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Abstract

Graphical models describe the linear correlation structure of data and have been used to establish causal relationships
among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological
processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models
can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic
networks with known stoichiometry to address the fundamental question: ‘‘What can causal networks tell us about metabolic
pathways?’’. Using data from an Arabidopsis Bay|Sha population and simulated data from dynamic models of pathway
motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity
of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but
should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a
variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic
pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We
conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be
used in the design of intervention strategies.
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Introduction

Understanding the nature of cause and effect is fundamental to

all fields of scientific investigation, but the concept of causality can

present special difficulties in biology [1]. Experiments that utilize

controlled interventions represent the most widely used approach

to establishing causality. However, in his seminal work on

experimental design, RA Fisher proposed that causation can be

inferred from multi-factorial experiments performed with ran-

domization [2]. An extension of this principle provides the

foundation for computational approaches to network reconstruc-

tion in experimental genetic crosses, such as the recombinant

inbred strain panel used in this study. Natural allelic variation is

randomized during meiosis to generate a multi-factorial pertur-

bation affecting multiple phenotypic outcomes. This meiotic

randomization allows for the inference of quantitative trait loci

(QTL) that are causal to phenotype [3].

Recent advances in high-throughput phenotyping technologies

have made large-scale measurements of molecular traits possible.

Expression QTL (eQTL), metabolic QTL (mQTL) and protein

QTL (pQTL) can be used to link thousands of molecular

phenotypes to genetic loci, as well as to clinical phenotypes [4].

A typical xQTL study will involve cross sectional sampling of a

genetically variable population at a single time point. It is not

immediately obvious that such data could provide insight into

causal biological mechanisms, which derive from non-linear

dynamic processes of gene expression and metabolism. However,

a rich body of literature supports the idea that correlation structure

in static data can provide insights into causal relationships among

the measured variables [5,6].

The interpretation of a directed edge between nodes A and B in

a graphical model is that intervention on A will alter B, but

intervention on B will not alter A. In a metabolic reaction,

intervention on the substrate concentration will alter the product

concentration. Reaction stoichiometry is often well understood

[7]. Substrate molecules are converted by known enzymes into

products, which in turn act as substrates for subsequent reactions.

Reactions are organized into pathways which may converge,

branch or intersect to form elaborate networks. More complex

pathways involving feedback through allosteric interactions

between enzymes and metabolites may also be present. It is not

clear to what extent graphical models inferred from mQTL data

capture these types of interactions.

Several algorithms have been proposed for the inference of

causal relationships among phenotypes using genetic data [8–14].

These methods employ linear statistical models to infer the

relationships between QTL and phenotypes, as well as relation-

ships among phenotypes [15]. Causal edge detection is sensitive to

subtle correlation patterns in the data. Inferences have been shown

to be subject to a large proportion of false positive edges and can
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be skewed by environmental and experimental design factors that

are not accounted for in the model [16,17]. Agreement between

the graphical model and the true underlying biology is a central

goal of systems biology. The topology of networks inferred from

xQTL data is often interpreted as a reflection of the underlying

biological process - which may be metabolic or regulatory in

nature, nonlinear, and involve the dynamic interaction of

molecules within cells and tissues. However, the extent to which

graphical models derived from static data capture these processes

is not well understood, which makes the interpretation of edges

challenging.

Deterministic models of cellular metabolism can be defined by

ordinary differential equations (ODEs) derived from simple laws of

mass-balance [18–21]. The reaction rates are modeled as non-

linear processes, e.g. Michaelis-Menten kinetics and Hill functions,

which depend on kinetic rate parameters [22]. Models of this type

are powerful because of their ability to make in silico predictions of

the response of a system to perturbations. We present a simulation

study in which we generate synthetic mQTL data from dynamical

models of pathway motifs with two sources of perturbation. We

vary the rate parameters in a manner that mimics a genetic cross

and we drive the simulations models with an input function that

includes stochastic noise.

Glucosinolates are secondary metabolites that influence the

interaction of plant and pest and have a wide range of important

functions in human health [23–25]. The economic importance of

glucosinolates has led to significant progress in understanding the

biochemical pathways and genetics [26,27]. Glucosinolate biosyn-

thesis occurs in three well understood stages in which amino acids

undergo (Figure 1): (1) chain-elongation, (2) formation of glucone

moeity, and (3) side-chain modification. In this work, we examine

mQTL data from a class of aliphatic glucosinolates in a highly

replicated Arabidopsis Bay|Sha recombinant inbred population

[28]. The metabolites under investigation participate in side-chain

reactions. Genetic analysis reveals shared QTL and wide-spread

epistasis in the pathway [29].

