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Abstract

Many theoretical and experimental studies suggest that range expansions can have severe consequences for the gene pool
of the expanding population. Due to strongly enhanced genetic drift at the advancing frontier, neutral and weakly
deleterious mutations can reach large frequencies in the newly colonized regions, as if they were surfing the front of the
range expansion. These findings raise the question of how frequently beneficial mutations successfully surf at shifting range
margins, thereby promoting adaptation towards a range-expansion phenotype. Here, we use individual-based simulations
to study the surfing statistics of recurrent beneficial mutations on wave-like range expansions in linear habitats. We show
that the rate of surfing depends on two strongly antagonistic factors, the probability of surfing given the spatial location of
a novel mutation and the rate of occurrence of mutations at that location. The surfing probability strongly increases towards
the tip of the wave. Novel mutations are unlikely to surf unless they enjoy a spatial head start compared to the bulk of the
population. The needed head start is shown to be proportional to the inverse fitness of the mutant type, and only weakly
dependent on the carrying capacity. The precise location dependence of surfing probabilities is derived from the non-
extinction probability of a branching process within a moving field of growth rates. The second factor is the mutation
occurrence which strongly decreases towards the tip of the wave. Thus, most successful mutations arise at an intermediate
position in the front of the wave. We present an analytic theory for the tradeoff between these factors that allows to predict
how frequently substitutions by beneficial mutations occur at invasion fronts. We find that small amounts of genetic drift
increase the fixation rate of beneficial mutations at the advancing front, and thus could be important for adaptation during
species invasions.
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Introduction

While theoretical population genetics has traditionally focused

on stable populations, it is increasingly recognized that departures

from demographic equilibrium are a source of major changes in

the gene pool of natural populations [1]. Understanding these

non-equilibrium scenarios often requires the development of new

theoretical models that are beyond the standard methods of

population genetics.

One of the most frequently observed non-equilibrium scenarios

are range expansions, which can be triggered by environmental

changes, such as the recent global warming, by adaptive sweeps or

species invasions [2]. In the simplest case, range expansion take

the form of an expansion wave, as first described theoretically by

R. A. Fisher [3]. Range expansions lead to a strong reduction in

the genetic diversity of the population because the dynamics is

dominated by the few individuals that happen to be at the front of

the wave. These pioneers [4] are the only ones that have access to

empty space and are therefore more likely to proliferate.

Moreover, their offspring can, by mere random migration, remain

close to the tip of the advancing wave, so that they too can enjoy

high resources and continue to proliferate. By this mechanism, the

pioneer genotypes are continually transmitted forward and surf

along with the wave [5,6]. Thus, all other things being equal,

genetic variants which are closer to the front of the wave will have

higher probability to fix in the advancing population.

So far, most studies have been concerned with the surfing of

neutral alleles. The goal was to understand the patterns created by

stochastic drift during range expansion in order to infer past range

expansions from observed patterns of genetic diversity. The

importance of the surfing of neutral mutations has been quantified

by considering the surfing probability that a mutation introduced at a

specific location close to the front of an advancing population will

fix at the front. The larger this probability, the more likely it is that

surfing alleles will dominate the gene pool after the range

expansion is complete, and the stronger becomes the associated

loss in genetic diversity. It was found that surfing is a fast-acting

mechanism that is hard to avoid in simple models. Mutation

surfing was found to be relevant even in the expansion of large

microbial colonies, in which genetic drift would be virtually absent

if the population was well-mixed [7]. In these two-dimensional

populations, surfing generates a clear sectoring pattern, later

reproduced by simulations [1,8].
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It thus seems that the surfing phenomenon can lead to a severe

alteration of the gene pool, which may sometimes appear like a

‘‘genetic revolution’’ [1]. The fact that new mutations can quickly

rise in frequency is phenotypically inconsequential for neutral

mutations, but if beneficial or deleterious mutations surf, this can

lead to rapid evolution–be it adaptive or maladaptive. Several

simulation studies [6,9,10] have therefore been carried out to

investigate the effect of selection during range expansions. These

studies suggest that selection is less efficient at shifting range

margins and even deleterious alleles may be able to benefit from

the surfing phenomenon. Other simulation studies [11,12] have

focused in identifying the traits which are more strongly selected

close to the expanding front and have suggested that natural

selection tends to increase the dispersal and reproduction rates in

the expanding population front with neutral or even deleterious

consequences for the fitness at carrying capacity (competitive

ability). This effect could be enhanced by assortative mating

between fast-dispersing individuals [13]. The trade-off between

traits selected at the front and those selected in the bulk are

consistent with common-garden experiments [14], with observa-

tions in the ongoing range expansions of cane toads in Australia

[15] and genealogical records of expanding human populations

[16].

These observations raise the question of how fast pioneer

populations can potentially adapt at shifting range margins in the

presence of recurrent beneficial mutations of a certain effect. This

question actually entails two basic theoretical questions that have

to be answered jointly. On the one hand, it is necessary to quantify

the long term survival of newly introduced beneficial mutations.

This leads to an analysis of the surfing probability of beneficial

mutations, in the spirit of earlier studies described above. And as

previously observed, the surfing probability strongly increases with

distance from the bulk the of the wave. The second determinant of

adaptation is the mutational input of beneficial mutations, which is

proportional to the population density. At shifting range margins,

the population density is like the surfing probability strongly

location dependent, however, in the opposite direction: The

population density decreases approximately exponentially with

distance. As a consequence, the surfing rate of recurrent beneficial

mutations must be controlled by a subtle tradeoff between surfing

probability and mutational input. The principal goal of the present

study is to establish the first analysis of this tradeoff with the goal to

reveal the demographic key parameters that control evolution

towards a range-expansion phenotype [17].

In the first step of our study, we investigate quantitatively the

surfing probability of a single mutation arising at a specific position

with respect to the front of a population advancing in a linear

habitat. We consider just one genetic locus so that recombination

does not complicate the dynamics. We concentrate on the fate of

mutations that provide an advantage at the front but are neutral in

the bulk of the population. As mentioned above, some recent

studies have indeed suggest that natural selection during range

expansions seems to focus on traits of the pioneer population: e.g.,

it was shown in [16] that pioneer women in a Canadian range

expansion in the 19th century had higher fertility at the front, but

not in the bulk. For such front-adjusted mutations, we then

evaluate the surfing probability as a function of the position at

which the mutation arises and of the linear growth rates rw and rm

of the wild type and of the mutant respectively. The investigation is

carried out by individual-based simulations, augmented by a

heuristic mathematical analysis based on branching processes.

