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Abstract: Chromosomal crossover
is a biological mechanism to combine
parental traits. It is perhaps the first
mechanism ever taught in any intro-
ductory biology class. The formulation
of crossover, and resulting recombi-
nation, came about 100 years after
Mendel’s famous experiments. To a
great extent, this formulation is con-
sistent with the basic genetic findings
of Mendel. More importantly, it pro-
vides a mathematical insight for his
two laws (and corrects them). From a
mathematical perspective, and while
it retains similarities, genetic recom-
bination guarantees diversity so that
we do not rapidly converge to the
same being. It is this diversity that
made the study of biology possible. In
particular, the problem of genetic
mapping and linkage—one of the
first efforts towards a computational
approach to biology—relies heavily
on the mathematical foundation of
crossover and recombination. Never-
theless, as students we often overlook
the mathematics of these phenome-
na. Emphasizing the mathematical
aspect of Mendel’s laws through
crossover and recombination will
prepare the students to make an early
realization that biology, in addition to
being experimental, IS a computa-
tional science. This can serve as a first
step towards a broader curricular
transformation in teaching biological
sciences. I will show that a simple and
modern treatment of Mendel’s laws
using a Markov chain will make this
step possible, and it will only require
basic college-level probability and
calculus. My personal teaching expe-
rience confirms that students WANT
to know Markov chains because they
hear about them from bioinformati-
cists all the time. This entire exposition
is based on three homework prob-
lems that I designed for a course in
computational biology. A typical
reader is, therefore, an instructional
staff member or a student in a
computational field (e.g., computer
science, mathematics, statistics, com-
putational biology, bioinformatics).
However, other students may easily
follow by omitting the mathematical-
ly more elaborate parts. I kept those as
separate sections in the exposition.

Introduction

Mendel and High School Biology
Sexually reproducing organisms gener-

ally combine heritable traits from two

parents. The biological process that com-

bines those traits is called meiosis. While

mutations could occur during meiosis,

most of the variation arises from the

combinations of parental traits. How do

these parental traits combine? The dom-

inant theory was that some sort of

blending or averaging took place. Howev-

er, such a mode of inheritance would

result in an average of all ancestors after

only a modest number of generations

(imagine repeatedly mixing colors). In-

stead, by performing experiments on

plants, Mendel pointed out the existence

of discrete elements that combine but do

not mix. Figure 1 shows the simulated

number of types of individuals as a

function of time. Averaging, with traits

taking real values in ½1,10�, is used on one

population, and the model described in

the section ‘‘A Simple Model’’, with

elements (later called alleles) taking dis-

crete values in f0,1g, is used on another.

Mutations are ignored. In both cases, a

population size of 100 is kept constant for

the entire duration of the simulation (100

time steps). The simulation is repeated

1,000 times to obtain an average for each

time step.

Mendel formulated the concept of a gene

(unit of inheritance), and hypothesized

that inheritance is governed by the

following two laws of genetics:

1. Segregation: Each sexually reproduc-

ing organism has two alleles (copies) for

each gene, one inherited from each

parent; and in turn will contribute,

with equal probability (1=2), only

one of these two alleles.

2. Independent assortment: Alleles of

different genes are inherited indepen-
dently (later deemed not so accurate).

The state of a gene, the genotype, is

determined by the two alleles. The result-

ing trait, the phenotype, is then a function of

this state. When the alleles are the same,

the gene, or equivalently the genotype, is

homozygous; otherwise, it is heterozygous. For

example, if an allele can be either a or A,

then the possible genotypes are aa, aA,

Aa, and AA. Table 1 shows the possible

segregations of parental genotypes when at

least one of them is heterozygous.

In a dominant/recessive mode where A

is dominant, the corresponding phenotype

is obtained as a function of the genotype as

shown in Table 2, leading to a 3:1 ratio, a

1:1 ratio, and a 1:0 ratio of dominant to

recessive phenotypes, respectively.