In order to address these questions, we have inferred causal

networks from mQTL data using simulated metabolic models of

common pathway motifs and real data from a well characterized

metabolic network. We demonstrate that correlation structure can

be shaped by a variety of factors, including, genetic variation,

pathway architecture, position in the pathway and feedback. Our

results highlight the necessity of biological variation outside of the

variation contributed by genetic factors for reliable network

inference. Substrate-product relationships are not always reflected

in the correlation structure of the system and recovery of the

biochemical ordering of species should not be expected. Substrate

inhibition, which is pervasive in metabolic pathways, can diminish

or mask these relationships and lead to missing edges in network

inference. An accurate genetic model is also critical to the

inference process, especially when epistasis is involved. Our

findings should temper expectations and provide new insights

into the interpretation of causal genotype-phenotype networks.

Results

Pathway motifs were constructed using ODEs (Figure 2). Flux

rates, w, were described with Michaelis-Menton kinetics.

Simulations were performed under genetic perturbations, y,

with stochastic input, j(t) (Figure S1). The aliphatic glucosinolate

biosynthetic pathway from an Arabidopsis Bay|Sha population

was also investigated (Figure 1). For each pathway, we carried out

a three-step analysis: (1) QTL mapping for the metabolites in the

pathway to identify the relevant genetic factors. (2) Metabolite

correlations were calculated with and without conditioning on

genetic factors. Correlation after conditioning represents the

association between metabolites that is driven by sources outside

of the genetic factors, e.g., propogation of random input

fluctuations through the pathway. Correlation that disappears

after conditioning implies an independent relationship between

metabolites, e.g., Q?M1 and Q?M2. We interpret the presence

of correlation after conditioning as being indicative of either

causal or reactive relationships, e.g., Q?M1?M2 or

Q?M2?M1. (3) We generated multiple causal networks from

their posterior distribution, using a MCMC algorithm previously

described [14] and summarized results across the ten top scoring

networks.

Simulated Pathway Motifs
QTL detection. Correlation of the genotype variable, y, and

a metabolite is considered evidence for a QTL with the sign and

magnitude indicating the direction of the effect and the effect size

(Figure 3). A similar QTL pattern is observed between pathways

that contain linear chains of reactions. Specifically, the QTL for a

substrate metabolite in a linear chain is the y facilitating the

downstream flux (e.g., Figure 3A). In the merging pathway via

metabolic reaction; there are no QTL for the bi-substrate reaction

that occurs at the merge point (Figure 3B). However, when the

merging pathway is formed through two independent paths QTL

mimic the linear pathway pattern (Figure 3C). The QTL effect

pattern in the branching pathway illustrates the activation of the

lower and upper branch (Figure 3C). When the flux through the

upper branch is dominant, the production of C is demanding

substrate B, which is then less available for the production of D.

This scenario is reflected in positive correlation between y2 and C,

and the negative correlation between y2 and D and B. An

analogous story plays out for the lower branch and is seen in the

y4 relationships. Substrate inhibition in the branching pathway

results in the loss of QTL at y2 which facilitates the inhibited flux

(Figure 3E). In the branching pathway with epistasis, y2 is a QTL for

the branch-point metabolite B, and both C and D which reside on

the branches (Figure 3F). The direction of the effect is a reflection

of the metabolite position in the pathway. Epistasis has the

strongest effects on A and C which are immediately downstream

of the interacting signal and enzyme respectively.

Author Summary

High-throughput profiling data are pervasive in modern
genetic studies. The large-scale nature of the data can
make interpretation challenging. Methods that estimate
networks or graphs have become popular tools for
proposing causal relationships among traits. However, it
is not obvious that these methods are able to capture
causal biological mechanisms. Here we address the power
and limitations of causal inference methods in biological
systems. We examine metabolic data from simulation and
from a well-characterized metabolic pathway in plants. We
show that variation has to propagate through the pathway
for reliable network inference. While it is possible for causal
inference methods to recover the ordering of the
biological pathway, it should not be expected. Causal
relationships create subtle patterns in correlation, which
may be dominated by other biological factors that do not
reflect the ordering of the underlying pathway. Our results
shape expectations about these methods and explain
some of the successes and failures of causal graphical
models for network inference.

