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Abstract

Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of
membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy
landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter
the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence
protein function in vivo. Despite their obvious importance, crowding phenomena in membranes are much less well studied
than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic
tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane
protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial
mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to
osmotic shock. We find that crowding can alter the gating energies by more than 2 kBT in physiological conditions, a
substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific
nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant
conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.
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Introduction

Cell membranes are packed full of proteins. The essence of

various membrane inventories is that biological membranes are at

least as much protein as they are lipid. Experiments on the

occupancy of biological membranes by lipids and their protein

partners provide a useful basis for making estimates of the possible

consequences of membrane crowding. The presence of such high

areal fractions of protein means that there is the possibility that the

‘‘crowding’’ effect can alter the free energies of different membrane

protein conformations and the dynamics of the changes between

these conformations as well. Indeed, over the last several decades,

the importance of crowding effects in general has become a theme

of increasing concern in physical biology [1–6].

The question of how the behavior of membrane proteins is

altered by crowding effects has been explored much less

thoroughly than their bulk counterparts [6–11]. As a concrete

example of the way crowding might play out in membranes, we

consider transmembrane proteins that have several conformations

with different areal footprint. One particularly fascinating class of

proteins of this variety are the mechanosensitive membrane

channels. These proteins are thought to serve as safety valves for

cells that are exposed to osmotic stress, opening up in response to

increased membrane tension for the purpose of equilibrating the

cells with their external environment [12–15].

To see how crowding might serve as an additional factor in the

overall gating free energy balance for mechanosensitive channels,

we consider the gating tension associated with the mechanosensi-

tive channel of large conductance (MscL). Upon opening, at

membrane tensions larger than *10{3J=m2, this channel under-

goes a change in radius from roughly 2.4 nm to 3.5 nm [16–19].

As a result of this increased size, there is a reduction in the free

area available for the surrounding membrane proteins resulting in

an entropic driving force to keep the channel closed. The work

presented here explores the relative importance of this effect

compared to other contributions to the overall free energy budget

for mechanosensitive channel gating.

In the remainder of this paper, we first examine various

estimates of the degree of crowding in biological membranes. We

then go on to explore the consequences of such gating for the free

energy of the crowded proteins within the membrane, and the

accompanying changes of the channel’s gating tension.

Results

The degree of crowding in membranes
As a prerequisite to characterizing the functional consequences

of membrane crowding, we must first estimate the extent of

crowding found in different types of membranes. There are

various ways to arrive at numerical estimates of the extent of

crowding of membrane proteins in biological membranes. One

key measurable quantity that reflects the fraction of membrane

area occupied by proteins is the protein to lipid mass ratio which

typically falls in the range 1–2.5 [20–23]. Assuming that
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transmembrane (TM) domains make up about half of the

membrane protein mass [24] and have roughly the same density

as the lipids results in the estimate that 30–55% of the membrane

area in the bilayer plane is occupied by proteins. Sowers and

Hackenbrock [25] obtained electron microscopy images of

mitochondrial inner membranes after application of a strong

electric field that made all proteins drift to one end of the

membrane surface, and found that the packed proteins in those

images occupy 40–50% of the total area. Ryan et al. [26] fitted a

statistical mechanics model of steric exclusion to the distribution of

fluorescently labeled membrane proteins on rat basophilic

leukemia cells subject to an electric field, and extracted an area

coverage of 55–75%. Direct experimental estimates of the protein

area fraction in red blood cell plasma membrane and synaptic

vesicles have yielded area fractions of 20–25% [21,22]. In an

extreme case, atomic force microscopy images of the photosyn-

thetic membranes of Rhodospirillum photometricum cells [27] under

various growth conditions show almost close-packed photosyn-

thetic proteins arranged with nearly crystalline order. All of these

examples tell the same fundamental story: membrane proteins are

in very close proximity.

Another way of characterizing this crowding is by appealing to

the number density which gives the number of membrane proteins

per unit area of membrane. Aldea et al. [28] report that the five

major outer membrane proteins (by mass) in Salmonella typhimurium

have a total surface density of about 0:1=nm2 in a wide range of

growth conditions. Neidhardt et al. [29] (p. 41) quote lipoproteins

as the most abundant protein (by number) in Escherichia coli, with

*7|105 copies in the outer membrane of a typical cell.

Estimating the area of a typical E. coli to be 5 mm2 [30], this

gives a density of about 105=mm2~0:14=nm2. Another way to

estimate a protein density is to consider the fraction of the genome

that codes for membrane proteins. In E. coli, about 1/3 of the 4200

genes encode membrane proteins, and the total number of

proteins is about 3|106 per cell [30]. If 1/3 of all proteins are

evenly distributed in the two membranes, each membrane has

about 500,000 proteins, or about 0:1protein=nm2. The areal and

number densities estimated above are roughly consistent. If one

assumes a footprint of 1:5 nm2 per transmembrane helix [21–23],

and 3 transmembrane helices per protein (see below), a number

density of 0:1=nm2 corresponds to an area fraction of 0.45.

