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Abstract

The cerebellum has long been considered to undergo supervised learning, with climbing fibers acting as a ‘teaching’ or
‘error’ signal. Purkinje cells (PCs), the sole output of the cerebellar cortex, have been considered as analogs of perceptrons
storing input/output associations. In support of this hypothesis, a recent study found that the distribution of synaptic
weights of a perceptron at maximal capacity is in striking agreement with experimental data in adult rats. However, the
calculation was performed using random uncorrelated inputs and outputs. This is a clearly unrealistic assumption since
sensory inputs and motor outputs carry a substantial degree of temporal correlations. In this paper, we consider a binary
output neuron with a large number of inputs, which is required to store associations between temporally correlated
sequences of binary inputs and outputs, modelled as Markov chains. Storage capacity is found to increase with both input
and output correlations, and diverges in the limit where both go to unity. We also investigate the capacity of a bistable
output unit, since PCs have been shown to be bistable in some experimental conditions. Bistability is shown to enhance
storage capacity whenever the output correlation is stronger than the input correlation. Distribution of synaptic weights at
maximal capacity is shown to be independent on correlations, and is also unaffected by the presence of bistability.
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Introduction

The cerebellum is heavily involved in learning tasks that requires

precise spatio-temporal sequences, such as grasping, precise eye

movement, etc. It has long been thought [1,2] that the particular

form of learning at work in this structure is supervised learning,

whereby the neural system adapts its synaptic weights to reproduce

a desired input-output relationship, thanks to an error signal. As

such, the cerebellum would be one of the main structures of the

central nervous system involved in supervised learning [3]. More

precisely, it has been proposed [1,2] that each Purkinje cell (PC)

may be seen as a single layer perceptron [4,5] - a single binary

output neuron, with its N input synapses (see Figure 1). Indeed, the

PCs, the sole output of the cerebellar cortex, receive two types of

excitatory synaptic inputs: individually weak synaptic inputs from a

large number (N*150,000) of Granule cells (GCs), through the

Parallel Fibers (PFs); and a single, very strong input from the inferior

olive, through the so-called Climbing Fiber (CF). This strong input

is thought to represent the ‘error signal’ similarly to a perceptron -

indeed, CF firing rates are in some conditions modulated by the

error made by an animal [6], and it has been shown in vitro that CF

activity affects synaptic plasticity [7,8].

On the theoretical side, a particularly well studied problem is

the one of learning random input-output associations by the

perceptron. The maximal storage capacity (maximal number of

random associations that can be learned per input synapse, in the

large N limit) has been computed by several methods [9,10,11].

For binary input-output units, unconstrained synaptic weight, and

random unbiased associations, the maximal capacity is 2, i.e. the

number of associations that can be stored is two times the number

of inputs. If synaptic weights are sign-constrained, as one expects

in real neurons, the capacity is divided by a factor 2 and becomes

equal to 1 [12,13,14]. The capacity has also been computed in the

presence of robustness constraints, biased associations, and other

constraints on synaptic weights [10,15]. Distributions of synaptic

weights at the maximal capacity can also be computed. At max-

imal capacity, the distribution is a Gaussian when weights are

unconstrained, while sign constraints lead to truncated Gaussian

distributions, together with a delta function at zero weight synapses

[16,17]. Brunel et al. [17] showed that the distribution of PF?PC
synaptic weights is in very good agreement with the analytically

computed distribution for a perceptron close to maximal capacity,

giving further support to the idea that PCs are similar to perceptrons.

The study of Brunel et al. [17] considered for simplicity un-

correlated input-output associations. In the case of the cerebellum,

the assumption of uncorrelated inputs and outputs is clearly un-

realistic, as any naturalistic sensory input or sequence of motor

commands will carry a substantial degree of temporal correlations.

Moreover, under some conditions, PC dynamics seem to be

consistent with a bistable device [18,19,20,21,22,23]. The conse-

quences of temporal correlations, as well as the presence of bistability

on the learning capacity of the model remain however to be clarified.

In this paper, we study the capacity and optimal connectivity in

a perceptron network storing correlated input-output associations.
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More precisely, we study (i) a standard binary perceptron, whose

task is to learn a sequence of associations with an arbitrary level of

temporal correlations in the inputs and outputs; (ii) a bistable

perceptron, again subjected to a correlated sequence of associa-

tions. We show that the capacity (maximal number of associations

in a learnable sequence) is independent of the correlations in the

output if the inputs are not correlated. If the inputs are temporally

correlated, the capacity grows with output correlation. The

capacity diverges in the limit when both correlations become

close to unity. The weight distribution is shown to be independent

of the degree of correlation, both in the input and output. It is also

found that adding a bistability range increases capacity when the

output correlation is larger than the input correlation. The optimal

width of the bistability range increases with output correlation.

