures, all genes that are in the ith largest core community at

c~0 are always listed before any genes in the jth largest core

community at c~0 if ivj: In each subfigure, the genes within a

c~0 core community have been reordered such that the subset of

those genes that comprise the largest core community at the c
value corresponding to the subgraph are listed first, followed by

those in the next largest such core community, etc. Until all genes

within the c~0 core community has been listed. Note that, some

genes may be isolated in their own core community with this

method. The list of the order of genes, for each subfigure, is given

in Dataset S5.

The multicolor matrix correlation plot of Figure 2 simulta-

neously shows the statistical correlations in the modular relation-

ships between pairs of genes, in the full dataset, at supercritical,

critical, and subcritical threshold values. First, single color, blue

red and green, matrix correlation plots corresponding to fmin

values of 2, 4, and 6, respectively, are created. The genes in each

of these single color correlation plots are then simultaneously

reordered as follows. First, the genes were ordered so that all of the

genes in the same community at fmin~2 are listed together,

according to the size of the community, beginning with the largest
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and ending with the smallest. Next, the genes in each of those

communities are reordered such that the subset of those genes that

comprise the largest community at fmin~4 are listed first, followed

by those in the next largest such community, etc. Until all genes

within the fmin~2 community have been listed. Then each of the

genes within a fmin~4 core community that are within an fmin~2
community are again reordered. The genes in each of those

communities are reordered such that the subset of those genes that

comprise the largest core community at fmin~6 are listed first,

followed by those in the next largest such community, etc. Until all

genes within the fmin~4 core community that are within an

fmin~2 community have been listed. The resulting ordering of

genes is given in the supplemental material. Finally, the three

single color correlation plots are combined into the multicolor plot

shown in Figure 2, where each matrix element of the resulting plot

has an RGB color that simultaneously indicates its correlations in

the modular structure at each of the three fmin values. The list of

the order of genes is given in Dataset S2.

Hypergeometric tests
In order to establish the biological relevance of the functional

communities found with our methods, we compare those

functional communities to terms in the gene ontology, using a

hypergeometric test with Benjamini-Hochberg correction. The

hypergeometric test calculates the probability that a community of

size n has k genes in common with a GO term of size m in a

network with N total genes. For random groupings this probability

is

P~

m

k

� �
N{m

n{k

� �

N

n

� � : ð5Þ

If a community and a GO term are found to have an overlap that

is unlikely to occur by chance (a low P value) then their

relationship is likely to be relevant. Note that a low P value can

occur if the number of genes in common, k, is either greater than

or less than expected by chance. For a hypergeometric distribution

the expected number of matches is given by mn=N . We have

reported only the ‘‘positive’’ enrichments for which kwmn=N as

relevant.

To control for false discoveries due to multiple comparisons, we

correct the P values obtained using Eq. 5 with the Benjamini-

Hochberg (BH) procedure [61]. We implement the BH procedure

as follows. For a given core community, the P values obtained by

comparing it to the M GO terms are ordered in a list such that

they are increasing, P1ƒP2ƒ . . . ƒPM . The corrected P values

are then taken to be MPr=r, where r is the rank, or position on the

ordered list, of the P value. Then, as is commonly accepted, we

judge the relationship between a community and a GO term to be

relevant if their corrected P value is less than 0.05.

To account for the resolution limit of modularity optimization

[51], only core communities of size 10 or larger are tested for

biological relevance. The members of a GO term are restricted to

the genes included in our data set.

Supporting Information

Dataset S1 List of links in the E. coli CLR network at
fmin~4 and 6. The CLR algorithm is used to infer direct and

indirect regulatory interactions between E. coli genes on the basis

of the similarity of their expression response in 466 experiments. A

matrix of relatedness values is calculated and a network of

regulatory interactions is inferred by placing links between every

pair of genes whose relatedness value exceeds some threshold, fmin.

A list of the links for the network at fmin~4 and fmin~6 is

provided. Each link is given by listing a gene name, the gene’s

Blattner number, followed by the target gene name and Blattner

number.