There are other ways to think about the extent of membrane

crowding, each with its own assumptions and merits, but

regardless of these details the message will be the same. Biological

membranes are crowded! For the purposes of this article, what

these numbers tell us is that the mean spacing between proteins

(estimated by evaluating 1=
ffiffiffiffiffi
cA
p

) is only slightly larger than the

proteins themselves, so that a significant fraction of the membrane

area is occupied by proteins.

Membrane proteins are not only abundant, they are also very

heterogeneous, and vary significantly in size and shape [31].

Quantitative data on this heterogeneity is harder to come by, and

we will therefore use the number of transmembrane helices

(nTMH) as an approximate indicator. Bioinformatic predictions of

transmembrane regions [32] are routinely reported in surveys of

proteins or putative protein-coding DNA regions [21,24,33], and

range from one to several tens per protein subunit. Figure 1

illustrates two transmembrane helix distributions, based on a

synaptic vesicle model [21] and a proteomics study of the outer

membrane of the Gram-negative bacterium Acinetobacter baumannii

[33], respectively. The latter is an average of three different

techniques to estimate relative abundance, which differ signifi-

cantly in specific cases, but lead to similar overall distributions (not

shown). It is interesting to note the similarities in distributions in

figure 1, both being dominated by proteins with a few TM helices,

and spanning about one order of magnitude. However, there are

several significant sources of uncertainty. For example, not all

membrane proteins were detected [21,33], and we have not

accounted for aggregation of protein subunits into larger

complexes.

In our calculations below, we will model membrane proteins by

circular disks, and will need to estimate g2~Var½R�=SR2T, where

Var½R�~S(R{SRT)2T denotes the variance of R. This quantity,

which measures the variability of the projected protein area, enters

into the more sophisticated treatments of the crowding effect

discussed later in the paper. A useful approximation is

g2&g2
TMH~Var½ ffiffiffiffiffiffiffiffiffiffiffiffinTMH

p �=SnTMHT, which comes from setting

R2 proportional to nTMH. Excluding proteins with no predicted

transmembrane domains, the synaptic vesicle and A. baumannii

outer membrane protein data sets in figure 1 give 0.25 and 0.14

for g2
TMH, and 3.0 and 3.5 for the mean number of transmem-

brane helices, respectively. As we will see, these numbers indicate

that size variability does not make a large quantitative contribution

to the crowding effect, despite the quite broad distributions shown

in figure 1.

Figure 1. Relative abundance of membrane protein subunits
with different number of transmembrane (TM) helices. The
histograms are based on data for synaptic vesicles [21], and the outer
membrane (OM) of the Gram-negative bacterium A. baumannii [33].
Proteins with no predicted TM domains were excluded.
doi:10.1371/journal.pcbi.1002431.g001

Author Summary

Biological membranes are a complex array of lipids and
proteins. The typical bacterial membrane is made up of
hundreds of copies of different species of membrane
proteins embedded in a sea of different types of lipids.
One of the distinguishing features of biological matter is
the high degree of ‘‘crowding’’ to which the different
macromolecules are subjected. In this work, we explore
the consequences of such crowding in the membrane
setting, building upon earlier work which has primarily
focused on how crowding affects properties in the
cytoplasm. The particular case study considered here
centers on a class of membrane channels which respond
to tension in the cell membrane serving to provide
osmoprotection to cells subjected to osmotic shock. We
explore how the critical tension at which these channels
open depends upon the concentration of other membrane
proteins, and conclude that it can be significantly higher at
physiological protein densities compared to the intrinsic
value measured in protein free membranes.

Entropic Tension in Crowded Membranes
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Crowding effects on gating
In light of estimated membrane protein crowding, our aim is to

explore the implications of such crowding for channel gating. The

total free energy change upon gating, DGtot~Gopen{Gclosed, can

be thought of as arising from multiple contributions. In particular,

we have

DGtot~DGproteinzDGloadzDGmemzDGcrowd, ð1Þ

where the first term reflects the free energy change associated with

the protein degrees of freedom and their internal structural

rearrangements, the second term refers to the potential energy of

the loading device, and the third term characterizes the free

energy of protein-lipid interactions, including the deformed

membrane surrounding the protein that has been implicated as

a key player in the gating of mechanosensitive channels [34–36].

The last term is the crowding-induced term. A membrane protein

with a large cytosolic domain can potentially be crowded both by

molecules in the cytoplasm, and by other membrane proteins.

While the former effect has in fact been observed in the

mechanosensitive channel MscS [37], it is the latter effect that

forms the main substance of this paper.

The main conceptual point of the remainder of the paper can

be stated simply as the idea that when the channel opens and

changes its radius from ‘‘small’’ to ‘‘large’’, there will be a free

energy cost for the surrounding membrane proteins which we will

refer to as crowders. In particular, these crowders will have their

entropy reduced, which amounts to an effective pressure on the

channel walls opposing its opening. To explore this claim, we will

work in two distinct ensembles.