Students often overlook that these ratios

are not simply based on counting the

entries, but the result of the segregation

law: each allele is contributed with equal

probability, i.e., 1=2, resulting in a proba-

bility of 1=2:1=2~1=4 for each entry in the

tables. Table 3 shows another example

involving two heterozygous dominant/re-

cessive genotypes that lead to a 9:3:3:1 ratio

of phenotypes. In addition to the segrega-

tion law, students should be reminded that

this ratio assumes that the law of indepen-

dent assortment holds: alleles of different

genes are inherited independently, resulting

in a probability of 1=2:1=2~1=4 for each

assortment (refer to the next section for a

mathematical definition of independence),
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thus a probability of 1=4:1=4~1=16 for

each entry in the table.

Chromosome, Crossover, and
Recombination

About 100 years later, it was established

that the physical structure underlying

Mendel’s laws is the chromosome (for

simplicity, a long molecule of DNA). This

discovery matched Mendel’s experiments

really well: In diploid organisms like us

chromosomes come in pairs (thus the

name diploid), one from each parent!

With few exceptions, each chromosome

of the pair has copies of the same genes

(special stretches of DNA) arranged in the

same order: the alleles! In an attempt to

explain experimental results and confirm

Mendel’s laws, chromosomal crossover was

formulated and described by Thomas

Morgan (coincidentally, his student John

Northrop was a teacher of botany at

Hunter College, the author’s institution),

but demonstrated only about 20 years

later. Crossover is a mechanism that

occurs at the early stages of the meiotic

prophase, and combines the two chromo-

somes of the pair into one, a process called

genetic recombination. During this process, the

chromosome of the pair that is the source

of the allele alternates every so often.

Exactly when the switch—the crossover—

happens is almost arbitrary.

When two alleles come from different

chromosomes of the pair, their corre-

sponding genes are said to recombine

(can you identify the recombinations in

Table 3?). Figure 2 illustrates a genetic

recombination with one crossover.

A Slight Discrepancy and Genetic
Linkage

Mendel’s laws (segregation and inde-

pendent assortment) dictate that genetic

recombination occurs with a probability of

1=2. Let’s re-examine why this holds true.

Let a and A be the two alleles of gene i on

the two chromosomes. Similarly, let b and

B represent the same for gene j, respec-

tively. Chromosomal crossover will result

in recombination of gene i and gene j if

one of the two assortments aB and Ab
occurs. Since each allele is contributed

with equal probability (segregation), both

a and B are contributed with probability

1=2. Since alleles of different genes are

inherited independently (independent as-

sortment), the assortment aB occurs with

probability 1=2:1=2~1=4 (refer to the

next section for a mathematical definition

of independence). The same analysis

applies for the assortment Ab, leading to

an overall recombination probability of

1=4z1=4~1=2.

However, it has been observed that

some pairs of genes show a correlation in

their alleles, e.g., their probability of

recombination is less than 1=2. In this

case, there is a linkage between the genes.

How can we now incorporate this notion

into the mathematics of Mendel’s laws,

which so far have relied on the fact that

genes are not correlated (assorted inde-

pendently)? Fortunately, a simple proba-

bilistic model based on Figure 2 (1

crossover) will capture the effect of linkage,

and as a result, alleles that are near each

other on a chromosome will tend to be

inherited together. The inaccuracy of

Mendel’s law of independent assortment

lies therein. Nevertheless, one should still

expect that genes which are far from each

Figure 1. Fast convergence of inheritance by averaging.
doi:10.1371/journal.pcbi.1002462.g001

Table 1. Genotypes.

a A a a A A

a aa aA a aa aa a aA aA

A Aa AA A Aa Aa A AA AA

doi:10.1371/journal.pcbi.1002462.t001

Table 2. Phenotypes.

a A a a A A

a a A a a a a A A

A A A A A A A A A

doi:10.1371/journal.pcbi.1002462.t002

Table 3. Phenotypes for two
heterozygous genotypes.

aA bB

ab aB Ab AB

ab ab aB Ab AB

aA aB aB aB AB AB

bB Ab Ab AB Ab AB

AB AB AB AB AB

doi:10.1371/journal.pcbi.1002462.t003
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other on a chromosome (or on different

chromosomes altogether) will assort inde-

pendently, as Mendel once observed. It

will require a better probabilistic model to

reflect those two contradictory behaviors

(genetic linkage and independence); the

later introduction of the Markov chain will

take care of this. But first, I will present a

simple probabilistic model for genetic

linkage. And before doing so, let’s review

some basic mathematics.