Finally, we show that in order to reach maximal capacity, the error

signal (CF) has to change the state of the output unit (PC) in

addition to its synapses, consistent with experimental data [20,18].

Results

Binary perceptron with correlations
In this section, we investigate storage of associations between

temporally correlated input and output sequences. The maximal

capacity is defined as the maximal length of a sequence that can be

learned per input synapse, or in other words the maximal number

of associations composing the sequence. We study a simple

Markov chain model for generating the sequences. The sequence

to be learned is composed of p patterns, m~1, . . . ,p. A pattern is

given by the state of input cell i (i~1, . . . ,N), G
m
i ~0,1 (Granule

cell) and the state of the target output sequence, P
m
t (Purkinje cell, t

for target). The patterns are presented always in the same order.

For the first pattern in the sequence, Prob(G1
i ~1)~fin,

Prob(G1
i ~0)~1{fin, where fin is the input coding level, i.e. the

probability that the granule cell is active in a given pattern. For the

following patterns, we have

Prob(G
mz1
i ~1DGm

i ~1)~finzcin(1{fin)

Prob(G
mz1
i ~0DGm

i ~1)~(1{cin)(1{fin)

Prob(G
mz1
i ~1DGm

i ~0)~(1{cin)fin

Prob(G
mz1
i ~0DGm

i ~0)~1{finzcinfin,

ð1Þ

where cin[ 0,1½ � measures the correlation between successive input

patterns. Note that different input neurons are not correlated. The

target outputs P
m
t are generated similarly but with probability fout

and correlation cout[ 0,1½ �. In most of the paper we chose

fin~fout~0:5, unless stated otherwise.

In the perceptron, the output is obtained though a comparison

of a weighted sum of the inputs to a threshold,

Pm~H½
XN

i~1

wiG
m
i {hN�, ð2Þ

where wi are the synaptic weights and h is the threshold. The

Heaviside function H is 1 if the argument positive and zero

otherwise.

Correlations defined by Equation 1 make calculations using the

replica method [10,15] extremely involved. The only case in

which calculations can be performed easily is with cin~0. In this

case, one can show that both capacity and distribution of weights

are independent of the output correlation. In the more general

case, cin=0, we resort to numerical simulation.

For numerical simulations, we chose the variant of the perceptron

algorithm used in Brunel et al. [17]. Namely, the threshold being

fixed, the weights are modified according to the standard perceptron

learning rule, i.e.

Dwi~aGi(Pt{P), ð3Þ

where a is the learning rate, except that the weights have a lower

hard bound at 0.

Figure 1. Simplified model of Purkinje cell. A. Simplified sketch of the cerebellar cortex circuit. GC stands for Granule cell, PC for Purkinje cell, PF
for Parallel fiber, CF for Climbing fiber. B. Perceptron model: the input layer is composed of GCs, the output unit is the PC. CF represents the error
signal. C. Bistable output. If the previous output is 0, the input current needs to be larger than hzc to switch the output to 1. If the previous output is
1, the input current needs to be below h{c to switch the output to 0.
doi:10.1371/journal.pcbi.1002448.g001

Author Summary

The cerebellum is one of the main brain structures
involved in motor learning. Classical theories of cerebellar
function assign a crucial role to Purkinje cells (PCs), that are
assumed to perform as simple perceptrons. In these
theories, PCs should learn to provide an appropriate
motor output, given a particular input, encoded by the
granule cell (GC) network. This learning is assumed to
occur through modifications of GC?PC synapses, under
the control of the climbing fiber input to PCs, which is
supposed to carry an error signal. In this paper, we
compute storage capacity and distribution of weights in
the presence of temporal correlations in inputs and
outputs, which are unavoidable in sensory inputs and
motor outputs. Furthermore, we study how bistability in
the PCs affects capacity and distribution of weights. We
find that (1) capacity increases monotonically with both
input and output correlations; (2) bistability increases
storage capacity, when the output correlation is larger
than the input correlation; (3) the distribution of weights at
maximal capacity is independent of the degree of
temporal correlations, as well as the nature of the output
unit (mono or bistable) and is in striking agreement with
experimental data.