In the (mathematically) simpler case, we imagine a two-

dimensional membrane ‘‘box’’ like that shown in figure 2A, such

that the overall area is fixed. When the channel goes from the

closed to the open state, there is a net reduction in the available

area for the remaining crowders, which results in an entropic

tension that favors the closed state. We make no reference to the

elastic cost of squishing the lipids to access this state, since it can be

shown that this energy is negligible in comparison with our main

contribution of interest which is the entropic effect (see supporting

text S1, Sec. 1).

The second scenario imagines a loading device that subjects the

membrane to some fixed tension on its perimeter, much like the

springs that hold a trampoline under its state of tension. It can be

shown that in this case, when the channel goes from the closed to

the open state, the areal strain, and hence the lipid area available

to the crowders, do not change significantly (see supporting text

S1, Sec. 2). However, because of the change in the circumference

of the protein, the exclusion annulus around the channel,

indicated in figure 2, will be enlarged. Hence, there will still be

an entropic tension which favors the closed state. In both cases, we

make the implicit assumption that the number of lipids in the

membrane does not change on the time scale of protein

conformational changes.

To explore these two scenarios, we begin with the box of fixed

area and use the simplest ‘‘ideal gas’’ physics to evaluate the

change in entropy due to the loss of translational degrees of

freedom when the channel goes from the closed to the open state.

In particular, the translational entropy of one crowder can be

computed as the logarithm of the area available to its center of

mass,

gcrowd(R)~{kBT ln
(L2{p(RzRp)2{Aedge)

Alattice

, ð2Þ

where Rp is the radius of the crowder, R is the radius of the

channel, Aedge is the band of thickness Rp around the edge of the

box from which the crowder center of mass is excluded (see figure 2

A). The denominator Alattice refers to a discretization length scale

used in a lattice model for the entropy [30]. Hence, the numerator

is the effective area available to the crowder in the L|L
membrane patch, recognizing that the minimal center-of-mass

distance between the crowder and channel is RpzR (see figure 2).

Figure 2. Excluded-area interactions and channel gating. (A)
Gating of a channel (red) crowded by a single crowder (gray) of radius
Rp in the constant area ensemble, where the total surface area is fixed
by the outer walls (dashed). (B) In the constant tension ensemble with
applied tension s, the total area increases as the channel opens, so that
the total lipid area is conserved. For disk-shaped particles of finite size,
the free area available for each center of mass is limited by the
minimum distance between two centers of mass. This effect can be
illustrated by exclusion zones of width Rp around each protein. In the
constant tension ensemble, the reduced area for the crowders is due to
larger exclusion zone in the open compare to the closed state. In the
high density regime (C), the exclusion zones overlap, which complicates
the analysis. We use scaled-particle theory to analyze this case.
doi:10.1371/journal.pcbi.1002431.g002

Entropic Tension in Crowded Membranes
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This expression can be simplified by expanding in the small

parameter (p(RzRp)2zAedge)=L2. If we exploit this simplifica-

tion and add the contributions from N crowders, the difference in

free energy between the open (R~Ro) and closed (R~Rc) states

due to the crowding contributions can be written as

DGcrowd~NDgcrowd&cAkBT(p(R2
o{R2

c)z2pRp(Ro{Rc)), with

cA~N=L2 being the crowder concentration. These two terms

have simple and intuitive interpretations that are serviced by

noting that we can rewrite the area and circumference change,

respectively, as DA~p(R2
o{R2

c) and DC~2p(Ro{Rc). We can

then divide the entropic crowding tension into a surface and a line

tension, and write

DGcrowd&{scrowdDAztcrowdDC, ð3Þ

in the constant area ensemble. In our ‘‘ideal gas’’ approximation,

the surface tension is {scrowd~cAkBT , the familiar ideal gas law.

The line tension, tcrowd~cARpkBT , originates in the fact that the

annulus of exclusion shown in figure 2 changes size upon gating.

This contribution vanishes in the limit that the size of the crowders

goes to zero. For both terms, we will need to appeal to our earlier

estimates of protein areal concentrations to set the scale of the

effect.

We can now consider the second scenario in which there is a

fixed applied tension s, shown in figure 2B. Neglecting edge

effects, the lipid area in which the crowders wiggle around does

not change in this case, but the annulus of exclusion does, and

hence the contribution of the entropy change to the free energy is

given by the DC term only, i.e.,

DGcrowd&tcrowdDC: ð4Þ

At the same time, there is a relaxation in the energy of the loading

device which takes the form DGload~{sDA in the constant

tension ensemble.

The treatment given above provides the simplest estimate of the

crowding effect. However, as shown in figure 2C, things become

more complicated in the high concentration limit. In particular,

the amount of available area is much less than is suggested by the

simple estimate above, where we made no reference to the way the

crowders interact with each other. Neglecting these interactions

underestimates the crowding effects. For 50% protein area

coverage, the more accurate computations described below give

increased surface and line tension terms by a factor of four and

two, respectively. Note that the entropic effect increases in a highly

non-linear fashion with the crowder area fraction, effectively

diverging as one reaches the closed-packing limit. The effect we

describe can thus be potentially much larger than the already

substantial estimates of 1{10kBT summarized below.