(XLS)

Dataset S2 List of the order of genes in the correlation
matrix plot. The multicolor matrix correlation plot simulta-

neously shows the statistical correlations in the modular relation-

ships between pairs of genes, in the full dataset, at supercritical,

critical, and subcritical threshold values. Each matrix element of

the resulting plot has an RGB color that simultaneously indicates

its correlations in the modular structure at each of the three fmin

values. A list of the order of genes is given, by listing each gene

name and Blattner number.

(XLS)

Dataset S3 List of core community membership. At a

particular fmin value, which defines a unique network, the

community detection algorithm was run 10 times, generating a

correlation matrix where each element represents the proportion

of times gene X and gene Y are found in the same community.

Sets of genes that are always found in the same community is

defined as a ‘‘core community’’. For each fmin value, 2, 4 and 6,

the gene name, Blattner number and core community number is

given.

(XLS)

Dataset S4 The hierarchical organization of the E. coli
network. The relationship between communities at different fmin

values indicates that the structure of the E. coli network is largely

hierarchical. A hierarchical structure is revealed when a

community breaks up into subcommunities as fmin increases.

Thus, if the E. coli regulatory network was completely hierarchical,

one would see only block diagonal elements consisting of large

blue blocks that break up into purple then white sub-blocks as fmin

is increased. The hierarchical organization of genes is given, where

the blue, purple, and white module membership of each gene is

listed. The blue membership is listed first, numbered 1 through 6.

The purple membership is listed next with the format x.y, where x

is the blue membership and y is the purple membership. The

purple membership is listed in the order a,b,c,d,….,z, aa, ab, ….

Finally, the white membership is listed with format x.y.z, where x

is the blue membership, y is the purple membership, and z is the

white membership. The white membership is listed in numerical

order.

(XLS)

Dataset S5 List of the order of genes in each noise
correlation matrix plot. The gray scale plots of Figure 3 are

the matrix correlation plots for the statistical ensemble analysis of

the 200 partitionings constructed from the artificial noisy data for

each noise value c. The grey scale of each matrix element in the

plots corresponds to the fraction of pairs of partitionings in which

the corresponding pairs of genes are found to be in the same

community. For each noise value c~0,0:5,1,2 and 4, each

ordered gene name and Blattner number is listed.

(XLS)

Dataset S6 List of noise core community membership.
For each noisy data set, the CLR algorithm is used to infer a

regulation network at an fmin value of 2, and the community

structure is determined with the methods described above. For

each dataset, 10 different community partitionings are obtained,
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giving a total of 200 partititonings for each value of c. Sets of genes

that are always founds in the same community are defined as

‘‘core communities’’. For each noise value c~0,0:5,1,2 and 4, a

gene name and Blattner number, followed by its core community

number is listed.

(XLS)

Dataset S7 List of GO term enrichments. To determine

whether the inferred community structure groups genes with

similar biological functions, a test to determine whether the

identified communities significantly enrich for any of the gene

ontology (GO) terms identified in E. coli is performed. At each fmin

value, each significant enrichment is listed by giving it’s

corresponding p-value, GO term number, core community

number, community size, GO term size, the number of genes in

common, and the biological description of the GO term.

(XLS)

Dataset S8 List of GO terms. To determine whether the

inferred community structure groups genes with similar biological

functions, a test to determine whether the identified communities

significantly enrich for any of the gene ontology (GO) terms

identified in E. coli is performed. To test for enrichment, genes

were removed from each GO term that were not included in our

dataset. For each resulting GO term, the gene name and Blattner

number, followed by its GO term number is listed.

(XLS)

Dataset S9 List of GO term enrichments at each noise
value. To determine the effect of noise on GO term enrichment,

at each noise value c, a test to determine whether the identified

communities significantly enrich for any of the gene ontology (GO)

terms identified in E. coli is performed. At each c value, each

significant enrichment is listed by giving it’s corresponding p-

value, GO term number, core community number, community

size, GO term size, the number of genes in common, and the

biological description of the GO term.