Storage of Correlated Patterns in Purkinje Models
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This rule can be shown to be guaranteed to converge to a

solution, provided the solution exists, and a is small enough (see

Methods). Interestingly, the rule is in agreement with basic ex-

perimental protocols leading to plasticity in slice experiments [8].

Indeed, LTD is induced when the CF and the PF are simul-

taneously active (CF firing more than its average firing rate nCF )

and LTP when PF fires alone (meaning that CF does not fire, i.e.

below nCF ). The plasticity can be written as Dwi!Gi(nCF {CF ).
It was used to model cerebellar learning in tasks such as the

Vestibulo-Ocular Reflex (VOR) adaptation [24,25,26]. This

learning rule can easily be mapped to the perceptron learning

rule as the CF is thought to signal the error CF~P{PtznCF

[1,2].

Figure 2 shows the capacity and distribution of synaptic weights

of a binary perceptron storing associations of correlated input/

output sequences, for fin~fout~0:5. If the inputs are uncorrelated,

the maximal capacity is independent of the output correlation and

is equal to 1, as shown analytically (Figure 2B, blue line). This can

be understood easily since the classification problem would not

change after reshuffling the pattern index m. Second, we find nu-

merically that the capacity is also constant and equal to 1 for

uncorrelated inputs and correlated outputs (Figure 2C, blue line).

This means that if the output is temporally uncorrelated, temporal

correlation in the input does not affect the number of associations

the system can learn. However, if the inputs are correlated, the

capacity increases with output correlation. We find that the

Figure 2. Standard perceptron storing correlated input/output sequences. A. Maximal capacity as a function of cin~cout (dot: simulation,
error bar: standard deviation, line: fit with a function 1=(1{ca

incb
out)

c). Inset. Same but plotted as a function of 1{ca
incb

out in a loglog scale. B. Maximal
capacity as a function of the output correlation for different input correlations. C. Maximal capacity as a function of the input correlation for different
output correlations. D. Weight distribution after learning at the maximal capacity for the case of uncorrelated input and output (blue: simulation,
green: theory). The theoretical fraction of silent synapses is 0.5. The rest of the distribution is a truncated Gaussian with zero mean and standard
deviation

ffiffiffiffiffiffi
2p
p

. E. Fraction of silent synapses as a function of the output correlation for different input correlations. The theoretical value is 0.5 (green).
F. Variance of the weight distribution normalized by the mean synaptic weight, fitted by a truncated Gaussian. The theoretical value is

ffiffiffiffiffiffi
2p
p

(green). In
all simulations, the perceptron has N~1000 inputs and the simulations were averaged over 10 trials. The coding level is fin~fout~0:5.
doi:10.1371/journal.pcbi.1002448.g002

Storage of Correlated Patterns in Purkinje Models
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capacity can be well fitted by the function

af (cin,cout)~1=(1{ca
incb

out)
c, ð4Þ

with a~0:85, b~1:61, c~0:73. The intuitive reason is that if the

patterns are highly correlated, they become more similar to one

another, and thus it is easier to learn them.

Simulations (Figure 2E–F) indicate that the weight distribution

at maximal capacity is a truncated Gaussian with 50% of silent

synapses, independent of the level of both input and output cor-

relations. This finite fraction of silent synapses is due to the con-

straint that synapses cannot become negative. During the learning

process, some synapses tend to go up, others tend to go down.

Some would tend to go to negative values, but become stuck at

zero. As one reaches the maximal capacity, a finite fraction of

these synapses ends up exactly at zero, while the remaining

synapses are distributed according to a truncated Gaussian [17].

We have so far focused on the case fin~fout~0:5. This is at

odds with available data on the activity of granule cells and

Purkinje cells in vivo, that shows consistently high firing rates in

Purkinje cells, while granule cells tend to fire at much lower rates

[27]. In Figure 3 therefore, we show how the capacity and the

number of silent synapses depend on the input and output coding

levels. We find that the capacity is independent on the input

coding level, but strongly depends on the output coding level, for

any correlation level. The capacity increases if the output coding

level decreases, and diverges in the limit of a sparse output coding

level [10]. For example, when fout~0:1, the capacity is approx-

imately doubled compared to the case fout~0:5. Interestingly, the

capacity is well fitted by a function which is a product between two

terms, one which depends only on fout, the other only on correlations,

ac(fout,cin,cout)~ac(fout,0,0)af (cin,cout) where af (cin,cout) is given

by Equation 4. The number of silent synapses is found to be

independent on input and output coding levels (Figure 3B), and is

therefore independent on all statistical parameters characterizing the

associations.