What Can Causal Networks Tell Us about Pathways?
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Metabolite correlations. In most cases, the correlation

between metabolites after conditioning on genotype variables

was enhanced (Figure 3). Substrates in the linear pathway are

uniformly correlated both before and after conditioning on QTL

(Figure 3A). In the merging pathway via metabolic reaction, a high

correlation between A and B suggests that they must be

coordinated to form a product C (Figure 3B). In the merging

pathway via independent paths A and B are uncorrelated, C and D are

highly correlated to each other, and to a lesser degree with A and

B (Figure 3C). In the branching pathway A and B are highly

correlated and relationships involving C and D become more

pronounced after conditioning (Figure 3D). Substrate inhibition is

observed in the negative correlation of D with the other

metabolites in the pathway (Figure 3E). The correlation in this

pathway was the most sensitive to conditioning on QTL. After

conditioning there was almost a total loss of correlation between B
and metabolites on the upper branch, C and D (Figure 3E). In the

branching pathway with epistasis, B and C are negatively correlated

reflecting the accumulation of B when there is an allelic

combination that results in the loss of function of w2 (Figure 3F).

The strongest correlation is between B and D.

Network reconstructions. The linear and merging pathway

reconstructions did not mimic the ordering in the metabolic

pathway (Figure 3A–C). A causal edge A?C occurred in the linear

pathway in the ten best scoring models (Figure 3A), but faded when

larger subsets of models were considered (Text S1). In the merging

pathway via metabolic reaction a causal edge A?B and an undirected

edge between C and D were identified, with no link between the

two pathway segments (Figure 3B). When A and B form C from

merging independent pathways, C is predicted as a hub metabolite that

affects both upstream and downstream neighbors. It is reasonable

that C, the merging point, controls the influx and efflux of the

pathway and dominates the overall correlation structure

(Figure 3C). The graphical model for the branching pathway

captures the biochemistry exactly but does not include the

genetic factors (Figure 3D). When substrate inhibition occurs in the

branching pathway, the graphical model identifies the top and

bottom branches, but does not link them together (Figure 3E). In

the network reconstruction of the branching pathway with epistasis, the

lower branch of the pathway is captured exactly and the epistasis

term was found to affect B and C independently (Figure 3F).

Bay|Sha: Aliphatic Glucosinolate Biosynthesis
QTL detection. Significant QTL were identified for all of the

metabolites in the aliphatic glucosinolate biosynthesis pathway

(Figure 4, Tables S1, S2). Common QTL on Chr4 and Chr5 with

large effects were detected for most of the metabolites. Two-

dimensional genome scans showed a significant epistatic

interaction between these two loci, especially in the homo-

methionine and dihomo-methionine side chains (Table S3, Figure

S2). MT3 showed evidence of two interacting QTL on

Chromosome 5. These results are consistent with previous

findings [28]. AOP2/3 and MAM1/3 are candidate genes

under the QTL peaks on Chr4 and Chr5 respectively [28].

Metabolite correlations. Correlation dissipated non-

uniformly after conditioning metabolites on QTL (Figure 5). In

the homo-methionine pathway, after conditioning, MT3 and Allyl

are positively correlated (r~0:41), Allyl and OHP3 have a strong

negative correlation (r~{0:67), and the correlation between

MT3 and Allyl is positive and weaker (r~0:12). After

Figure 1. Biosynthesis of aliphatic glucosinolates. The aliphatic glucosinolate biosynthetic pathway occurs in three stages: (1) side chain
elongation, (2) formation of glucone moeity and (3) side-chain modification. The metabolites that are measured in the Bay|Sha RIL population are
indicated together with the facilitating enzymes.
doi:10.1371/journal.pcbi.1002458.g001

What Can Causal Networks Tell Us about Pathways?
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conditioning in the dihomo-methionine pathway, MT4 and

MSO4 are highly correlated (r~0:83), and But-3-enyl is

negatively correlated with both Mtb4 and MSO4 (r~{0:35
and r~{0:53 respectively). In the hexahomo-methionine

pathway, MT8 and MSO8 are highly correlated (r~0:76) after

conditioning. The most profound loss of correlation after

conditioning was observed between MT4 and MSO4 and the

other metabolites in the pathway with the exception of OHP3.