In the second step, we convolute the surfing probability with the

density profile of the expanding population waves to predict the

substitution rate for beneficial mutations at the front of a range

expansion. Ultimately, this substitution rate describes whether the

surfing of beneficial mutations is rare or abundant, and thus serves

as a proxy for the rate of adaptation during range expansions.

Model
Our model is a variant of Kimura’s stepping-stone model [18]

for a population in a linear habitat, and has been used in Ref. [4]

to quantify the surfing of neutral mutations. In this model,

colonization sites (which are called ‘‘demes’’) are regularly

distributed along the x axis. Due to limited resources, each deme

can only carry up to K individuals. Individuals have a certain

probability to ‘‘hop’’ from one deme to a neighboring one. Within

one deme, logistic, stochastic growth is assumed. Namely, if nw is

the number of wild type individuals in a given deme, and nm the

corresponding number of mutants, we define the corresponding

ratios by w~nw=K and m~nm=K . Then the average growth rates

of wild types and mutants per unit time are given by

rww(1{w{m) and rmm(1{w{m), respectively. This descrip-

tion assumes that the individuals are haploid, but the model

describes also diploids, if the fitness of the heterozygote is equal to

the mean of the fitness of the homozygotes, and if K is taken to

mean the double of the carrying capacity of the deme.

In order to implement this model, we use a discrete algorithm,

which is similar to that used by Hallatschek and Nelson [4]. We

consider a box made up by M neighboring demes, and kept

centered on the advancing population wave as explained below.

Each deme is filled with K particles, which can be of three types:

wildtype, mutant and vacancies. (The presence of vacancies means

that the deme is not yet saturated and that the population can still

grow within it.) Then the state of the box is updated at each time

step according to the following process.

Migration step: Two neighboring demes are chosen at

random. Within each of these demes, a particle is chosen at

random, then those two particles are exchanged. (If the two

particles chosen are of the same type, this leads to no change.)

Duplication step: One deme is chosen at random. Within

this deme, two particles are chosen at random, then the second

particle is replaced by a duplicate of the first one, with probability

p. (Again, if the two particles chosen are of the same type, this

leads to no change.) The probability p is equal to one for all

Author Summary

When a life form expands its range, the individuals close to
the expanding front are more likely to dominate the gene
pool of the newly colonized territory. This leads to the
sweeping of pioneer genes across the newly colonized, a
process which has been named gene surfing. We
investigate how this effect interferes with natural selection
by evaluating the probability that an advantageous
mutant, appearing close to the edge of an advancing
population wave, is eventually able to dominate the
population range expansion. By numerical simulations and
heuristic analysis, we find that the surfing of even strongly
beneficial mutations requires that they are introduced with
a certain spatial head start compared to the bulk of the
population. However, as one moves ahead of the wave,
one finds fewer and fewer individuals which can possibly
mutate. As a consequence, successful mutations are most
likely to arise at an intermediate position in front of the
wave. For small selective advantage, the success probabil-
ity is enhanced by an even smaller amount of genetic drift.
This effect could be important in aiding adaptation to local
conditions in a range-expansion process.

Beneficial Mutations on a Range-Expansion Wave
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processes, except for the replacement of a wild type or a mutant by

a vacancy, which happen with probability p~1{rw and

p~1{rm respectively. It is possible to show that this choice

indeed results in average growth rates of the form rw(1{w{m)
for wildtype and rm(1{w{m) for mutants.

Notice that the probability that a mutant replaces a wildtype

individual is equal to that of the opposite event. Therefore, in a full

deme, mutants have no competitive advantage over wildtype

individuals. However, the relative proportion of mutant and

wildtype individuals will be subject to stochastic fluctuations. We

define our unit of time so that the diffusion constant of the particles

is equal to one.

Results

Let us consider a single mutant introduced at a position x
measured from the advancing population wave at a certain time.

Our first goal is to evaluate the probability u(x) that this mutant

becomes the ancestor of the population in the front of the wave.

The function u(x) thus represents the probability that the

mutation becomes fixed in the front population, given it arose at

location x. One can consider this surfing probability as a spatial

analog of the classical Haldane formula for the fixation probabity

of mutant genotypes in well-mixed populations [19]. Relying on

1D simulations, Hallatschek and Nelson [4] searched for an

analytical expression of this specific function. Their work focused

on the relatively simpler case of neutral mutations. Progress even

in this neutral case was only possible through approximations [4].

However, most recently an exact approach could be devised that

relies on modifying the logistic interaction in the population

dynamics [20].

Figure 1 shows the typical shape of u(x) for a weakly beneficial

mutant, and defines the different characteristic parameters of the

curve. It can be seen that, when the mutant starts in the bulk of the

wave, the probability that it fixes in the front virtually vanishes.

This is indeed what would be expected from the qualitative picture

of the surfing mechanism. However, when the mutant starts at a

distance of order L from the front, this probability starts to

increase. This is due to the fact that, in this case, the mutant

population has access to more empty space and is likely to grow for

a while, before the wildtype front eventually reaches it. Finally, far

ahead of the front, this probability saturates. Importantly, our

simulations revealed that the saturation value h of u is always equal

to rm. An interpretation of this fact is given in the discussion. We

evaluated the dependence of the characteristic length L as a

function of the parameters defining the model. As shown in

Figure 2, the variations of L are consistent with the expression:

L&2

ffiffiffiffiffi
rw
p

rm
ln(K

ffiffiffiffiffi
rw

p
)f (a), ð1Þ

where f (a) is a slowly decreasing function of a:rm=rw, with

f (1)~1. In this expression, K is the carrying capacity of each

colonization site (‘‘deme’’), and rw and rm are, respectively, the

wildtype and mutant growth rates (see Methods). A similar

expression is derived from a simple model in the discussion. It can

be seen that the dependence on rm is consistent with intuition: the

fitter the mutants, the fewer resources they will need in order to

invade the front. Therefore, they may start closer to the front, and

still have a substantial probability to fix. The dependence on K is

less intuitive. However, it was already remarked in ref. [4] that

u(x) shifted away from the front for increasing values of K . Within

the neutral frame work of ref. [4], an approximate (but general)

expression for u(x) in terms of the wave profile was obtained that

was quantitatively consistent with these observations.