Experimentally, the fraction of silent synapses was estimated to

be about 80% [28]. The fraction of silent synapses is 50% when no

robustness constraints are imposed on learning, but it increases if a

robustness constraint is introduced [17]. The robustness parameter

k is defined in the following way: for a robust classification, we

now need
PN

i~1 wiG
m
i w(hzk)N if P

m
t ~1 and

PN
i~1 wiG

m
i v

(h{k)N if P
m
t ~0. In Figure 3 C–D, we show, consistent with

previous studies with uncorrelated patterns [10,17], that the

capacity decreases when the robustness constraint increases,

whereas the fraction of silent synapses increases. Note that for

kw0, the capacity can no longer be expressed as a simple product

of the capacity for uncorrelated patterns, times af . The increase in

capacity as the input and output correlations increase is relatively

less pronounced than for k~0. For r~
ffiffiffiffiffiffi
fN

p
k=(h

ffiffiffiffiffiffiffiffiffiffi
1{f

p
)~2:1,

80% of silent synapses are found [17], consistent with the

experimental estimate [28]. This fraction is again independent

on both input and output correlation, as shown in Figure 3D.

Figure 3. Standard perceptron storing correlated input/output sequences with various input and output coding levels as well as
robustness parameters. A–B. Dependence on coding levels. A. Maximal capacity as a function of cin~cout for different coding levels (symbols:
simulations, error bar: standard deviation). The blue curve shows the fit used for Figure 2, Equation 4. The black curve shows the blue line multiplied
by the capacity for uncorrelated patterns with fout~0:1. No robustness constraint is considered. B. Fraction of silent synapses as a function of cin~cout

for different coding levels, no robustness constraint. The theoretical value is 0.5 (green). C–D. Dependence on the robustness parameter. C. Capacity
as a function of same input and output correlation for different robustness parameters (fin~fout~0:5). D. Fraction of silent synapses as a function of
same input and output correlation for different robustness parameters (fin~fout~0:5). In all simulations, the perceptron has N~1000 inputs. Means
and standard deviations were computed from 10 independent samples.
doi:10.1371/journal.pcbi.1002448.g003

Storage of Correlated Patterns in Purkinje Models
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Bistable perceptron
Bistable perceptron with correlations in the output and

uncorrelated inputs. In in vivo experiments, PCs undergo

under some conditions transitions between so-called up and down

states. These up and down states are thought to be a manifestation

of an intrinsic bistability of the PCs [18,20,22,23] but see [29]. The

computational advantage of bistability in PCs remains however an

open question. We argue here that bistable PCs can serve to

increase memory storage if the correlation in the output is larger

than the correlation in the input. More precisely, we use a binary

perceptron where the output is bistable, i.e. it depends on past

history: to switch the cell from 0 to 1, the input current should be

larger than hzc, while to switch it from 1 to 0, it should be smaller

than h{c. Hence, 2c is the size of the bistable range (see

Figure 1B). For the patterns to be learned, we now need to find

synaptic weights wi such that

Pmz1~H½
XN

i~1

wiG
mz1
i {(hzc)N� if Pm~0, ð5Þ

Pmz1~H½
XN

i~1

wiG
mz1
i {(h{c)N� if Pm~1: ð6Þ

To investigate how the capacity depends on temporal

correlations in the output, we consider sequences of patterns

generated from a Markov chain as defined in the previous section,

Equation 1.

The analytical calculation for correlated output and uncorre-

lated inputs (cin~0) is described in the Method section in detail.

Both capacity and distribution of synaptic weight are computed

using the replica method [10,15,16,17]. The results are shown in

Figure 4. For a given value of output correlation cout, there is an

optimal bistable range that maximizes the capacity. When

correlations are present in the output, the probability that the

state of the cell remains unchanged from one pattern to the next is

higher than the probability that it changes. Bistability tends to

favor stability of the output in its previous state, and thus makes it

easier for the system to learn such input/output associations.

Figure 4 also shows that the maximal capacity at the optimal

bistable range grows with output correlation. Furthermore, the

optimal bistable range also grows with output correlations - so

that if the target outputs are highly correlated, the best strategy is

to have a large bistabile range. Conversely, the optimal c is equal

to zero for cout~0. The weight distribution has the same ste-

reotypical form as in the standard case with a large number of

silent synapses. Interestingly, for any output correlation, the

fraction of silent synapses is constant and equal to 50% at the

optimal bistable range (see Figure 4B). Here no robustness

constraint is considered.