The dramatic reduction indicates that much of the correlation

between metabolites is due to shared genetic effects and is not a

result of biochemical pathway linkages, consistent with what we

know about these pathways.

Network reconstructions. Side chains: homo-methionine,

dihomo-methionine and hexahomo-methionine, were first

examined independently (Figure 6A–C). In the homo-

methionine reconstruction, the dominant allele at the QTL

directly affects Allyl and MT3, and indirectly affects OHP3

through the other metabolites. The order of metabolites in the

dihomo-methionine pathway network reconstruction matched the

biochemical pathway exactly (Figure 6B). QTL were estimated to

directly affect MT4 and But-3-enyl. The hexahomo-methionine

chain shows little evidence of epistasis, thus the interaction terms

were omitted from the analysis (Figure S2). MT8 and MSO8 were

highly correlated, and both have QTL on Chr 4 and 5 with similar

effect sizes (Figures 4–5). The graphical model is dense and

identifies a connection between MT8 and MSO8, but the

direction of causality is not clear (Figure 6C).

The entire panel of QTL and metabolites from the glucosino-

late biosynthesis pathway were examined in a single model

(Figure 6D). The graphical model groups the top half (homo-

methionine and dihomo-methionine side chains) and the lower

half (pentahomo-methionine and hexahomo-methionine side-

chains). Within these groupings, the side chain members are

connected, but the order does not match the biochemical pathway

ordering. There is a spurious connection between But-3-enyl and

Allyl. Although pathway members grouped together, the direction

of causality did not reflect the biological pathway or the ordering

inferred for the independent side-chains.

Propagation of Residual Variance
In order to infer a causal relationship between a substrate M1

and its product M2, non-genetic variation in substrate concentra-

tion has to propagate to the product. This is a necessary, but not

sufficient condition for causal inference. To see this, suppose that

one metabolite is causal to another, and that variation includes a

genetic driver, Q?M1?M2. The linear equations for the causal

graphical model can be written as:

M1~b0zb1QzE1

M2~c0zc1M1zE2,

Figure 2. Simulated pathway motifs. (A) Linear, (B) merging pathway via metabolic reaction, (C) merging pathway via independent paths, (D)
branching pathway, (E) branching pathway with inhibition, (F) branching pathway with epistasis. Apool represents a constant pool of metabolite A
taken up at a constant flux rate k that is subject to a stochastic perturbation j(t), w represents the flux rate, y is a genetic perturbation and yS

denotes an upstream signal that is affecting the pathway.
doi:10.1371/journal.pcbi.1002458.g002
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or equivalently:

M1~b0zb1QzE1

M2~c0zc1(b0zb1QzE1)zE2:

Suppose there is no propagation of the non-genetic variation, E1,

then:

M1~b0zb1QzE1

~MM2~c0zc1(b0zb1Q)zE2,

and the traits are conditionally independent given genotype,

(M1\ ~MM2)DQ. It is clear from the equations that, c1E1 is the term

that carries the residual correlation between M1 and M2.

Therefore, variation in metabolites beyond that induced by

genotype must be propagated through the biological pathway to

create the correlation structure necessary for causal inference.

Consider the Bay|Sha data example: Q?MT4?MSO4,

where Q denotes the QTL on Chrs 4, 5 and their interaction.

There is a strong correlation between the residuals MT4DQ and

MSO4 (r~{0:80) (Figure 7A), which is driven by the

propagation of the non-genetic variation, E1. To see this

dependency, we imputed data with no propagation of variation:

MT4~b0zb1QzE1

M ~SSO4~c0zc1(b0zb1Q)zE2:

Figure 3. Simulation results. Left: The correlation between metabolites and genetic multipliers, correlation indicates evidence of a QTL, the sign
and magnitude indicate direction and size of the effect respectively. Center: metabolite correlation after conditioning on QTL. Right: The inferred
causal graphical model estimated from the top ten graphs from MCMC. Edge weights indicate regression coefficients.
doi:10.1371/journal.pcbi.1002458.g003

Figure 4. Genome scans for the aliphatic metabolites. QTL mapping was performed for metabolites in the homo-methionine, dihomo-
methionine and penta/hexa-methionine side-chains from the Bay|Sha RIL population.
doi:10.1371/journal.pcbi.1002458.g004
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MT4 and M ~SSO4 are approximately independent with negligible

correlation (r~0:09). A causal edge between MT4 and MSO4
would not be detected with network inference (Figure 7B).