One way to think about this, illustrated in figure 2C, is in terms

of exclusion zones around each crowder, analogous to the physics

described by the van der Waals theory of gases. In the highly

crowded regime, the theoretical difficulty is to compute the total

size of the exclusion zones in a way that avoids double counting

areas where multiple exclusion zones overlap. We use scaled-

particle theory for mixtures of hard disks, an approximate

equation of state that combines reasonable accuracy with

analytical tractability [38–40], and has been widely applied to

describe the effects of crowding [1,2,6–8,11,41]. The central

results, for circular crowders, are presented in table 1, in terms of

the concentration cA, areal fraction w, and, for non-uniform

crowder size, relative size variance g2~(SR2
pT{SRpT2)=SR2

pT.

Details of the derivations are presented in the Models section

below. The crowding-induced changes in gating energy still take

the form of Eqs. (3) and (4), with only the line tension contributing

in the constant tension ensemble. The more exact scaled particle

theory gives larger crowding tensions.

With these analytical results in hand, we now turn to the question

of the actual magnitude of the crowding effect. To be concrete, we

consider the case in which we have a membrane where the area is half

lipids and half proteins (i.e. w~1=2), big enough to make the ideal gas

estimates questionable. We consider a radius change of a single

channel from 2.4 to 3.5 nm (as is appropriate for MscL [18]), and a

crowder radius of 1 nm. For simplicity, we also neglect size variability

and set g2~0 since using our estimate of g2
TMH in the range 0.15–

0.25 would only give a *10% correction. This leads to an estimated

crowder density of cA~w=pR2
p&0:16 nm{2. Using these numbers

in the context of table 1, we get {scrowd,SPT&0:64 kBT=nm2, and

tcrowd,SPT&0:32 kBT=nm. This translates to crowding-induced

changes in total gating energies of 15.2 and 2.2 kBT , for the

constant area and constant tension ensembles, respectively (see

table 2). Even in the case of constant tension, most relevant to MscL,

the crowding effect can have a sizable impact on channel gating.

Models

In this section, we review some basic results of scaled-particle

theory, and derive the main results of the previous section and

table 1. Motivations for some of the approximations we use, such

as neglecting the area compression of the lipid bilayer, are given in

the supporting text S1. See table 3 for a summary of the notation

and symbols.

Table 1. Entropic surface and line tensions induced by
crowders.

{scrowd=kBT tcrowd=kBT

ideal gas cA cARp

SPT, uniform crowders cA

(1{w)2

cARp

1{w

SPT, non-uniform crowders cA(1{wg2)

(1{w)2

cASRpT
1{w

Entropic surface and line tensions induced by crowders, estimated by an ideal
gas calculation and scaled-particle theory (SPT, see Eqs. (20) and (27)). The
results are derived for the case in which a single circular protein increases its
radius from Rc to Ro in the presence of circular crowders with radius Rp . The
non-uniform crowders case contains averages S:T over the crowder radius
distribution, and this size variation (g2~½Rp�=SR2

pT§0) leads to a smaller
surface tension effect compared to uniform crowders with the same mean size.
doi:10.1371/journal.pcbi.1002431.t001

Table 2. Estimated crowding effects on MscL gating.

constant area constant tension

IG SPT IG SPT units

DGcrowd 4.3 15.2 1.1 2.2 kBT

Dscrowd 0.21 0.74 0.05 0.11 kBT

nm2

Different metrics for the effect of crowding on the gating behavior of a
mechanosensitive channel. The first row shows the approximate changes in
gating energies. The second row shows the corresponding increase in gating
tension, Dscrowd~DGcrowd=DA, which can be measured directly in patch-clamp
experiments. For comparison, the typical gating tension for isolated MscL is 0.3–
1.3 kBT/nm2 . For MscL gating, the constant tension ensemble is the more
appropriate model.
doi:10.1371/journal.pcbi.1002431.t002

Entropic Tension in Crowded Membranes
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Basic results of scaled particle theory
In this section, we restate some basic results of scaled-particle

theory that serve as the basis for our calculations. We will express

the results in terms of area, temperature, and particle copy

numbers, since this is what we will use as thermodynamic control

variables, but also quote the results in terms of variables like

concentration cA and area fraction w (see table 3).

Scaled-particle theory has been generalized to heterogeneous

mixtures of convex particles [42–44], but we restrict our attention

to mixtures of circular disks [40]. We will simply quote the results

we need, and refer to the literature for details on the derivations

[6,38–40,45].

We start with the canonical partition function for a collection of

hard disks with radii Rj and copy numbers nj , enclosed in an area

A. The crowding effect we are interested in comes from the

configurational entropy of the proteins, and we therefore omit

velocities and internal degrees of freedom, and neglect boundary

effects. The remaining configurational partition function depends

on the many-particle interaction energy, U(f~xxg),

Z(~nn,A,T)~
1

Pj nj !