Figure 4C shows how the capacity depends on input and output

coding levels. As expected, the capacity is increased when the

output coding level decreases. Interestingly, for a fixed bistable

range, the capacity also depends on the input coding level. The

optimal bistable range increases when the input coding level

decreases. However, the capacity at the optimal bistable range is

independent on the input coding level.

Figure 4. Bistable perceptron with correlated output, but no input correlation. A. Maximal capacity as a function of the bistability range y,
for different values of the output correlation cout with fin~fout~0:5 (line: theoretical results, symbols: simulations, error bars: standard deviation). The
grey line shows the results of simulations with a different learning rule where the CF does not change the state of the PC, called the ‘‘no state
switching’’ rule (NSS)(see Methods section). B. Fraction of silent synapses as a function of y for different values of cout with fin~fout~0:5. C. Maximal
capacity as a function of the bistability range y, for different values of coding level and cout~0:5. Y is defined as c~Yh=

ffiffiffiffiffi
N
p

(see Methods). For the
simulations, the network is composed of N~1000 inputs. Means and standard deviations were computed from 10 independent samples.
doi:10.1371/journal.pcbi.1002448.g004

Storage of Correlated Patterns in Purkinje Models
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We then numerically confirm the theoretical results using a

perceptron learning algorithm (Figure 4). The learning rule is

defined as previously (Equation 3, with the same constraints on the

weights and threshold). However, here the error signal not only

influences the weight change but also the state of the output. The

output therefore switches to match the target output if there is an

error after each pattern presented. Then, when the next pattern is

presented, the output depends on the previous pattern which is

guaranteed to be correct (see Method section for details).

If the CF does not change the state of the PCs, the simulations

does not reach maximal capacity (Figure 4A, grey dashed line).

The intuitive reason is that, if the current PC state is wrong, the

next state is going to be wrongly influenced by the wrong current

state due to bistability.

Bistable perceptron with input/output correlations. In

this section, we simulate numerically the bistable perceptron with

correlated input and output (Figure 5). When correlation in the

input increases, the optimal bistable range decreases. Intuitively,

temporal correlations in the input will automatically produce

temporal correlations in the output. Therefore, if the correlation in

the input is stronger, a smaller bistability is needed. Additionally,

when correlation in the input is higher than the correlation in the

output, the maximal capacity is maximized without bistability.

Capacity is therefore enhanced through bistability only if the

correlation in the output is larger than the correlation in the input.

Again, this is understood by the fact that bistability introduces

naturally more correlations in the output than what is in the input.

Discussion

In this paper, we reconsidered the problem of learning random

input-output associations in a perceptron with excitatory weights,

considered as a model for cerebellar Purkinje cells. We computed

the storage capacity, and distribution of synaptic weights, in two

distinct models that are subjected to correlated input-output asso-

ciations, described as Markov chains: a standard binary percep-

tron; and a bistable perceptron.

We find that the maximal capacity increases monotonically when

both input and output correlations are increased. The capacity

diverges in the limit when both go to unity. This divergence of the

capacity is reminiscent of the divergence of the capacity of

perceptrons storing uncorrelated input-output associations in the

limit when the output coding level fout goes to one [10]. In the

bistable perceptron, we find that the capacity is optimal for a non-

zero bistable range, whenever the output correlation is larger than

the input correlation. This result can be understood intuitively by

the fact that bistability will automatically generate additional

temporal correlations in the output of a neuron. A bistable neuron

is therefore better equipped to learn such input/output associations,

compared to a standard perceptron.

Interestingly, Purkinje cells are known to exhibit bistability in

vitro [22,20,19,23] and their dynamics in vivo has been shown to

be compatible with a bistable unit, at least under some conditions

[20,18] (but see [29]). Our results suggest that this bistable

behavior might help Purkinje cells to achieve a higher capacity.

We further speculate that different areas of the cerebellum might

use cells with different degrees of bistability, depending on the

temporal correlations imposed upon these areas. Our results also

suggests that to optimally use bistability, a learning rule leading to

optimal capacity should implement a mechanism that switches

the state of the neuron in the case of an error. This switching

mechanism fits perfectly with the properties of the climbing fiber

(CF) input. Indeed, CF inputs (the putative error signal in PCs)

have been able to switch Purkinje cells both from the down to the

up state, and from the up to the down state [20,18].

We also found that the distribution of synaptic weights at the

maximal capacity is independent on the degree of correlations in

the input and output, for both standard and bistable perceptrons.