What Do We Need to Know?
Probability

Let S~f1, . . . ,ng. A subset of S, E(S,

is considered as an event (but not all events

are subsets of S). Given a variable x,

define the following probabilities of events:

P(x~i)~P(fig)~ 1

n
, 1ƒiƒn

(uniformly random)

P(E)~DED
1

n
~

1

n
z . . . z

1

n
(DED times)

where D D denotes the size of a set. So

P(S)~1. The negation of an event will

always satisfy:

P(not E)~1{P(E)

Given two events E1 and E2, E1 and E2

are exclusive (cannot occur together) if and

only if

P(E1 or E2)~P(E1)zP(E2)

Given two events E1 and E2, E1 and E2

are independent if and only if

P(E1 and E2)~P(E1)P(E2)

For instance, if E1 is an event of

probability q and E2(S, then

P(E1 and E2)~qDE2D=n. In general, how-

ever, E1 and E2 may not be independent.

So we define the probability of E2

conditional on E1, i.e., the probability of

E2 given that E1 occurs.

P(E2DE1)~
P(E1 and E2)

P(E1)

For instance, let E1~fiz1, . . . ,mg and

E2~fdz1, . . . ,ng with iƒdvm. Note

that
P(E1 and E2)~P(fdz1, . . . ,mg)
~(m{d)=n=P(E1)P(E2)

.

Then,

P(E2jE1)~
P(E1 and E2)

P(E1)

~
(m{d)=n

(m{i)=n
~

m{d

m{i

Matrix Multiplication
I will assume some familiarity with

matrices. If, however, this notion is

unfamiliar, the parts of the exposition that

use matrices may be skipped. Only 2|2
matrices will be considered in this exposi-

tion. The multiplication of 2|2 matrices

is defined below.

a b

c d

� �
e f

g h

� �
~

aezbg af zbh

cezdg cf zdh

� �

a b

c d

� �n

~
a b

c d

� �
. . .

a b

c d

� �
(n times)

Geometric Series
One of the series that is almost invari-

ably covered in basic calculus is the

geometric series.

1zaza2z . . . zan{1~

1{an

1{a
, a=1

n, otherwise

8<
:

Exponential Limit
This is one of the basic expressions

covered when studying limits.

lim
n??

(1z
a

n
)n~ea, e~2:71828183

Therefore, (1za=n)n&ea for large n.

Logarithm
Here’s the definition of natural loga-

rithm and some of its properties:

ln a~bua~eb

ln ab~b ln a

Figure 2. One chromosomal crossover and a genetic recombination.
doi:10.1371/journal.pcbi.1002462.g002
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ln ab~ln azln b

Harmonic Series
Another famous encounter is the har-

monic series and its approximation.

1z
1

2
z

1

3
z . . . z

1

n
&ln n, for large n

Derivatives
A function f (x) reaches a local maxi-

mum or minimum when its derivative

f ’(x)~0. Here are some examples of

derivatives:

½axzb�’~a

½f (x)g(x)�’~f ’(x)g(x)zf (x)g’(x)

½ln f (x)�’~ f ’(x)

f (x)

A Simple Model

Motivated by Figure 2, a uniform 1-

crossover model can be constructed as

follows: Consider a chromosome with n

genes, i.e., n alleles on each chromosome

of the pair. A crossover x is equal to i if it

separates gene i and gene iz1, where

gene nz1 is hypothetical when x~n, i.e.,

no crossover. Assume that x is uniform in

f1, . . . ,ng (thus the name of the model).

Linkage
Based on the above setting, x takes any

value in f1, . . . ,ng with probability 1=n.

Two genes at a distance 0ƒdvn, say i
and izd , will recombine if x is in

fi, . . . ,izd{1g, i.e., with probability

1=nz . . . z1=n (d times),

pd~
d

n

This confirms that genes within a close

distance (small d ) on the chromosome are

less likely to be subject to recombination

(genetic linkage). Genes that are far apart

(large d) have a high probability (up to

1{1=n) of recombination, but are they

independent (see ‘‘What Is Wrong’’ sec-

tion)?

Segregation
To find the probability that a given

allele of gene i is inherited, let E with

probability q be the event that the

recombination process starts on the given

chromosome of the pair. This event and

that genes 1 and i recombine (an event of

probability (i{1)=n) are independent.