The basic surfing scenario
The results just described as well as the direct inspection of

particular realizations, guided us in drafting a rough scenario for

the fate of the mutants:

N When the mutants start behind the front (i.e., in the bulk of the

wave), it is practically impossible for them to grow, since they

are surrounded by nearly full demes. The dynamics is

dominated by random birth and death, with no net growth

rate, and the population is bound to die out at some point.

Therefore the survival probability vanishes.

N When the mutants start immediately ahead of the front, they

have access to partially empty demes and may grow for a while.

More precisely, during a first stage in which the number of

mutants is still low, the population may die out, due to

stochastic fluctuations in births and deaths. However in

realizations in which that does not happen, the population

reaches a number for which fluctuations are negligible, and

thus enters a second stage in which it grows rapidly. Yet, in this

case, while they grow, the advancing wildtype wave is

progressively reaching them. As a result, they will soon be

surrounded by full demes, and will not be able to grow

anymore. They are therefore left behind. On the whole, the

survival probability is relatively large (but still smaller than 1,

due to stochastic death in the first stage), while the fixation

probability u is small.

N Eventually, when the mutants start far ahead of the front (at a

distance larger than L), they have–as before–the possibility to

grow rapidly, but it also takes a longer time for the wildtype

wave to reach their starting position. Meanwhile, the mutant

population may grow to such a large number that they can

actually stop the wildtype wave, and develop their own

advancing front. In other words, if the mutants survive the

stochastic fluctuations of the early stage, they are certain to

reach fixation. Therefore the fixation probability u equals the

survival probability v in this case.

We can now begin to provide explanations for the quantitative

results of our simulations.

Maximal surfing probability in the wave tip
According to the basic scenario outlined above, mutants arising

far in the tip of the wave fix depending on whether or not they

avoid a stochastic death in the first stage of their growth. Notice

that the presence of a wildtype wave plays no role here, since it has

not yet reached this position. In a large well-mixed population, this

survival probability is simply given by rw for a branching process

with growth rate rw and death rate 1, which is a classical Haldane

formula for the establishment probability of a beneficial mutation

[19]. This standard result remains unchanged in the present

spatial model with local logistic growth, as is shown in the

subsection on nondimensionalized equations by a simple argu-

ment. Indeed, our simulations show that the probability of survival

(and fixation) probability saturates at the value rw for sufficiently

beneficial mutations in the tip of the population wave.

Onset of surfing in the tip of the wave
In the Results section, we defined L as the typical distance,

measured from the front, where the surfing probability u(x)
changes from 0 to its maximal value rm. In other words, mutants

have very small chance to reach fixation if they are introduced at

Beneficial Mutations on a Range-Expansion Wave
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xvL, whereas they will almost surely fix if they start at xwL,

provided that they survive the stochastic fluctuations in the first

stage of their growth. In the basic scenario described above, we

suggested that this meant in fact that mutants starting further than

L have enough time to grow, so that they are then numerous

enough to stop the advancing wildtype wave.

This argument can be turned into a quantitative estimate of the

magnitude of L. According to the classical Fisher wave speed and

our numerical measurements, our model (cf. equation (9)) implies

that the wildtype wave propagates at a velocity v&2
ffiffiffiffiffi
rw
p

.

Therefore, the wildtype wave will reach the growing mutant

population at a time t0~Dx0=v (where Dx0 is the distance from

the front to the starting position). Let us now estimate how much

the mutant population will have grown before this arrival time t0

of the wild type wave. To this end, we assume that the mutant

clone grows unaffected by the wildtype population up until time t0.

Then, the total mutant population Nm(t) grows exponentially on

average, according to SNmT~exp(rmt), t%t0. However, we know

from the previous subsection that, after some time, the mutant

population is non-zero in only a fraction rm of the realizations.

Therefore, SNmT~(1{rm)|0zrm|S �NNmT, where S �NNmT is the

average over realizations in which the mutant population has not

died out. Thus we have S �NNmT~exp(rmt)=rm.

Now we make the simple-minded assumption that the probability

to fix is large if the total mutant population has grown above a

characteristic number on the order of the typical number K=
ffiffi
r
p

m of

mutants in an all-mutant wave before the wildtype wave reaches it

(i.e., at time t0) and is small otherwise. Hence, we expect

L&2

ffiffiffiffiffi
rw
p

rm
ln(K

ffiffiffiffiffi
rm

p
)f (K

ffiffiffiffiffi
rw

p
,rm=rw), ð2Þ

where f (x,y) is a weakly varying function of its two arguments. We

will show in the Methods section, that indeed the only relevant

parameters that govern the surfing probabilities are Ke~k
ffiffiffiffiffi
rw
p

and

a~rm=rw, which appear as arguments in (2).

Our estimate of the ‘‘edge’’ of surfing in (2) should be

considered as an upper bound because a clone may not need to

grow to a size as large as the number of individuals in a mutant

wave front, as we have assumed in our argument. Nevertheless,

the estimate in (2) sets a useful bound on L, which works very well

for small populations and large fitness effects, as documented by

our data in Figure 2.

Functional form of the surfing probability
With the onset of surfing in the tip of the wave and the

maximum surfing probability s, we have discussed two character-

istic features of the sigmoidal function u(x). A more detailed

analysis is required, however, to describe the transition region

where most of the surfing beneficial mutations are generated,

Figure 1. Fixation probability u(x) as a function of the position x where the mutant is introduced (for rw~0:1, rm~0:11 and K~100).
The wildtype wave profile (arbitrarily rescaled) is shown by the dashed line. The probability profile u(x) virtually vanishes in the bulk of the wave, but
suddenly rises at a characteristic distance L from the front, and then saturates. The shape of the function u(x) is characterized by L, defined as the
distance between the two points at which the curves reach half of their saturation values, by the characteristic width L’ over which the curve rises,
and by its saturation height h.
doi:10.1371/journal.pcbi.1002447.g001

Beneficial Mutations on a Range-Expansion Wave
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which is a pre-requisite for dissecting the substitution rate below.

Therefore, we sought for a differential equation that may

determine the functional form u(x). An equation of this kind

was already found in ref. [4], for the case of a neutral mutation, on

the basis of a backward Fokker-Planck formalism. However, the

approach that these authors use is specific to neutral mutations

and cannot be extended to the non-neutral case.