Discussion

Graphical models provide a framework for estimating causal

relationships between genotypes and phenotypes. Models of this

type can be used to perform in silico experiments that predict

responses to genetic and environmental perturbations. Ideally,

these models should inform us about of the response to targeted

interventions, such as a drug that alters the properties of a

metabolic enzyme. There are numerous reasons for caution in

such inferences. The inference models are linear, but the true

relationships among relevant variables is likely to be driven by a

non-linear dynamical process. It is not clear that these relation-

ships should be captured by linear correlation. Correct interpre-

tation is important, particularly if the graphical models are used to

guide intervention strategies.

Several algorithms have been proposed for building graphical

models in the context of genetic crosses [8–14]. These methods all

derive models from the correlation and partial correlation

structure in the data. We found that the available model building

methods produced highly concordant results for models of the size

and architectures considered here. Therefore we chose one specific

MCMC algorithm to investigate the relationship between an

inferred graphical model and the biochemical pathway that gave

rise to the data. An advantage of the MCMC algorithm is the

ability to sample multiple networks from a posterior distribution.

This avoids reliance on a single network, which is problematic

when two or more distinct networks can explain the data equally

well. Sampling also provides a measure of uncertainty in the

inferred network topology. Summarizing an ensemble of networks

is challenging. We chose a consensus representation consisting of

edges that occur most frequently in the sampled networks. If there

is not enough information in the data to reliably establish the

existence of an edge, this is reflected in low edge weights of the

consensus network. Also, if we observe an edge that is present in

most of the sampled networks but with opposing directions in

different networks, we can conclude that the edge is present but

there is insufficient data to resolve it direction (e.g., Figure 6C).

We analyzed metabolite data and from real and simulated

pathways with known network stoichiometry. The Michaelis-

Menton kinetics used in our simulated metabolic reactions are

special cases of Hill functions and represent a rough approxima-

tion to actual enzyme reactions. Similar models have been used to

describe gene regulatory networks and other biological phenom-

ena, e.g. [19,20,30]. Constraint based modeling provide an

alternative approach to delineate metabolic networks from

steady-state data [31]. In the steady-state, the system of ODEs

reduces to a linear system, but nonlinear relationships may arise

between fluxes and pathways [32]. Investigation of the properties

of constraint based and other non-correlation based methods for

inference in dynamical systems remains an area of active research

[33–36].

Correlation in metabolite data can be driven by a variety of

factors that do not directly relate to the network stoichiometry. In

order to capture the biochemical ordering of the pathway, noise

has to propagate through the biochemical network. Many

biological pathways are buffered by feedback or other stabilizing

features that reduce noise propagation and mask the correlations

that would imply causal connections. Failure to consistently

observe substrate-product correlation may explain some of the

differences observed between the plant data and simulations for

matching pathway architectures. Our objective is not to confirm

that our simulations accurately reflect the plant data or to make

generalizations about certain pathway architectures. Rather, we

seek to leverage real data from a well-studied biological system and

simulated data from pathway motifs to explore a variety of

architectures and conditions. A shortcoming of in silico models is

Figure 5. Aliphatic metabolite correlations. Correlation of metabolites in from the Bay|Sha RIL population with (A) no conditioning on QTL
and (B) after conditioning on QTL.
doi:10.1371/journal.pcbi.1002458.g005
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their inability to fully capture the richly interconnected nature of

biological systems. We considered simple motifs in isolation and

modeled them with Michaelis-Menton kinetics. Correlation

structure depends on the network architecture, the size and

nature of the genetic perturbation, stochastic fluctuation, and

enzyme kinetics. The advantage of this simulation is that no

biological variation arises from factors outside of what is modeled.

Whereas, metabolic systems in vivo contain mechanisms that make

them robust, e.g., buffering, cycling and feedback, but may be

impossible to pin-point with real data.