The probability of inheriting the given

allele is:

P E and genes 1 and i do notð

recombine or not E and genes

1 and i recombineÞ

~P E and genes 1 and i do notð

recombine)

zP not E and genes 1ð and i

recombineÞ

The addition is justified by the exclusivity

of the events: a given allele is inherited

when the process starts on the given

chromosome and genes 1 and i do not

recombine, or when the process starts on

the other chromosome and genes 1 and i

recombine. Due to the independence of E

and recombination, the above becomes:

~q 1{
i{1

n

� �
z(1{q)

i{1

n

A reasonable assumption is that q~1=2
and, in this case, the above evaluates to

1=2 for every i, as predicted by the

segregation law.

Genetic Mapping

Genetic mapping is the problem of

placing the genes along the chromosome

in their correct relative order. The bad

news: It is hard! The good news: Genetic

linkage can be used to infer genetic

mapping. Though obsolete (it has been

done), genetic mapping can be considered

to be the first effort towards a computational

approach to biology. How does it work?

In the uniform 1-crossover model,

genetic linkage tells us that the probability

of recombination of two genes is propor-

tional to the distance between these genes.

Now consider the genotyping depicted in

Table 4 where frequency of recombination

can be used as a measure of distance. In a

way analogous to Table 4, analyzing the

frequency of different pairs of the phe-

notypes A, B, and C might reveal, for

instance, that B and C recombine more

often than A and B; therefore, we infer

that B is closer to A than C. Such

arguments help us to derive the gene

order on the chromosome (relative order,

not exact distances). While it may be hard

to set up the experiment and obtain many

offsprings to estimate probabilities, such

arguments were definitely behind the

construction of the early genetic maps,

e.g., the first map of the human genome

(all the chromosomes) in 1987.

What Is Wrong?

The reader may choose to skip this

section to the next. The uniform 1-

crossover model is very insightful in

explaining Mendel’s law of segregation

with independent assortment corrected to

reflect genetic linkage. However, it suffers

from a few deficiencies.

Linkage: OK But…
Nothing is seriously wrong about this

aspect. By assigning lower probabilities of

recombination for smaller distances, the

distance between two genes justifies their

linkage when they do not assort indepen-

dently. However, the actual probability of

recombination may not necessarily be

proportional to distance or have a

dependence on the chromosome length,

as in pd~d=n (but more on this in the

Markov section).

Segregation: Too Sensitive
The probability of inheriting a given

allele is contingent on the probability that

the recombination process starts on the

given chromosome of the pair, previously

called q. If q~1=2, the probability of

inheriting a given allele is 1=2, as it should

be by the segregation law. While this is a

biologically reasonable assumption on q,

the segregation law stands very sensitive to

this particular choice. A slight deviation

from q~1=2 could result in a similar

deviation in the probability of inheriting

the given allele. Let q~1=2{E, then this

probability for gene i is (from the ‘‘Segre-

gation’’ section):

Table 4. Frequency and distance.

aA bB

ab aB A b AB

aa bb ab ab aB Ab AB

The frequency of observing aB and Ab determines
the probability of recombination of the two genes,
thus a measure to reflect their distance.
doi:10.1371/journal.pcbi.1002462.t004
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1

2
{E

� �
1{

i{1

n

� �
z

1

2
zE

� �
i{1

n

When i~n, i.e., (i{1)=n&1, this is

approximately 1=2zE. If the starting of

the recombination process favors one

chromosome, E can be large, say close to

1=2 (q&0). The above probability be-

comes arbitrarily close to 1. This means

that the given allele will be inherited

almost always.

Independent Assortment: Breaks
Despite genetic linkage, one should still

expect that genes which are far from each

other on the chromosome will assort

independently. Because each chromosome

can be treated separately, this indepen-

dence is certainly true for genes that are

on different chromosomes altogether. But

on the same chromosome, the probability

of recombination pd~d=n implies, for

instance, that recombination of gene 1

and gene n occurs with a probability of

(n{1)=n&1 for large values of n. There-

fore, gene 1 and gene n are highly

correlated, and thus dependent (they will

almost always recombine).