For sufficiently beneficial mutations, it is however possible to

derive an approximate differential equation for u(x) by employing

the theory of branching random walks. To this end, we approximate

the proliferation of newly introduced mutant by a linear birth-death

process: A mutant at position x has a constant birth rate of 1 per

generation. The death rate on the other hand depends on location.

Far in the tip of the wave, the death rate of the mutants approaches

a constant of 1{rm, and it approaches 1 in the bulk of the wave as

there is no net growth in the saturated region of the population. By

construction of our model, the net x-dependent growth rate is given

by rm½1{w(x,t){m(x,t)�, where Kw(x,t):nw(x,t) is the number

of wildtypes in a deme located at x at time t, and m(x,t) is the

analogous quantity for the mutants. Thus the net growth rate is in

general fluctuating due to the fluctuating occupancy w(x,t)zm(x,t)
of deme x. We now make two important assumptions. First, we

assume that the survival of the mutants is decided early on when the

mutant population is so small that we can well approximate its

growth rate by the function rm½1{w(x,t)�, i.e., by neglecting the

non-linear effect of the mutant population on its own survival. This

approximation is justified when the growth rate advantage of the

mutants is sufficiently large, and breaks down in the neutral or

nearly neutral case. Second, we average the growth rates over all

realization and assume a growth rate rm½1{SwT�, where Sw(x,t)T

is the average density profile of an all wildtype wave. This

simplification holds provided that that the carrying capacity is so

large that fluctuations in the wave profile are weak. Under these

assumptions, we can use a standard result for branching random

walks, namely that the survival probability, which in our case equals

the surfing probability u(x), satisfies

0~L2
xu{vw

Lu

Lx
zrm(1{SwT)u{u2: ð3Þ

In the Methods section, we provide a heuristic rational of this

differential equation, but for a strict derivation the reader is referred

to standard text books, such as ref. [21].

Equation (3) has a form very similar to the differential equation

for a deterministic Fisher-Kolmogorov wave running in the {x
direction. This explains the overall sigmoidal ‘‘wave profile’’ of the

function u(x). Notice however that the term !(1{SwT)
approaches 0 for x%0 where the wildtype occupancy saturates,

w?1. Thus, (3) should be regarded as a classical Fisher-

Kolomgorov equation with a cut-off [22], an observation which

will be important in the following section. To quantitatively

compare the branching process theory with our individual based

simulations, we integrated equation (3) numerically. As shown in

Figures 3 and 4, the agreement is very good, and remains so when

the parameters K and rm are varied as long as aw1.

Rate of substitutions
As a proxy for the speed of adaptation at shifting range margins,

we finally ask how frequently beneficial mutations fix in the pioneer

Figure 2. The measured characteristic distance L, rescaled by the factor rm=
ffiffiffiffiffi
rw
p

, as a function of ln(K
ffiffiffiffiffi
rw
p

). The data shown corresponds
to various values of K , rw and rm. Values of K range from 100 to 1000, and values of rw and rm range from 0.05 to 0.5. The data points corresponding
to the same value of a:rm=rw group on straight lines, with slopes weakly dependent on a. Compare (1).
doi:10.1371/journal.pcbi.1002447.g002

Beneficial Mutations on a Range-Expansion Wave
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population for a given mutation rate Ub. Clearly, the surfing

probability u(x) is one important factor as it governs the chances of

success for a mutation inserted at location x. We have seen that,

generically, u(x) steeply increases towards the tip of the wave due to

the location advantage appreciated there. However, only few

individuals reside in the tip region and can thus provide mutational

input for adaptation. This effect is described, of course, by the wave

profile nw(x)~Kw(x). The product u(x)nw(x) describes the tradeoff

between the higher success probability in the tip and the higher

mutational input in the bulk of the wave. More precisely, the integral

G:
ð

dxvu(x)nw(x)w~K

ð
dxvu(x)w(x)w ð4Þ

controls the substitution rate R~UbG for beneficial mutations of

effect s and mutation rate Ub.

As argued earlier, for sufficiently beneficial mutations, the survival

of a beneficial mutation is well-described by our mean-field

description that only depends on the mean vw(x)w. We may thus

approximate G by setting
Ð

dxvu(x)w(x)w&
Ð

dxvu(x)w
vw(x)w, and use our above results for the average survival

probability and population density to estimate the integral on the

right hand side. The value of G is plotted in Figure 5 as a function of

the selective advantage of the mutants. These results show that, for

carrying capacities ranging from K~100 to K~1000, the

substitution rate depends only weakly on selection coefficients. Even

for selection coefficients of 10%, the substitution rate in the most

dense population (K~1000) is merely increased by a factor 4

compared to the neutral base line. Also note, as shown in Figure 6,

that the substitution rate does increase more slowly than linear with

population size (as parameterized by K ) quite in contrast to well-

mixed population models (in the absence of clonal interference [23]).

Our simulated data for G are hard to model from first

principles, as this would require a solution to the long-standing

problem of noisy Fisher waves for rather small values of ln K [20].

However, for large carrying capacities such that ln K&1, where

genetic drift is weak, an analytical approach is feasible. The

analysis, described in the Methods section, not only allows us to

answer the question as to how the substitution rate G behaves in

the deterministic limit, or relatively close to it. It also provides us

with a qualitative picture of how genetic drift, mutations and

selection compete during a population expansion. These asymp-

totic results are meant to guide the intuition as to how weakly

selection affects the substitution process.

Discussion

When a beneficial mutation arises in the front of an expanding

population, it has a high risk of being immediately lost from the

front population either by extinction or because the mutant clone

cannot keep up with the shifting wave front. Rarely, however,

mutants become entirely fixed in the front population, a

phenomenon referred to as gene surfing. In this paper, we have

studied the results of a one-dimensional individual-based simula-

Figure 3. Fixation probability profile u(x) for K~100, rw~0:1, and different values of rm. The dots represent simulation data and the
continuous lines correspond to the result of the numerical integration. The dashed line represents the (arbitrarily rescaled) average profile SwT of an
all wildtype wave.
doi:10.1371/journal.pcbi.1002447.g003

Beneficial Mutations on a Range-Expansion Wave
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tion to measure and explain i) the probability of surfing of a newly

introduced beneficial mutations on a population range expansion

and ii) the rate of these surfing events if beneficial mutations occur

at a certain rate and have a certain effect.