ð
dn~xx e{bU(f~xxg), ð5Þ

where b~1=kBT is the inverse temperature, j is the disk species

index, and we use vector notation ~nn~(n1,n2, . . . ) to denote the

copy number distribution, with n~
P

j nj being the total number

of disks (see also table 3). We next factor Z by multiplying and

dividing by An, and write

Z(~nn,A,T)~Q(~nn,A,T)P
j

A
nj

nj !
, ð6Þ

where Q~ 1
An

Ð
dn~xx e{bU(f~xxg) describes the deviation from ideal

gas behavior due to the interaction energy U , which we take to be

simple hard-disk repulsion. (By construction, Q~1 for an ideal

gas, where U~0 for all configurations.)

For the computations below, we will break down configura-

tional changes as removals and insertions of particles of different

sizes, and also consider area changes as a result of changed particle

size. We will therefore need the chemical potential and surface

tension of the disk mixture that is our protein model.

Scaled particle theory offers a simple equation of state that

relates the surface tension (2D analog of negative pressure) exerted

by the disks to the area footprint, number density, and size

variation of the disks. Rewriting for example Eq. (6.7) of ref. [40]

in our notation, we get

sSPT

kBT
~{

Lln Z

LA

����
T ,~nn

~{
cA

1{cApSR2T
{

p(cASRT)2

(1{cApSR2T)2
: ð7Þ

(Note that we use the sign convention sdA for surface tension-area

work, which is the opposite sign compared to the pressure-volume

convention {pdV used in the original derivations of scaled

particle theory). After substituting cA~n=A, this expression can be

brought to the more compact form

Table 3. List of symbols.

nTMH number of transmembrane helices

b inverse temperature scale b~1=kBT

~nn copy number vector ~nn~(n1,n2, . . . )

n total copy number n~
P

j nj

~NN copy number vector for the crowders ~NN~(N1,N2, . . . )

N total number of crowders N~
P

j=o,c Nj

A area

s surface tension (2D analog of negative pressure)

cA areal number density cA~n=A

Ri In-plane radius of species i. In particular, i~o,c for the open and closed channel conformations respectively.

F Helmholtz free energy (constant area ensemble)

G Gibbs free energy (constant tension ensemble) G~F{sA

DC circumference change of channel DC~2p(Ro{Rc)

DA area change of channel DA~p(R2
o{R2

c )

SRmT m : th moment of the protein radius distribution
SRmT~

1

n

X
j
njR

m
j

½R� radius variance ½R�~SR2T{SRT2

SRm
p T m : th moment of the crowder radius distribution

SRm
p T~

1

N

X
j=o,c

NjR
m
j

Rp crowder radius, for the case of uniform crowder size

w area fraction of disks or proteins w~cApSR2T

A0 total area occupied by unstretched lipids A0~A(1{w)~A{npSR2T

g2 relative protein radius variance g2~½R�=SR2T

A~nn unstretched equilibrium area in constant tension ensemble A~nn~A0znpSR2T.

doi:10.1371/journal.pcbi.1002431.t003

Entropic Tension in Crowded Membranes
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sSPT

kBT
~{n

A{npVar½R�
(A{npSR2T)2

, ð8Þ

where ½R�~SR2T{SRT2 is the disk radius variance. Note how

the size variability decreases the (negative) pressure through the

variance term.

This can again be rewritten in terms of concentration, area

fraction, and relative size variability by combining the concentration

cA~n=A and the area fraction relation A{npSR2T~(1{w)A,

and then the relation
npVar½R�

A
~cApSR2Tg2~wg2, resulting in

sSPT

kBT
~{

cA

(1{w)2
(1{

npVar½R�
A

)~{
cA(1{wg2)

(1{w)2
: ð9Þ

When we consider area changes in the next section, the area integral

of the surface tension at constant particle numbers will also come in

handy, and we therefore integrate Eq. (8), and obtain

ð
sSPT

kBT
dA~{n ln(A{npSR2T)z

n2pSRT2

A{npSR2T
: ð10Þ

Finally, we will need the chemical potential. This is commonly

divided into an ideal gas part plus a correction, called the excess

chemical potential. Using~nnzêej to denote the state with an added

particle of species j, the excess chemical potential is defined as the

ratio

Dmj

kBT
~{ln

Q(~nnzêej ,T ,A)

Q(~nn,T ,A)
: ð11Þ

Using manipulations similar to those that lead to Eqs. (7) and (8),

the scaled-particle theory approximation given by, e.g., refs.

[6,40], can be rewritten in the form

Dmj

kBT
~{ln(1{

npSR2T
A

)z

n(pR2
j z2pRjSRT)

A{npSR2T
z

npRjSRT
A{npSR2T

� �2

,

ð12Þ

where the averages should be computed with copy numbers~nn, i.e.,

without the test particle present.

From the definition of Dm (Eq. (11)), one can see that

e{bDm~
Q(~nnzêej ,T ,A)

Q(~nn,T ,A)
also has a probabilistic interpretation,

namely as the probability that a test particle can be inserted

somewhere in the fluid without overlapping with the other

particles. This observation, which is exact, is in fact the starting

point for one way to derive scale-particle theory (see e.g., [6,40]),

by using a clever approximation to account for the overlapping

exclusion zones in figure 2 C.