In the plant data, many of the substrate-product relationships

remain intact after conditioning on QTL (Figure 5). This suggests

that a real metabolic pathway may give rise to meaningful

biological correlations that reflect the topology of the pathway

despite the non-linear nature of the underlying processes. This is

promising from the point of view of network reconstruction, but is

not without limitation. The architecture of the homo-methionine

side-chain was only partially captured, with an additional edge

between Allyl and OHP3 that reflects the shunting of flux through

the lower branch of the pathway (Figure 6A). The biochemical

ordering of the dihomo-methionine side-chain was captured

exactly (Figure 6B). We are only to able to detect an undirected

connection between MT8 and MSO8 in the hexahomo-methio-

nine side-chain (Figure 6C). Lack of a private QTL or a gradient

in the effect size gives rise to likelihood equivalent models from

which the direction of causality could not be distinguished. A

similar situation was observed when a global model was estimated

from the entire panel of metabolites and QTL (Figure 6D). The

shared nature of the QTL hindered network reconstruction of the

entire pathway. Most of the side-chain members were linked, but

the direction of causality was not consistent with the pathway or

with the networks constructed for each of the side-chains

independently. Allyl and But-3-enyl are unlinked in the metabolic

pathway, but are both products in reactions facilitated by AOP2.

The causal link between them is likely driven by this co-regulation.

Conditioning on QTL genotypes strengthens the correlation

among metabolites in most of the simulated pathway motifs

(Figure 3). An exception occurs in the branching pathway with

Figure 6. Aliphatic glucosinolate network reconstructions. The (A) homo-methionine, (B) dihomo-methioine and (C) hexahomo-methionine
side chains were reconstructed independently. (D) The network was reconstructed from the entire panel of aliphatic metabolites and their QTL. Edge
weights indicate regression coefficients.
doi:10.1371/journal.pcbi.1002458.g006
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substrate inhibition which shows an almost complete loss of

correlation between the branchpoint B and upper branch

metabolites C and D after conditioning (Figure 3F). In the linear

pathway, when reaction rates are not operating at saturation and

there are no branches to redirect the flux, any variation in the flux

must propagate through each of the metabolites [37]. This results

in a uniform correlation structure among the metabolites, which in

turn yields weak causal linkages and order ambiguity among

metabolite nodes in the graphical model. However, graphical

models strongly and consistently associate metabolites to the QTL

node controlling their downstream flux in linear pathways

(Figure 3A, Text S1). The branching pathway is a linear pathway

with a sink that represents demand on a metabolite from another

reaction or pathway (Figure 2D). The stoichiometry of the

branching pathway was captured exactly with the graphical model

(Figure 3D). This suggests that the diversion of flux through side

reactions is helpful in defining pathway order. For merging

pathways, the correlation structure is dependent on the nature of

the reaction at the merge point. When two pathways merge

through a bi-substrate reaction (Figure 2B) there is strong

association between the substrates that combine, but these are

only weakly coupled to the downstream component of the

pathway. On the other hand, when two pathways merge through

independent reactions, the upstream metabolites A and B are only

weakly correlated with each other, but the there is strong uniform

correlation across the two linear components of the pathway

(Figure 3C). Ordering metabolites in the independent merging

pathway suffers from the same weaknesses as in the linear

pathway. These results emphasize the influence of network

stoichiometry on the correlation structure of the pathway.

Biosynthetic pathways, which often branch to produce two or

more end products, are especially prone to inhibition [38]. We

examined biosynthetic pathways that were inhibited in two ways:

(1) loss of function in one pathway branch and (2) substrate

inhibition. In the plant data, loss of function in AOP2 gave rise to

an epistatic interaction between loci on Chr 4 and Chr 5 [28,29].

Ignoring epistatic interactions and model fitting with only main-

effect terms led to dense graphs that were difficult to interpret

(data not shown). Substrate inhibition is estimated to occur in

approximately 20% of enzymes [39]. This process can be viewed

as a regulatory mechanism in which accumulation of a substrate

represses the reaction velocity. In our simulation, the accumula-

tion of metabolite D inhibits the flux through a branched pathway

(Figure 2E). The inhibition is reflected in the correlation structure,

D is negatively correlated with the other metabolites (Figure 3E).

QTL y2 disappears, suggesting that substrate inhibition can

dominate the effects of genetic perturbations (Figure 3D–E). The

correlation structure of this pathway was most sensitive to

conditioning on QTL. When substrate inhibition is present, a loss

of correlation and genetic control can occur, which makes two

connected pathways look independent. These results highlight the

importance of an accurate genetic model for network inference,

especially in the presence of inhibition and epistasis.