In agreement with earlier studies [4,6,9,10], we found that the

probability of surfing crucially depends on the location of the first

mutant with respect to the advancing wave. We have quantified this

location advantage in two ways. First, we estimated heuristically the

spatial head start required for a clone of beneficial mutations to

grow large in the wave tip before the bulk of the wave arrives. This

head start was found to be inversely proportional to the growth rate

of the mutants and only grows logarithmically with the carrying

capacity. If mutations arises sufficiently far ahead of the front of a

population-expansion wave, they can fix even if fitness effects are

small, which is consistent with earlier observations [6,9,10]. A more

systematic and accurate analysis based on the theory of branching

processes could be given to describe how fast the surfing

probabilities rise as one moves into the tip of the wave until it

eventually saturates. Further analysis, reported in the Methods

section, shows that in the deterministic limit of infinite carrying

capacities, the characteristic distance at which surfing becomes

significant scales as s{1=2 for small selective advantage s (cf.

equation (23)). For any reasonable carrying capacity, however,

surfing probabilities are found to be significantly higher than

expected from a deterministic analysis, which shows that genetic

drift is essential for the surfing of weakly beneficial mutations.

Our analytical description of the location-dependent survival

probability enabled us to get at our second key question: At what

rate do surfing events occur for a given mutation rate and selective

advantage? This rate of surfing events may be viewed a proxy for

how quickly a population may evolve toward a range expansion

phenotype [17]. The surfing rate is determined by two factors.

One is, of course, the surfing probability, which increases towards

the tip of the wave, the other is the mutational process by which

new potential surfers are introduced. Clearly the mutational

supply is highest in the bulk of the wave because of its saturated

population density, but there the surfing probability is lowest. It

turned out that, due the trade-off between both effects, most

surfers are generated at an intermediate position within the front

of the wave. We were able to determine analytically the

substitution rate for large populations and small mutational fitness

effects. This analysis shows that, in the deterministic limit, surfing

rates for small selection coefficients are strongly suppressed.

Mathematically, this is manifest in an essential singularity of the

substitution rates at vanishing selection coefficients. For large but

finite carrying capacities, however, substitution rates are strongly

increased due to even tiny amounts of genetic drift. Our theory

predicts a generally quite strong positive correlation between

surfing rates and genetic drift (as quantified by inverse carrying

capacities) for small selection coefficients. Interestingly, our

simulations show that this correlation is qualitatively inverted for

large selection coefficients: Very large effect mutations do not

require genetic drift to prevail, so that their rate is mainly

controlled by the mutational supply which increases with

increasing carrying capacities. However, our results suggests for

beneficial mutations of intermediate and small effects that long-

Figure 4. Fixation probability profile u(x) for rm~rw~0:1, and different values of K . The dots represent simulation data and the continuous
lines correspond to the result of the numerical integration. As before, the dashed line represents SwTinit, arbitrarily rescaled.
doi:10.1371/journal.pcbi.1002447.g004
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term survival during a range expansions is mostly a matter of luck

to arise far in the wave tip than of fitness.

In summary, we have for the first time analyzed not only the

fate of newly introduced mutations, but also the rate of surfing

events for a given mutation rate. Our results suggest that genetic

drift is not required to promote mutation surfing of strongly

beneficial mutations for which selection is strong enough.

Importantly, however, our results suggest that some amount of

genetic drift strongly increases substitution rates at advancing

fronts for weakly beneficial mutations and thus can be important

for promoting adaptation towards an invasion phenotype.

Finally, we discuss the assumptions at the base of our study, and

its possible generalizations. First, we only considered mutations

that are beneficial to the pioneer population but neutral for the

bulk population. Several experimental studies suggest that such

mutations towards a range-expansion phenotype are actually

disadvantageous in the bulk of the population [14–16]. While such

mutations gradually disappear from the bulk population, we

expect that their surfing propensity will be almost identical to

mutations that are neutral or beneficial in the bulk. This is because

the bulk phenotype matters so far from the wave tip that it cannot

influence the genetic composition of the wave tip. The analysis

would change qualitatively if the selective advantage in the bulk is

so large that the ensuing genetic wave of the beneficial mutation

within the saturated bulk population would be faster than the

range expansion. However, this situation only occurs for extreme

selective differences on the order of one.

We have also assumed that population expansions proceed

according to R.A. Fisher’s standard model, in which the

Malthusian growth rate of individuals in the tip of the wave is

constant. However, many species are characterized by a reduced

Malthusian growth rate when densities become too small. This

effect arises when individuals need to cooperate with others in

order to proliferate, for instance in the case of sexual reproduction.

Such Allee effects [24] have been found to considerably lessen the

role of genetic drift in the gene surfing phenomenon: The effective

population size associated with the expanding population front

was strongly positively correlated with the strength of the Allee

effect [4]. We expect that such Allee effects will also alter surfing

probability and rates of beneficial mutations, because they lessen

the extreme location advantage of mutations arising in the far

wave tip. As a consequence, the surfing beneficial mutations arise

closer to the bulk of the population for stronger Allee effects. Also

the total rate of surfing events would be strongly increased. We

thus expect that larger Allee effects will significantly enhance

adaptation towards a range expansion phenotype.

Another interesting extension of our study concerns expansion

waves in planar habitats. In this case, the location advantage for

deleterious mutants is likely to be less relevant, since the wildtype

population is able to overcome the mutant and constrain it to a

Figure 5. The substitution rate at the front of an advancing population compared to the neutral substitution rate is described by
the function G:K

Ð
dx vu(x)wvw(x)w, which is displayed here as a function of the selective advantage of the mutants. Notice that

the G axis is logarithmic. Blue, red and yellow symbols correspond to the carrying capacity K~100, K~316 and K~1000. All curves approach 1 in
the neutral case, s~0, in which the substitution and mutation rates are equal. Notice the rather slow increase of substitution rates with increasing
selection coefficient, for small values of s: even for s~10% and the highest carrying capacity, the substitution rates are merely 4 times higher than the
neutral baseline, illustrating the ineffectiveness of selection at expanding fronts. For larger selection coefficients, however, the substitution rate grows
roughly exponentially with s.
doi:10.1371/journal.pcbi.1002447.g005
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bounded region. As in the one-dimensional case, successful long-

term surfing of deleterious mutations will require that the mutant

clone takes over the entire colonization front. As a consequence, the

surfing probability will sensitively depend on the habitat’s extension

transverse to the expansion direction. Also, the analysis of the

surfing of beneficial mutations will be more complex: Surfing

beneficial mutations give rise to sectors [8] with sector angles that

characterize their selective advantage against the surrounding wild

type population. Furthermore, at any given time, some parts of the

colonization front will be more advanced than others, due to the

inevitable random front undulations. If a mutation arises in one of

those more advanced region of the habitat, it will have higher long-

term surfing probabilities than in the less advanced regions.