It is also independent on the input and output coding levels.

This distribution is composed of a finite fraction of zero-weight

(silent) synapses, and a truncated Gaussian distribution for positive

weights. As shown in [17], such a distribution fits very well data

from paired recordings in cerebellar slices [28,17]. Our results

suggest that such a distribution might be a universal property of

neural systems storing information with excitatory synapses, close

to maximal capacity [30].

The learning algorithm that we used is in good qualitative

agreement with standard protocols used to induce plasticity in

GC?PC synapses. This algorithm can be proved to converge to a

solution of the learning problem, provided such a solution exists

(see appendix). For the algorithm to converge, changes induced by

an individual pattern must be extremely small (of the order of 1=N
where N is the number of inputs). It is unclear whether such small

changes can be induced at this synapse. If individual synaptic

changes are not small, then maximal capacity will not be reached

with such an algorithm. It would be interesting to investigate the

capacity of algorithms in which synaptic changes are of order 1,

rather than of the order of 1=N.

We have focused on the GC?PC feedforward network. Many

other sites of plasticity have been identified in the cerebellum,

Figure 5. Bistable perceptron with correlated input/output. A. Capacity as a function of Y for cout~0:8 and different cin . B. Fraction of silent
synapses at the maximal capacity as a function of Y for cout~0:8 and for different cin. Y is defined as c~Yh=

ffiffiffiffiffi
N
p

. The network is composed of
N~1000 inputs with fin~fout~0:5. Simulations were repeated 10 times (error bar: standard deviation).
doi:10.1371/journal.pcbi.1002448.g005

Storage of Correlated Patterns in Purkinje Models
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including in the deep cerebellar and medial vestibular nuclei, and

in interneurons of the molecular layer that provide feedforward

inhibition to PCs (see e.g. [31]). It remains to be investigated how

interactions between these different plasticity sites allows the

cerebellum to optimize its learning capabilities.

Methods

Variant of the perceptron algorithm for positive weights,
fixed threshold and 0,1 units: Proof of convergence

The conditions for storing associations can be expressed as,

X
j

wjG
m
j {Nhw0 when Pm~1,

X
j

wjG
m
j {Nhv0 when Pm~0: ð7Þ

Defining

gm
j :(2Pm{1) G

m
j for j~1, . . . ,N, ð8Þ

gm
0:2Pm{1, ð9Þ

equation (7) can be rewritten as

X
j

wj gm
j {Nh gm

0w0: ð10Þ

The constraint on the weights are

wj§0, j~1, . . . ,N: ð11Þ

One can write the perceptron algorithm with sign constraint as:

N (0) T~0; start with wj(T~0)~0, j~1, . . . ,N;

N (1) pick a pattern m at random; if
P

j wj(T)gm
j {gm

0Nhv0 then,

for each j~1, . . . ,N ,

if wj(T)zagm
j w0, then wj(Tz1)~wj(T)zagm

j

else wj(Tz1)~0:
ð12Þ

Increase T by 1 if a change have been made (T/Tz1). This

means that T measures the number of presented patterns for

which changes had to be made, rather than the total number

of presented patterns.

N Go to (1)

The principle of the proof of convergence is as follows. Let us

suppose that there exists a solution to the learning task with

positive weights. In other words, we assume there exists a set of

weights~JJ~fJj§0, j~1, . . . ,Ng and a stability parameter K such

that for every m~1, . . . ,p

X
j

Jjg
m
j {gm

0Nh§Kw0 ð13Þ

is satisfied.

As in the standard case (with unconstrained weights), one

computes the cosine of the angle between the weight vectors ~ww(T)

and ~JJ :

a(T):
~JJ:~ww(T)

E~JJEE~ww(T)E
: ð14Þ

One shows that this quantity increases monotonically with T , so

that it becomes larger than 1, which is not possible: hence after

some finite value of T there is no pattern for which a learning step

has to be made.

We write wj(Tz1)~wj(T)zW
mT

j with W
mT

j ~ag
mT

j or WmT ~

{wj(T) according to (12), gmT being the pattern learnt at step T ,

~JJ:~ww(Tz1)~~JJ:~ww(T)z~JJ:~WWmT : ð15Þ

This can be rewritten as

~JJ:~ww(Tz1)~

~JJ:~ww(T)za~JJ:~ggmT z(1{PmT )
X

j=wj (T)va

G
mT
j Jj ½aG

mT
j {wj(T)�, ð16Þ

where the last term in the r.h.s. is specific to the learning of patterns

for which the desired output is 0.