Estimation of kinetic parameters in dynamic models requires

time course data, which is often sparse, and the computations

involved can be challenging [40]. The choice of experimental

perturbations and design have been shown to have major

influence on parameter estimation, and subsequently the accuracy

of the computational model [41]. Complex models of biological

systems exhibit parameter sensitivities that span several orders of

magnitude [42]. Concentration profiles and model outputs are

sensitive to small changes in kinetic rate parameters [43,44]. The

impact of parameter values on concentrations carries over into the

correlation structure, and consequently, the downstream network

inference. In our simulations, the perturbation is analogous to

genetically determined non-competitive inhibition, where Vmax is

genetically perturbed to be either high or low, thereby changing the

flux capacity [45]. This strategy ensures that there is a significant

difference between genotype groups and enables us to identify

QTL. Random stochastic fluctuations were used as input and

propagated through the pathway. Stochastic inputs allow us to

examine the out of equilibrium dynamics of the system. The

fluctuations themselves represent some of the randomness the

pathway encounters from being part of a cellular system that is

continuously changing [46,47]. The models represent continuous

excitation of the cell with the assumption that the intra-cellular

Figure 7. Residual propagation. A real data illustration of the necessity of non-genetic residual propagation for causal inference. Consider the
causal model: Q?MT4?MSO4, where Q denotes the QTL on Chrs 4, 5 and their interaction. Comparison of MT4DQ and MSO4 shows correlation
suggesting a causal reaction. If the residual variation did not propagate (M ~SSO4) then MT4DQ and M~SSO4 are approximately independent.
doi:10.1371/journal.pcbi.1002458.g007
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dynamics can be faithfully modeled with ODEs. Examining system

behavior over a spectrum of parameter values and stochastic

inputs would offer additional insight into the sensitivity of the

correlation structure.

Using both real data and simulated data, we tested the ability of

graphical models to capture causal relationships between variables

from from a variety of metabolic pathway topologies and

conditions. We found that the use of linear statistical models to

approximate relationships in dynamic non-linear systems from

static data has some merit, but the results should be interpreted

carefully. It is not realistic to expect to fully recover ordered

pathway relationships with causal inference methods. Our results

emphasize the necessity of biological variation beyond the genetic

factors in the model for reliable network inference. We

demonstrated that residual correlation induced between substrate

and product in a metabolic reaction can be dominated by variety

of factors, including, flux shunting, co-regulation, position in the

pathway, genetic factors and inhibition. We found that inhibition

can lead to missing edges in graphical models, washing out the

genetic signal and making connected pathways look independent.

An accurate genetic model is important, especially when epistasis

is present. Taken together, these results temper our expectations

and explain some of the success and failures of causal graphical

models for genotype-phenotype inference.

Materials and Methods

Arabidopsis Bay|Sha RIL
Metabolic QTL data from a population of 403 Arabidopsis

Bay|Sha recombinant inbred lines (RIL) were examined in this

study [28]. The data include measurements of 9 aliphatic

metabolites and genotypes from 38 markers across the genome.

A substantial number of samples have metabolite levels that are

below the level of detection (Table S1). We applied a

transformation to the scale log10(xz1). QTL mapping was

performed for each metabolite with R/qtl [48]. Genome scans for

single-QTL and two-QTL models were performed with Haley-

Knot regression. The logarithm of odds (LOD) threshold for

significance (Pv0:05) was calculated from 10,000 permutations

[49].

Simulating Deterministic Pathway Models
Pathway motifs were used to define systems of ODEs that

depend on flux rates, w, modeled with Michaelis-Menten kinetics

(Figure 2) [22]. If a substrate A produces B, then the rate of

reaction w : A?B is described by:

w~Vmax
A

KmzA
,

where Vmax is the maximum rate of velocity and Km is substrate

concentration at which half of Vmax is attained. When two

substrates A and B combine to produce C, w : AzB?C, we

write:

w~Vmax
A:B

KmzA:B
:

When the accumulation of a metabolite feeds-back to inhibit a

flux:

w~Vmax
A

KmzA(1zA=Ki)
,

where Ki is an affinity constant. This flux form represents substrate

inhibition which occurs at high substrate concentrations. As Ki??,

the reaction flux is uninhibited and approaches standard Michalis-

Menton form.