Nevertheless, simulations of the kind carried out in this study

should quite generally allow to investigate the establishment

probabilities in any model of expanding populations.

Methods

We initialize our simulations by letting the demes in the left half of

the box be full of wildtype individuals, while the demes in the right

half of the box are empty (i.e., full of vacancies). Thus, the initial

configuration evolves into a wave profile that propagates to the

right. The algorithm follows the wave front by shifting the box at the

same velocity, by introducing from time to time new empty demes at

the right extremity while removing the leftmost demes. In the

subsection on nondimensionalized equations, we show that our

simulations can be described a set of stochastic differential

equations. The form of these equations show that, although our

model is characterized by three parameters, K , rw and rm, there are

in fact only two control parameters: The relative fitness a~rm=rw

measures the growth rate advantage of mutants. The parameter

combination Ke~K
ffiffiffiffiffi
rw
p

quantifies the strength of number

fluctuations in the tip of the wave. Ke is analogous to the parameter

‘‘Nes’’ in many well-mixed population genetic models, with the

replacements s?rw and Ne?K=
ffiffiffiffiffi
rw
p

. The relevant population size

K=
ffiffiffiffiffi
rw
p

represents the typical number of individuals in the nose of a

purely wildtype wave, because K is the occupancy of saturated

demes and 1=
ffiffiffiffiffi
rw
p

measures the width of the wave front in units of

deme sizes. When no mutant is present, the dynamics reduces to the

well-known noisy Fisher-Kolmogorov-Petrovski-Piskounov (FKPP)

equation [25, p. 400] in one spatial dimension. This is confirmed by

control simulations of all wildtype waves, which show that the

velocity of the wave tends to 2
ffiffiffiffiffi
rw
p

for large K , consistent with the

known deterministic wave speed of FKPP waves.

To investigate the surfing phenomenon, we studied the wave

propagation under the influence of newly introduced mutants.

Specifically, a mutant was added in a chosen deme within the co-

moving simulation box once the wave has reached a steady profile.

The fate of the mutant clone was then recorded. Three types of

final events were distinguished:

N Fixation: the mutants invade the front of the wave and the

wildtype population is left behind. A given realization is

considered as a fixation event if no wildtype individual remains

in the box at the end of the simulation.

N Failure: the mutants survive, but they fail to invade the front

and are left behind. This corresponds to realizations in which

no mutant remains in the box at the end but in which it has

Figure 6. Substitution rate G divided by the deme carrying capacity K as a function of K for several values of the selection
coefficient s~rm=rw{1 of the mutant. It appears quite clearly that the substitution rate increases less than linearly with K , as suggested by
equation (26).
doi:10.1371/journal.pcbi.1002447.g006
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been detected that at least one mutant has crossed the left

boundary of the box, for instance when the box was shifted.

N Death: the mutant population dies out due to stochastic

fluctuations. This corresponds to the remaining realizations

in which the mutants disappear before reaching the left

boundary.

Failure corresponds quite likely to a situation in which the

mutant population eventually dies off, due to neutral sampling

fluctuations. Even if the mutants had a higher growth rate than the

wild types in full demes, if they are able to establish a mutant

population in the bulk, they would then expand by Fisher waves

with a speed determined by the difference in growth rates with

respect to wild types. This wave will not have a chance to catch the

wave front unless this difference is unreasonably large. Thus it is

safe to neglect the occurrence of failure when focusing on the

events on the front of the advancing population wave, also

considering that the definition of failure depends on the width of

the simulation box. These considerations justify focusing only on

the fixation probability at the front of the wave. Therefore, for

each starting position x, we ran many realizations of the process,

and from their results we deduced the probability of fixation. The

number of realizations over which the algorithm evaluated those

probabilities was usually set to 10 000, for each position x. The

position x was then varied to obtain the dependence of this

probability on the starting position.

Master equation and its nondimensionalized expression
In the present subsection we show that the different parameters,

K , rw and rm which define the model enter in fact only in the

combinations a~rm=rw and Ke~K
ffiffiffiffiffi
rw
p

. In particular, this

explains the behavior of L shown in Figure 2.

In order to do so, we recast the dynamics of the model in terms

of stochastic differential equations. Let us denote by i

(~1,2, . . . ,M ) the position of the deme. Then the state of the

system is identified by the 2M-dimensional vector

~xx~(w1,m1, . . . ,wM ,mM ). Thus the algorithm described in the

previous section can be represented by a master equation of the

form

LP(~xx,t)

Lt
~
X

A

tA(~xx{~rrA)P(~xx{~rrA,t){tA(~xx)P(~xx,t)
� �

, ð5Þ

where the index A runs over all the allowed types of events that

lead to a change in ~xx (birth, death, migration to a neighboring

deme, etc.), tA is the probability of such an event per unit time and

~rrA is the resulting variation of the ~xx vector. The expressions of tA

and~rrA for each allowed event A are detailed in Table 1.

Expanding equation (5) to first order in 1=K (see, e.g., [26,

chap.,X]) leads to a Fokker-Planck equation, and a correspond-

ing set of Langevin equations can then be found. Under the

assumptions that mi&miz1 and wi&wiz1, we may approximate

the mi and wi by the continuous functions m(x,t) and w(x,t). If we

further assume that rw,rm%1, and that stochastic deviations from

the average diffusion term are negligible, these equations read:

Lw

Lt
~rww(1{m{w)z

L2w

Lx2

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

w(1{m{w)

K

r
gw(x,t){

ffiffiffiffiffiffiffiffiffiffiffi
2

mw

K

r
gw,m(x,t);

ð6Þ

Lm

Lt
~rmm(1{m{w)z

L2m

Lx2

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m(1{m{w)

K

r
gm(x,t)z

ffiffiffiffiffiffiffiffiffiffiffi
2

mw

K

r
gw,m(x,t):

ð7Þ

In this expression, the Gaussian noises gm, gw and gw,m are

uncorrelated, and one has, for instance, Sgm(x,t)gm(x’,t’)T~

d(x{x’)d(t{t’). This set of equations corresponds to a stochastic

reaction-diffusion system, where the reaction term is logistic, and

where, by construction, the diffusion constant is equal to 1. Notice

that the last term corresponds to the stochastic replacement of a

mutant by a wildtype individual (or conversely) and is responsible

for stochastic fluctuations within a full deme.