From the hypothesis that ~JJ is a solution, one has

~JJ:~ww(Tz1)§~JJ:~ww(T)za(Kzg
mT
0 Nh)z

(1{PmT )
X

j=wj (T)va

G
mT
j Jj ½aG

mT
j {wj(T)�,

so that

~JJ:~ww(T)§T aKzaNh
XT

t~1

g
mt
0 z

XT

t~1

f(1{Pmt )
X

j=wj (t)va

G
mt
j Jj ½aG

mt
j {wj(t)�g: ð17Þ

One proceeds similarly for the norm:

E~ww(Tz1)E2~E~ww(T)E2z2~ww(T):~WWmT zE~WWmT E2:

Wj being either ag
mT
j or {wj(T) with wj(T)va in the later case,

one has E~WWmT E2
va2Nf , where f is the maximal fraction of active

inputs.

To get a bound on the scalar product ~ww(T):~WWmT one proceeds as

in Equation 16,

~ww(T):~WW
mT ~a~ww(T):~ggmT z

(1{PmT )
X

j=wj (T)va

G
mT
j wj(T)½aG

mT
j {wj(T)�:

This leads to

E~ww(T)E2
vT a2Nf z2aNh

XT

t~1

g
mt
0 z

2
XT

t~1

f(1{Pmt )
X

j=wj (t)va

G
mt
j wj(t)½aG

mt
j {wj(t)�g:

ð18Þ

Since gm
0~+1, and wj(t) is smaller than a in the sum over t,

E~ww(T)E2
vTaN(3af z2h): ð19Þ
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From Equation 18, we have

a Nh
XT

t~1

g
mt
0 w{

1

2
Ta2 Nf {

XT

t~1

f(1{Pmt )
X

j=wj (t)va

G
mt
j wj(T)½aG

mt
j {wj(t)�g: ð20Þ

Making use of this inequality, one gets from Equation 17 the

bound

~JJ:~ww(T)§Ta K{
1

2
aNf

� �
z

XT

t~1

(1{Pmt )
X

j=wj (t)va

G
mt
j ½Jj{wj(t)�½aG

mt
j {wj(t)�: ð21Þ

In the sum over t, one has Jj§0 and wj(t)va, and a contribution

only from j,t such that G
mt
j ~1. Hence a crude lower bound on this

sum is

XT

t~1

f(1{Pmt )
X

j=wj (t)va

G
mt
j ½{a�aw{a2TNf :

Putting everything together, we find

a(T)~
~JJ:~ww(T)

E~JJEE~ww(T)E
w

ffiffiffiffiffiffiffi
aT
p

(K{
3

2
aNf )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N(3af z2h)
p

E~JJE
: ð22Þ

If we choose a small enough, that is

av

2K

3fN
, ð23Þ

then the right hand side of Equation 22 becomes larger than 1 for

T larger than

TM~E~JJE2 N(3af z2h)

a(K{
3

2
f aN)2

:

This means that the algorithm converges after a number of

learning steps smaller than TM .

Note that this proof of convergence of the sign-constrained

perceptron is distinct from the one of Amit et al. [12]. Amit et

al.consider +1 input and output units, and a threshold which is

zero. In our case, the units are 0,1, and the threshold is strictly

positive. This imposes a constraint on the learning rate a, which is

not present in the case of Amit et al. [12].

Calculation of the capacity of a bistable perceptron
The capacity is defined as the maximal number of random

associations that can be learned per input synapse. The capacity

of a perceptron with bistable output, where the target output is

correlated and the inputs are uncorrelated, can be computed

analytically, using the replica method [10,15]. The calculation of

weight distribution can also be computed with the same method.

Both calculations are similar to the calculations described in the

supplementary information of Brunel et al. [17] (called BSI in the

following). The idea, introduced by Elizabeth Gardner [10], is to

consider the space of all possible couplings. In this space, only a

subspace of weights satisfy the constraints imposed by learning.