Finally, the chemical potential is given by the ratio of partition

functions,

mj

kBT
~{ln

Z(~nnzêej ,T ,A)

Z(~nn,T ,A)
: ð13Þ

If we substitute Eq. (6) and then Eq. (12), we get the scaled-particle

approximation to the chemical potential, namely,

mj

kBT
~{ln

Anjz1

(njz1)!

nj !

Anj
zDmj~{ln(

A{npSR2T
njz1

)z

n(pR2
j z2pRjSRT)

A{npSR2T
z

npRjSRT
A{npSR2T

� �2

:

ð14Þ

Gating transition in the constant area ensemble
With the results of the previous section in hand, we are now in a

position to derive our main results. Specifically, we will consider a

situation with a single channel crowded by other proteins that do

not change their configuration. We denote the copy number

vector and total number of these crowders by ~NN and N

respectively. The state with a channel in state i (i~o,c for the

open and closed state respectively) will then have the copy number

vector ~NNzêei.

In the results and discussion sections, we use G to denote a

generic free energy. In the following derivations, we will be more

precise, and use F and G for the free energy in the constant area

and constant tension ensembles, respectively. In the thermody-

namic limit, they are related by a Legendre transformation

G(~nn,s,T)~F (~nn,A,T){sA, where s is the surface tension.

When computing the gating energy changes, we expand in

various small parameters. Specifically, we will consider the total

area, or total lipid area, to be much larger than the area of a single

protein of any species, but comparable to the total crowder

footprint NpSR2T. This means that pR2
j =A is a small parameter

for all protein radii Rj , but NpR2
j =A(~w) is not small. In a typical

E. coli cell, A~5 mm2, which means that pR2
j =A*10{6 (for

Ro~3:5 nm). We will neglect such small terms.

To compute the free energy changes of a conformational

change at constant total area, e.g., changing a particle from species

i (say, a closed channel) to species j (say, an open channel), we

subdivide the reaction into one insertion and one removal, by

multiplying and dividing by the partition function of the

intermediate state,

DFi?j

kBT
~{ln

Z(~NNzêej ,A,T)

Z(~NNzêei,A,T)
~

{ln(
Z(~NNzêej ,A,T)

Z(~NN,A,T)

Z(~NN,A,T)

Z(~NNzêei,A,T)
):

ð15Þ

Splitting the product of ratios, we can compare with Eq. (14) to

identify the free energy change as the difference of chemical

potentials for the two configurations,

DFi?j

kBT
~ {ln

Z(~NNzêej ,A,T)

Z(~NN,A,T)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mj (~NN,A,T)=kBT

zln
Z(~NNzêei,A,T)

Z(~NNzêei,A,T)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
{mi (

~NN,A,T)=kBT

: ð16Þ

This means that we can use Eq. (14) with j~o,c to compute the

entropic contribution to the free energy change. Using Rp to

denote crowder radii, we get

DF

kBT
~

mo(~NN,A,T){mc(~NN,A,T)

kBT
ð17Þ
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~
Np(R2

o{R2
c)z2NpSRpT(Ro{Rc)

A{NpSR2
pT

z

NpSRpT2|Np(R2
o{R2

c)

(A{NpSR2
pT)2

:

ð18Þ

To simplify, we first identify changes in area DA~p(R2
o{R2

c), and

circumference DC~2p(Ro{Rc),

DF

kBT
~

NSRpTDC

A{NpSR2
pT

z
NDA

A{NpSR2
pT

(1z
NpSRpT2

A{NpSR2
pT

): ð19Þ

Next, we use the same simplifications that lead to Eq. (9), and end

up with

DF

kBT
~

cASRpT
1{w

DCz
cA(1{wg2)

(1{w)2
DA: ð20Þ

The coefficients of DC and DA are the line and surface tensions

tabulated on line three of table 1. The negative surface tension of the

crowders (Eq. (9)) acts to oppose an increased radius of the protein,

because increasing the protein footprint decreases the area available

to the rest of crowders. The quantities in these coefficients should be

computed without the channel present (although computing them

with the channel present would only make a small difference). The

properties of the channel itself only enter through DC and DA. We

obtain the uniform crowders result (line 2 of table 1) as a special

case, by replacing the mean radius by a single value, SRpT?Rp,

and set the coefficient of variation, g2, to zero.

Next, we consider the constant tension ensemble, and show that

we recover only the line tension effect, i.e., the DC term, in that

case.