The equations can be made nondimensional by setting

X~
ffiffiffiffiffi
rw
p

x; T~rwt; a~rm=rw : ð8Þ

We obtain therefore

Lw

LT
~w(1{w{m)z

L2w

LX 2

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

w(1{w{m)

K
ffiffiffiffiffi
rw
p

s
gw(X ,T){

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2wm

K
ffiffiffiffiffi
rw
p

s
gw,m(X ,T);

ð9Þ

Lm

LT
~aw(1{w{m)z

L2m

LX 2

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m(1{m{w)

K
ffiffiffiffiffi
rw
p

s
gm(X ,T)z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2wm

K
ffiffiffiffiffi
rw
p

s
gw,m(X ,T):

ð10Þ

The nondimensionalized equations reveal, as anticipated, that the

problem only depends on two relevant parameters: a~rm=rw and

Ke~K
ffiffiffiffiffi
rw
p

.

Survival probability of a branching process
The survival probability of a linear branching process with birth

rate rm and death rate 1 can be easily determined by the following

discrete reasoning: let us denote the total number of individualsP
i K|mi by mtot, and consider the probability Pmtot

that a

population of mtot individuals will survive. Diffusion events do not

change mtot; it is only affected by duplication events (births or

deaths). However, death events are always (1{rm) times less likely

than birth events (see the definition of the model). Thus, a given

duplication event is a birth with probability 1=(2{rm) and a death

with probability (1{rm)=(2{rm). By conservation of the

probability after such an event we have

Pmtot
~

1{rm

2{rm

Pmtot{1z
1

2{rm

Pmtotz1, ð11Þ

with the boundary conditions P0~0 and P?~1. We obtain

therefore

Pmtot
~1{(1{rm)mtot : ð12Þ

Thus the probability that the population stemming from one single

mutant will survive is given by
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P1~rm: ð13Þ

In the bulk, the only possible events are the replacement of a

mutant by a wildtype individual (or the opposite), which take place

with the same probability. Thus the size of an isolated mutant

population in the bulk undergoes a critical branching process in

the presence of an infinite reservoir of wildtype individuals, and its

survival probability vanishes.

Heuristic derivation of the differential equation for the
surfing probability

Here, we provide a heuristic rational for the differential

equation (3) for the surfing probability u(x). Let us consider the

introduction of a mutant at time t and position j. We denote the

probability to find a mutant at a position x and at a later time t
by p(x,tDj,t). Now, let us place ourselves in the conditions in

which

N t is close to t, so that the average mutant population is not yet

very large. In this case, the wildtype profile SwT is not yet

perturbed by the mutants, and in particular, it is steady in the

moving frame, i.e., in the frame that goes at the same velocity v
as the wildtype wave: SwT(x,t)~SwTinit(x), where SwTinit(x)
is the initial average profile of the wildtype wave.

N u is so small that, most of the time, mutants will disappear from

the front.

In this case, if we find a mutant at x and t, its situation is

essentially the same as if it had just been introduced in a wave

consisting only of wildtype individuals, since SwT(x,t)~SwTinit(x)
and since, if there are other mutants in the wave at t, they will

probably not perturb its dynamics. Indeed, for small u, other

mutants will disappear, in most realizations, before getting a

chance to interact effectively with the mutant we consider.

Therefore, for this mutant at x and t, the probability to fix is by

definition u(x).

We may therefore decompose the probability u(j) as follows:

u(j)~

ðz?

{?
dx u(x)p(x,tDj,t): ð14Þ

However, this formula is an overestimate of u(j). Rare

realizations in which two mutants are present at t, and in which

the issues of both survive, should be counted as one single fixation

event, but are in fact double-counted by the formula (14).

Therefore, we expect a negative correction of order u2 when u

becomes larger.

If, however, we neglect for the moment this correction,

differentiating equation (14) with respect to t leads to

0~

ðz?

{?
dx u(x)Ltp(x,tDj,t): ð15Þ

Notice that, in fact, p(x,tDj,t)~SmT(x,t). Since the mutant

population is not very large at t, we can neglect the term {rmm2

in equation (7), and replace {rmmw by {rmmSwTinit. Therefore,

in the frame moving with the velocity v of the wave, equation (7)

becomes, for p:

Lp

Lt
~rm 1{SwTinitð Þpzv

Lp

Lx
z

L2p

Lx2
: ð16Þ

Upon substituting this expression of Ltp in equation (15),

integrating by parts, and noticing that the equation is valid for

all j, we obtain the necessary condition

0~rm 1{SwTinitð Þu{v
Lu

Lx
z

L2u

Lx2
: ð17Þ

Because of the assumptions that were used in its derivation, this

equation is only valid when u is small, i.e., close to the bulk of the

Table 1. Transition probabilities.

Event Probability per time step Change in ~xx

Birth of a wildtype individual in deme i
tA~

1

M
wi(1{wi{mi)

rA
wi

~z1=K

Death of a wildtype individual in deme i
tA~

(1{rw)

M
wi(1{wi{mi)

rA
wi

~{1=K

Birth of a mutant in deme i
tA~

1

M
mi(1{mi{wi)

rA
mi

~z1=K

Death of a mutant in deme i
tA~

(1{rm)

M
mi(1{wi{mi)

rA
mi

~{1=K

Replacement of a wildtype by a mutant in deme i
tA~

1

M
wimi

rA
wi

~{1=K , rA
mi

~z1=K

Replacement of a mutant by a wildtype in deme i
tA~

1

M
wimi

rA
wi

~z1=K , rA
mi

~{1=K

A wildtype from deme i comes to the neighboring deme j
tA~

1

M
wi(1{wj{mj )

rA
wi

~{1=K , rA
wj

~z1=K

A mutant from deme i comes to the neighboring deme j
tA~

1

M
mi(1{wj{mj )

rA
mi

~{1=K , rA
mj

~z1=K

A wildtype from deme i swaps with a mutant from deme j
tA~

1

M
mjwi

rA
wi

~{1=K , rA
wj

~z1=K , rA
mi

~z1=K , rA
mj

~{1=K

Transition probabilities for the different events A appearing in the master equation (5).
doi:10.1371/journal.pcbi.1002447.t001

Beneficial Mutations on a Range-Expansion Wave

PLoS Computational Biology | www.ploscompbiol.org 11 March 2012 | Volume 8 | Issue 3 | e1002447



wave. However, far ahead of the front, equation (17) does not

predict the observed saturation of u at rm. We attribute this to the

fact that we neglected corrections of order u2. Therefore, we may

add a phenomenological non-linear term to equation (17):

0~rm 1{SwTinitð Þu{v
Lu

Lx
z

L2u

Lx2
{u2: ð18Þ

This term leaves equation (17) unchanged when u is small, but

leads to the correct saturation at rm far from the front.