The dynamics of a substrate Ci is described with the mass

balance equations:

dCi

dt
~
Xn

k~1

yk(gk)wk{
Xm

j~nz1

yj(gj)wj ,

where wk : Cj?Ci and wj : Ci?Cj denote the production and

utilization of Ci respectively, the stoichiometric coefficients are given

as yk(gk) and yj(gj) and g is the genotype. Genetic perturbations

are made through the y coefficients as either high or low, depending

on the genotype AA or BB. For simplicity, we assume that each y
participates in a single reaction and that they are unlinked. In our

simulations, we set Vmax,Km~1,Ki~50, y(g~AA)~0:2 and

y(g~BB)~1:8. We also modeled a loss of function mutation by

setting y~0 for certain genotypes (Figure S3) [50].

There are 2n genotype combinations for each pathway of n
reactions. Each combination can be viewed as a sample from a

randomized genetic population. For every unique genotype

combination, we use an input flux that is perturbed by a random

process, j(t), modeled as a Brownian path over the interval ½0,tf �
[51]. The system is propagated, t~½0,tf ~100�. The perturba-

tions, Y [ Rn, and the concentration levels at the end of the

simulation C(tf ) [ Rn are collected as data for correlation analysis

and graphical model fitting. The output of each simulation can be

viewed a sample in mQTL data. A schematic depicting the entire

simulation process is shown in Figure S1.

Correlation Analysis and Causal Network Inference
The Pearson correlation is calculated for the variables in each

pathway architecture. Residuals are estimated after each metabolite

is conditioned on the QTL in the model. The residuals are used to

calculate the conditional correlation of the metabolites given the

genetic factors in the model. Directed graphical models are estimated

using Bayesian Networks with a MCMC algorithm [14]. In

pathways with epistasis, we include single degree of freedom

variables that represent a composite genotype as variables for

inference [52]. The sparsity parameter t was set in the range

0:1ƒtƒ0:5. Each chain was run from two starting points,

convergence was verified using correlation of edge weights (posterior

probabilities) and the acceptance rate of each chain was in the range

of 23%–45%. The results are based on the marginal summary over

the ten graphs with the highest posterior probability. Alternative

representations over the top 10,25 and 100 graphs and the four most

probable graphs for each pathway are presented in Text S1.

Supporting Information

Figure S1 A schematic of the simulation process. (1) A

mathematical model is constructed and described by ODEs, (2)

The system is genetically perturbed and propogated. The output

of the simulation serves as data for graphical model construction.

(3) The correlation structure is observed and graphical models are

constructed. The resulting correlation and inferred network is

compared to the metabolic pathway.

(TIF)

Figure S2 Simulated branching pathway with epistasis.
The signal S interacts with an enzyme y3 which causes a loss of

function for certain genotype combinations.

(TIFF)
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Figure S3 Chr4:Chr5 interaction plots. Interaction plots

are shown for each phenotype in the aliphatic glucosinolate

pathway.

(TIFF)

Table S1 Aliphatic metabolites. Abbreviations and the

number of lines that had measurements below detection level

are indicated. Non-detection may be due to biological or technical

reasons.

(PDF)

Table S2 Summary of single-locus genome scans for
aliphatic glucosinolates. The chromosome, position, locus,

LOD score and peak marker are indicated for each QTL. A

significance level of LOD = 2:24 (Pv0:05) was calculated from

10,000 permutations.

(PDF)

Table S3 Summary of two-locus genome scans for
aliphatic glucosinolates. Summary of two-locus genome scans

for the metabolites measured in the Bay6Sha RIL panel. Two

dimensional genome scans were performed to identify significant

interactions. For each pair of chromosomes, the following LOD

scores are calculated. lod.full: The difference in the maximum

LOD score for the full model (two main effect terms and

interaction) and the maximum LOD score for the additive model

(main effect terms only). lod.fv1: The difference in the maximum

LOD score for the full model and the maximum LOD score for

the LOD score from a single-QTL mapping of the two

chromosomes. lod.add: The maximum additive LOD score.

lod.av1: The difference between the maximum additive LOD

score and the maximum LOD score from a single-QTL mapping

of the two chromosomes. The positions for the full and additive

models (pos.f and pos.a respectively) are indicated. Significance

thresholds were set at the R/qtl suggested values for a backcross.

(PDF)

Text S1 Graphical models were reconstructed using a
MCMC algorithm. The result is an ensemble of graphs, each

with a posterior probability. Here we present different summari-

zations of the Bay6Sha reconstructed networks based on model

selection and marginal summaries over the most probable graphs.

(PDF)
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