Gating transition in the constant tension ensemble
For the constant tension ensemble, the statistical mechanics

recipe is to introduce an external tension s, i.e., an external loading

device with energy {sA. We also include a term Hlipids for lipid

elastic energy as a function of area, and integrate over all areas,

J(~nn,s,T)~

ð
dAe

b(sA{Hlipids)
Z(~nn,A,T): ð21Þ

As we show in the supporting text S1, real membranes are too stiff for

changes and fluctuations in lipid area to give significant contributions

to the gating energy of a single channel. This means that the above

integral will be dominated by the area A~nn~A0znpSR2T, where A0

is the total unstretched lipid area. To good approximation, we can

therefore set e
{bHlipids&d(A{A~nn), and think of the lipids as having

constant area and infinite stiffness. This makes it easy to evaluate the

area integral,

J(~nn,s,T)&Z(~nn,A~nn,T)ebsA~nn , ð22Þ

and we recover the free energy of the constant tension ensemble as

the Legendre transformation of the free energy for the constant area

ensemble,

{kBT lnJ(~nn,s,T)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G(~nn,s,T)

&{kBT ln Z(~nn,A~nn,T){sA~nn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F (~nn,A~nn,T){sA~nn

: ð23Þ

We now return to our test problem, and again denote the

crowder copy numbers by ~NN, the presence of a channel in state

i~o,c by ~NNzêei etc. We can then divide the total free energy

change into three contributions: removal of a closed channel at area

A~NNzêec
, an overall area change A~NNzêec

?A~NNzêeo
~A~NNzêec

zDA with

no channel present, and insertion of an open channel at area

A~NNzêeo
:

DG~ {mc(~NN,A~NNzêec
,T)|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Removing a closed channel:

{sDAz

ðA~NNzêeo

A~NNzêec

sSPT(~NN)dA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Area change with the channel absent:

zmo(~NN,A~NNzêeo
,T)|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Inserting an open channel:

:
ð24Þ

Substituting Eq. (10) and Eq. (14), and assuming that the crowder

background does not contain any other channels (No~Nc~0), we

get (after collecting terms)

DG

kBT
~{ln(A0zpR2

o)zln(A0zpR2
c){

sDA

kBT
z

Np(R2
oz2SRpTRo)

A0zpR2
o

{
Np(R2

cz2SRpTRc)

A0zpR2
c

z

(
NpSRpTRo

A0zpR2
o

)2{(
NpSRpTRc

A0zpR2
c

)2{N ln(
A0zpR2

o

A0zpR2
c

)z

N2p2SRpT2(R2
o{R2

c)

A2
0(1zpR2

o=A0)(1zpR2
c=A0)

:

ð25Þ

Next, we Taylor expand in the small parameters pRo,c=A0, collect

coefficients of DC and DA (most of which cancel), and end up with

the following lowest order result:

DG

kBT
~

NSRpTDC

A0

{
sDA

kBT
zsmall terms, ð26Þ

Noting that N=A0~cA=(1{w) and discarding the small terms, we

finally get

DG

kBT
~

cASRpTDC

1{w
{

sDA

kBT
: ð27Þ

Comparing with the constant area result of Eq. (20), we see that the

contribution from the crowding surface tension has canceled, but

that the coefficient of DC is the same, namely the line tension in

table 1. The extra term {
sDA

kBT
reflects the work done by the

loading device during the area change, and is independent of

crowding conditions.

Discussion

Membrane proteins in cellular membranes are crowded.

Estimates based on data from a broad range of organisms and

experimental techniques [20–28] indicate that membrane proteins

occupy area fractions ranging from 20% to well over 50% in

different cell membranes. Crowding induces an entropic tension in

the membrane, which favors membrane protein conformations
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with smaller areal footprint and circumference. This effect can be

understood qualitatively using simple free area arguments, but

quantitatively meaningful estimates require more sophisticated

theories. We have used scaled-particle theory for hard disk

mixtures [6–8,38–40,45] to compute the crowding induced line

and surface tensions (see Models, Eqs. (20) and (27), and table 1).

As a case study, we apply these results to estimate the influence of

crowding on the gating tension of the bacterial mechanosensitive

channel MscL. This channel is thought to act as a safety valve for

cells under osmotic stress, opening up in response to high

membrane tension in order to avoid membrane rupture [12–15].

There are different ways to quantify the influence of crowding

on gating behavior (see table 2). One way to present the

significance of our results is by appealing directly to the curves

that provide the probability of channel opening as a function of the

driving force. For the case of a ‘‘two-state’’ channel, which

transitions back and forth between distinct closed and open states,

the open probability is popen~(1zexp(DGtot=kBT)){1, where

DGtot is the energy difference between the closed and open states,

and depends upon the driving force (such as tension, voltage or

ligand concentration). In our case, the driving force is the tension,

and we can rewrite DGtot~DG0{sDAzDGcrowd. The first term

corresponds to all contributions of Eq. (1) that do not depend

explicitly on crowding or applied tension. We can rewrite it in the

simpler form DG0~s0DA. Figure 3 shows the gating probability

popen as a function of s both for a single isolated channel and for

the case in which crowders are present.

An alternative way to decide if the effect is big or small, is to

compare it to some reference energy (or tension). The first relevant

energy scale for comparison is the thermal energy kBT , the energy

scale in the Boltzmann weight exp({DG=kBT) in the open

probability above. Our numerical examples in table 2 all change

the gating free energy by §1 kBT . A second relevant energy scale

is that associated with the gating of various mechanosensitive

channels. The gating properties of channels such as MscL have

been measured using several different species of lipid molecules in

the surrounding membrane. The outcome of these elegant

experiments is that the gating energies have typical values of 5–

20 kBT [17,46] and corresponding gating tensions in the range of

0:3{1:3 kBT=nm2. In the presence of spontaneous curvature

inducing lipids, these energies and tensions are even smaller (or

even negative, meaning that the channel opens spontaneously

without any applied tension) [17]. The change in gating tension

due to crowding is Dscrowd~DGcrowd=DA, and we get numbers in

the range 0:05{0:7 kBT=nm2.