Analysis of the substitution rate
Our analysis of the substitution rate starts from the observation

that the integrand in the expression for the substitution rate in

equation (4) has mainly support in the region where vww decays

exponentially, and u increases exponentially, see Figure 1. This

reflects the tradeoff between high population density (required for

the production of mutations) and high surfing probability (required

for the fixation of mutations) that determines the substitution

process. In the regions that significantly contribute to G, we may

thus approximate the wild type wave profile by

w(x)&exp({vwx=2), ð19Þ

for xw0 and w~1 otherwise. Here, vw is the actual speed

observed for the wild type wave. Secondly, we approximate u by

u(x)&rm exp(vm(x{L)=2), ð20Þ

for xvL, and u~rm otherwise. Here, vm~2
ffiffiffiffiffi
rm
p

is the

deterministic speed of a mutant wave.

Using these exponential approximations, we can estimate G as

G&K

ðL

0

dx u(x)w(x)&2Krm
exp {vwL=2ð Þ{exp {vmL=2ð Þ

vm{vw
ð21Þ

Equation (21) is hard to evaluate for general K and selection

strength. However, one can derive an asymptotically correct

expression for G in the limit of large K for fixed s:a{1%1,

where the exponential approximation is the leading order

description of the wave profile [22]. In this limit, the equation

for the survival probability describes a Fisher wave running in the

{x direction with a cutoff far in the tip of the wave, as discussed

after Eq. (3). The cutoff (due to the net growth rate being

proportional to 1{SwT in (3)) has the effect of lowering the wave

speed from the deterministic value vm to the wildtype value vw.

With the cut-off at position L one obtains an asymptotic wave

speed of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

m{(2p=L)2
q

[22]. For this lowered wave speed to

equal the wildtype speed vw, we find

L&
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
m{v2

w

p ð22Þ

Figure 7. Theoretical approximations for the substitution rate at the front of an advancing population for rw~0:1, s~0:1. The red
curve represents the deterministic approximation (24), the blue curve corresponds to the approximation in (26), which accounts for the leading order
effects of a finite carrying capacity K . Notice the large enhancement of the substitution rate due to a finite (even if large) value of K .
doi:10.1371/journal.pcbi.1002447.g007
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&
2p

vw

ffiffiffiffiffi
2s
p , ð23Þ

where the last equation holds for s%1. Since we have

vw,m&2
ffiffiffiffiffiffiffiffiffi
rw,m
p

in the limit K??, we can now express (21) in

terms of our model parameters, obtaining

G&2K
ffiffiffiffiffi
rw

p pffiffi
s
p exp {

pffiffi
s
p

� �
, ð24Þ

which holds for small s%1. Notice that G is characterized by an

essential singularity for s?0, which causes very small substitution

rates for small s, indicating that selection is very inefficient at

advancing fronts.

Our analysis neglected so far the effects of a finite carrying

capacity K . We can account for finite K to leading order by taking

advantage of known results for noisy traveling waves, i.e., the fact

that to leading order vw is given by [22]

vw&2
ffiffiffiffiffi
rw

p
1{

p2

2 ln2 Ke

� �
: ð25Þ

Inserting this expression in (22) yields a substitution rate of

G&
2pK

1{p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s ln2 Kezp2
p

effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2= ln2 Ke

� �
zs

q : ð26Þ

In Figure 7, we plot the theoretical predictions for G vs. K , while

simulation data are shown in Figure 6. Notice that the expression

with finite K stays far below the deterministic limit for any

reasonable value of K , which results in a non-trivial power law

dependence on Ke. From the expression in (26), it is clear that the

effect of a finite carrying capacity is important unless

s&p2= ln2 Ke, which requires extremely large populations for

reasonable selection coefficients. In the opposite quasi-neutral

case, the expression for lead L reduces to the position of the cutoff

in a noisy Fisher wave, L*ln Ke=
ffiffiffiffiffi
rw
p

[22].
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16. Moreau C, Bhérer C, Vézina H, Jomphe M, Labuda D, et al. (2011) Deep

human genealogies reveal a selective advantage to be on an expanding wave

front. Science 334: 1148–1150.

17. Van Bocxlaer I, Loader S, Roelants K, Biju S, Menegon M, et al. (2010)

Gradual adaptation toward a range-expansion phenotype initiated the global

radiation of toads. Science 327: 679–682.

18. Kimura M, Weiss GH (1964) The stepping stone model of population structure

and the decrease of genetic correlation with distance. Genetics 49: 561–576.

19. Haldane J (1927) A mathematical theory of natural and artificial selection, Part

V: Selection and mutation. In: Math. Proc. Cambridge Phil. Soc. Cambridge

University Press, volume 23. pp 838–844.

20. Hallatschek O (2011) The noisy edge of traveling waves. Proc Natl Acad Sci U S A

108: 1783–1787.

21. Harris TE (2002) The theory of branching processes. New York: Dover

Publications. Reprint. Originally published by Springer Verlag, 1963.

22. Brunet E, Derrida B (1997) Shift in the velocity of a front due to a cutoff. Phys

Rev E 56: 2597–2604.

23. Sniegowski P, Gerrish P (2010) Beneficial mutations and the dynamics of

adaptation in asexual populations. Philos T Roy Soc B 365: 1255–1263.

24. Allee W (1931) Co-operation among animals. Am J Sociol. pp 386–398.

25. Murray JD (2007) Mathematical Biology: I. An Introduction. 3rd edition. Berlin:

Springer.

26. van Kampen NG (2007) Stochastic Processes in Physics and Chemistry. 3rd

edition. Amsterdam: North Holland.

Beneficial Mutations on a Range-Expansion Wave

PLoS Computational Biology | www.ploscompbiol.org 13 March 2012 | Volume 8 | Issue 3 | e1002447