(XLS)

Figure S1 Correlation matrix. Correlation matrix showing

community structure found in the E. coli network with relatedness

threshold values fmin~2,4 and 6. Genes are ordered in the same

sequence along the x and y axes beginning in the upper left corner,

and this ordering is the same for all three relatedness values (gene

order is given in SI). The matrix element in the position (X ,Y ) is

colored blue, red, or green if genes X and Y are in the same

community at threshold values 2, 4 or 6, respectively. The density

of the color indicates the strength of the correlation in the

partitionings of the pair of genes. For example, considering the

correlation between a pair of genes in the 10 replicate partitionings

performed on the fmin~4 network, dark and light red indicates

that the pair of genes are always and rarely found to be in the same

community, respectively. The red, green and blue colors

corresponding to fmin~2,4 and 6 thresholds, respectively, are

combined to indicate the correlations of each pair of genes at all

three threshold values. Thus, the color of the matrix element in the

position (X ,Y ) is white if genes X and Y are in the same

community at all three threshold values. It is purple (yellow) if the

two genes are in the same community at thresholds 2 and 4 (4 and

6), but not at threshold 6 (2) and it is black if the two genes are not

in the same community at any of the three threshold values. A list

of the order of genes is given in Dataset S2.

(TIF)

Figure S2 Core community hierarchy. An alternative view

of the core community hierarchy where each core community is

represented by a node. The node label x.y indicates the fmin level,

x, and core community number, y. The size of each node

represents the number of genes in the community relative to

communities at the same fmin level. The edge width and color

value indicate the proportion of the ‘‘daughter’’ community

deriving from the connected ‘‘parent’’ community. For example, If

all of the genes in a ‘‘daughter’’ community are from one ‘‘parent’’

community then there is one edge that is dark blue and thick. The

nodes have been arranged to display the hierarchy of the network.

(EPS)

Figure S3 Noise correlation matrices. Change in core

community structure as noise is increased from c~0 to c~4. The

grey scale value of each element indicates the fraction of times the

two genes occurred in the same community over replicate

community partitionings. If the element is white (black) the two

genes were always (never) found in the same community. At each

noise value there are clearly white diagonal blocks indicating sets

of genes that are always found in the same community, which we

refer to as core communities. Note that, the five core communities

at c~0 (Figure 3A) are in the same order in Figure 3:B, C, D, and

E. Within each of the five core communities of Figure 3A, the

node order is allowed to change in Figure 3:B, C, D, and E in

order to display the largest subcommunity first. For each panel, he

list of of the order of genes and the core community they belong to

is given in Dataset S5 and Dataset S6, respectively.

(TIF)

Figure S4 Operon by community. Fraction of E. coli operons

that are retained whole in a single community. The fraction of 544

operons (comprising 2172 genes) identified in the E. coli genome

where all genes in the operon were assigned to the same final

tuning community was determined at fmin~2,4 and 6 (indicated

by arrows). These actual values were compared to 1000 random

distributions of the same set of genes to empty community sets of

the same size and number as were present in the final tuning

partitionings (histograms). In all cases, actual operon retention

proportions were much greater than in any of the 1000 randomly

distributed sets, indicating that they were very unlikely to occur by

chance and therefore that the final tuning community partition-

ings effectively group genes in the same operon to the same

community.

(EPS)

Figure S5 Regulatory links from flhDC and fliA in the
fmin~4 community that significantly enriches for flagel-
lum associated genes. Genes are organized into operons as

annotated by RegulonDB. Black, blue and red lines indicate

regulatory interactions that are annotated in RegulonDB,

inferred in the CLR network or both, respectively. For simplicity,

only links from FlhDC and to targets of these links from fliA are

shown. Many of the interactions that are found in the CLR

network are not present in RegulonDB (blue lines). These

interactions are candidates for indicating unrecognized regulatory

interactions between FlhDC and the target genes. However, in

most cases these interactions can be explained through the action

of FlhDC on the sigma factor encoded by fliA (thick red line),

which does directly affect all but one of the target genes. This

point underlines the difference between the CLR network, which

includes direct and indirect regulatory interactions, and the direct

transcriptional network as annotated in RegulonDB. Note the

CLR connection between FlhDC and the target gene ymdA

cannot be explained through any known indirect interaction and

is, therefore, a candidate for representing a new direct

interaction.

(EPS)
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Table S1 The community with the most significant GO
term enrichment at fmin~4. The community with the most

significant GO term enrichment at fmin~4 contains 72 genes,

including all 24 genes in the GO term for bacterial-type flagellum.

The remaining 48 genes in this community are implicated as

having some relevance for the development, function or control of

the E. coli flagellum.

(XLS)
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