The entropic cost of channel opening in a crowded solution of

membrane proteins has so far been discussed only with reference

to hard core repulsion between proteins. It is however well known

that membrane-mediated interactions may emerge from the

overlap of the membrane deformations surrounding neighboring

proteins, such as those arising from a thickness mismatch between

the hydrophobic protein core and the membrane average

thickness[34,35], or a non-cylindrical shape of the transmembrane

region [34,35,47]. Beside the hydrophobic mismatch itself, the

strength, and even the sign of such interactions depend on many

factors, including membrane stiffness to bending and stretching,

and the monolayer’s spontaneous curvature. The range of these

interactions is comparable to the protein size itself, and hence

could be expected to influence the effect of crowding on the gating

energy significantly.

The rich and interesting many body effects that can emerge

from local membrane deformations are outside the scope of this

paper. However, our calculations offers some qualitative insight

into the sensitivity of the crowding effect to structural features of

the involved proteins, which also includes some effects of

hydrophobic mismatch. In our hard disk calculations under

constant tension, the entropic surface tension cancels from the

gating energy contribution (between Eqs. (3) and (4), and in Eq.

(25)), when the increase in channel area is balanced by an

increased total area. This cancellation reflects an underlying

assumption in the disk model of membrane proteins, which

effectively models membrane proteins as cylinders (figure 4A),

from which lipids and other proteins experience the same area

exclusion.

Real membrane proteins, however, can have complex shapes

that violate this assumption [31], for example due to large domains

outside the bilayer that do not directly affect the local ordering of

the lipids, but provide additional steric interaction with other

membrane proteins, as sketched in figure 4B. Many membrane

bound receptors that bind bulky ligands near the membrane

surface [48–51], yield complexes with a similar shape. We would

expect significant crowding effects on both the binding kinetics

and the stability of the complex for these systems, similar to what

has been seen for surface adsoption [9–11,41]. There are also

examples of membrane proteins whose bulky cytoplasmic domains

undergo substantial conformational changes, such as the mechan-

Figure 3. The effect of crowding on the open probability as a
function of applied tension s. The graphs illustrate the ideal gas
(DGcrowd~1:1kBT ) and scaled-particle theory (SPT, DGcrowd~2:2kBT )
results of table 2, using the constant tension ensemble as is appropriate
for MscL. All non-crowding contributions to the gating free energy are
lumped together in the gating tension s0 .
doi:10.1371/journal.pcbi.1002431.g003

Figure 4. Mechanisms for different excluded area for proteins
and lipids. One difference between the hard disk model of membrane
proteins (A), and more complex protein structures (B,C) might be
thought of in terms of different effective radii ~RR and R for steric
exclusion of surrounding proteins and lipids respectively. A protein
(red) with a large domain outside of the bilayer (B) might exclude
surrounding proteins, but not lipids, from approaching the transmem-
brane domain (dark red). Similarly, proteins with different hydrophobic
thickness than the surrounding bilayer (C) generate a local zone of
deformed lipid bilayer (gray) that effectively excludes other well-
matched proteins. Horizontal lines indicate the surrounding lipid
bilayer.
doi:10.1371/journal.pcbi.1002431.g004
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osensitive channel MscS [37,52] and the Ca2zATPase [53].

Hydrophobic mismatch might play a similar role in a surrounding

of mostly well-matched proteins (figure 4C).

The presence of conformations with such structural features

might remove the surface tension cancellations, and thereby

change the dependence of gating energy on crowding in a

qualitative way. One should thus consider the two ensembles

studied here (constant area and constant tension) as limiting cases

capturing the range of phenomenon that can be expected for real

membrane proteins. Trying to imagine more quantitative

estimates of these effects points towards new and interesting

questions, both theoretically and regarding structural features of

whole membrane proteomes. For example, it seems likely that the

large cytoplasmic domain of MscS experiences a different

crowding environment than it’s transmembrane part. First, a

large cytoplasmic domain can be crowded by macromolecules in

solution [37]. Second, it can only interact directly with those

membrane proteins that also possess bulky cytoplasmic domains,

not with those that mainly consists of transmembrane helices.

Finally, the MscS transmembrane part might be shielded from

direct interaction with the transmembrane parts of other proteins

with bulky cytoplasmic domains, if those domains are large

enough.

The present analysis has as its key outcome the hypothesis that

under sufficiently crowded conditions, membrane proteins can

influence each others conformational changes through an entropic

tension. Though we explored the consequences of that idea for one

particular channel, given the great diversity of membrane proteins

and the high degree of crowding in many membrane types, we

expect that such effects could be common.

Supporting Information

Text S1 Additional calculations to justify some assumptions

mentioned in the main text.

(TEX)
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