These constraints are

X
j

wjG
m
j {hwk{y when Pm{1~Pm~1,

X
j

wjG
m
j {hwkzy when Pm{1~0, Pm~1,

X
j

wjG
m
j {hv{k{y when Pm{1~1, Pm~0,

X
j

wjG
m
j {hv{kzy when Pm{1~Pm~0,

ð24Þ

where we have introduce a robustness parameter k (set to zero in

all the results section). The probabilities of the four distinct sets of

pairs of successive outputs are

P11~Prob(Pm{1~Pm~1)~f 2
outzcoutfout(1{fout),

P01~Prob(Pm{1~0, Pm~1)~fout(1{fout)(1{cout),

P10~Prob(Pm{1~1, Pm~0)~fout(1{fout)(1{cout),

P00~Prob(Pm{1~Pm~0)~(1{fout)
2zcoutfout(1{fout):

ð25Þ

Note that in the large N limit, if we take h*O(1), the synaptic

weights need to scale as 1=N, while k and y both have to scale as

1=
ffiffiffiffiffi
N
p

. We therefore define K~
ffiffiffiffiffi
N
p

k and Y~
ffiffiffiffiffi
N
p

y.

The ‘typical’ volume of the subspace of weights satisfying

Equations 24 can then be computed, as a function of a. The max-

imal capacity is obtained as the value of a for which the typical

volume vanishes. This is done using the replica method. This method

consists in calculating the average volume of n independent replicas

of the system (average here means average over the distribution of

the stored patterns),

Vn~

ð
dwP

m,a
H Dma{Kz(2Pm{1)(2Pm{1{1)Y
� �

,

where Dma is the stability of pattern m in replica a, defined as

Dm~
(2Pm{1)ffiffiffiffiffi

N
p

X
i

wiG
m
i {Nh

 !

and H(:) is the Heaviside function that imposes constraints

(Equations 24).

The calculation follows a standard procedure. One first

introduces integral representations for the Heaviside functions,

which allows to average over the patterns. Then, one introduces

order parameters

1

N

X
j

wa
j ~

h

f
z

Maffiffiffiffiffi
N
p :wz

M
affiffiffiffiffi

N
p , ð26Þ

1

N

X
j

wa
j

� �2

~Qa, ð27Þ

1

N

X
j

wa
j wb

j ~qab, ð28Þ

together with conjugate parameters M̂Ma, Q̂Qa and q̂qab. We then use a

replica-symmetric ansatz (all the order parameters are taken to be

independent of replica index a), perform the limit n?0 and obtain
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SVnT!
ð

dMdQdqdM̂MdQ̂Qdq̂q exp (NnF ) ð29Þ

F~{Q̂QQz
1

2
q̂qqzwM̂M

z

ðz?

{?
Du log

ð?
0

dw exp (Q̂Q{
q̂q

2
)w2zw(u

ffiffiffî
qq

p
{M̂M)

	 


za

ðz?

{?
Du

X
j,j’~0,1

Pjj’ ln H
K{sjj’Y{(2j’{1)finMzu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qfin(1{fin)

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fin(1{fin)(Q{q)

p
" #

,

ð30Þ

where sjj’~1 if j~j’, while sjj’~{1 if j=j’, Du is the Gaussian

measure Du~duG(u) where G(u)~ exp ({u2=2)=
ffiffiffiffiffiffi
2p
p

, and

H(u)~
Ð?

u
Du.

In the large N limit, a~ac, q?Q. In that limit, we rewrite

2Q̂Q*q̂q*
C

(Q{q)2
ð31Þ

q̂q{2Q̂Q*
A

Q{q
ð32Þ

M̂M*
B
ffiffiffiffi
C
p

Q{q
: ð33Þ

Saddle point equations give in that limit

w~

ffiffiffiffi
C
p

A
G(B){BH(B)ð Þ ð34Þ

Q~
C

A2
(1zB2)H(B){BG(B)
� �

ð35Þ

A~H(B) ð36Þ

C~acQ
X

j,j’~0,1

Pjj’½(1zt2
jj’)H(tjj’){tjj’G(tjj’)� ð37Þ

A~ac

X
j,j’~0,1

Pjj’H(tjj’) ð38Þ

0~
X

j,j’~0,1

Pjj’(2j’{1)½G(tjj’){tjj’H(tjj’)�, ð39Þ

where

tjj’~{
k{sjj’Y{(2j’{1)finMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qfin(1{fin)
p : ð40Þ

These equations can be solved to numerically to obtain all

quantities of interest.

Finally, the equation for the distribution of synaptic weights for

the bistable perceptron is identical to the one for the standard

perceptron, i.e. at maximal capacity

P(w)~H({B)d(w)z
1ffiffiffiffiffiffi

2p
p

ws

exp {
1

2w2
s

wzBwsð Þ2
	 


H(w), ð41Þ

where

ws~

ffiffiffiffi
C
p

A
~

w

G(B){BH(B)
: ð42Þ

In particular the fraction of zero weight synapses is H({B).
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