In retrospect, two genes i and j
recombine when the alleles of the two

genes are inherited from different chro-

mosomes. Since the probability of inher-

iting a given allele is 1=2 when the

segregation law holds, independence then

dictates that the probability of recombina-

tion of gene i and gene j must be equal to

1=2. To see this, let Ei and Ej represent

the events of inheriting a given allele for

gene i and gene j, respectively, then:

P(genes i and j recombine)

~P(Ei and not Ej or Ej and not Ei)

~P(Ei and not Ej)zP(Ej and not Ei)

~P(Ei)½1{P(Ej)�zP(Ej)½1{P(Ei)�

where addition is justified by exclusivity of

events, and the last equality follows from

that gene i and gene j are independent.

When the segregation law holds,

P(Ei)~P(Ej)~1=2 and the above expres-

sion evaluates to 1=2:1=2z1=2:1=2~1=4
z1=4~1=2. Assuming q in the previous

section is 1=2, genes are independent if

and only if d~n=2. Therefore, the law of

independent assortment fails when genes

are on the same chromosome.

Now, why do we insist that the model

must satisfy, among other properties, the

law of independent assortment? Well,

first because it is a correct law for distant

genes. And second, since the probability

of recombination increases with distance

due to genetic linkage, the law of

independent assortment tells us that the
probability of recombination in-
creases up to 1=2, but cannot
exceed 1=2 (this statement excludes

hotspots, which are regions on the chro-

mosome that experience a high proba-

bility of recombination even at small

distances). It is important for students to

make this realization, which will come in

handy when solving genetic mapping

problems, as illustrated in the section

‘‘A Computational Example of Genetic

Mapping’’.

Generalization: Not Easy
One might consider extending the

uniform 1-crossover model as an attempt

of generalization to mimic the actual

biological process. However, I will show

that extending this model in the most

natural way (mathematically, that is) will

break the linkage property. For this

purpose, consider a uniform 2-crossover

model. Let x1 be the first crossover which

is uniform in f1, . . . ,ng (as before), and x2

be the second crossover which, condition-

al on x1, is uniform in fx1, . . . ,ng.
Therefore, x1 and x2 are not indepen-
dent, for x2 cannot precede x1. The

choice of x2§x1 simplifies the math, but

making x2wx1 does not change the

results.

Now, why even bother to show that this

model, which is more difficult to analyze

than its predecessor, does not work? Well,

my experience in teaching has been the

following: While it is important to show

students what works, it is equally impor-

tant to show them what does not work.

With this in mind, all we need is a

counter example, so consider gene 1 and

gene dz1 (these two genes are at a

distance d from each other). The proba-

bility of a recombination of gene 1 and

gene dz1 is:

P(x1ƒd and x2wd)

Using conditional probability and the

harmonic series approximation, the ‘‘Uni-

form 2-crossover Model’’ section shows

that when n{d is large, this probability is

approximately

n{d

n
½ln n{ln(n{d)�

We can rewrite the above as:

{
n{d

n
ln

1

n
zln(n{d)

� �

~{
n{d

n
ln

n{d

n

This is not an increasing function of d. In

fact, consider f (x)~{x ln x. This func-

tion has a maximum of 1=e when

f ’(x)~{ln x{1~0[x~1=e. There-

fore, we have the highest probability of

recombination when (n{d)=n~1=e, i.e.,

d~n(1{1=e). Note that in this case

n{d~n=e, which is large (as required

above) when n is large. This means that

gene 1 is most likely to recombine with a

gene located at a distance approximately

63% of the chromosome length (see

Figure 3). While this is an interesting

result, it stands as a pure mathematical

endeavor with no biological basis.

A Better Model: When Markov
Meets Mendel

While the uniform 1-crossover model

captures the essentials of segregation and

linkage, it is lacking in some important

aspects. First, the probability that a given

allele is inherited (should be 1=2) depends

on an implicit parameter of the model (q in

the ‘‘Segregation’’ section must be 1=2).

Second, genes exhibit the linkage property

but they are almost never independent, as

this would require a probability of recom-

bination equal to 1=2 (see ‘‘A Slight

Discrepancy and Genetic Linkage’’ section).

From the ‘‘Linkage’’ section, this probability

is expressed as d=n, implying that only

genes at a distance equal to half the

chromosome length are independent.

Moreover, the probability of recombination

depends on the chromosome length and,

therefore, two chromosomes that are locally

similar but have different lengths exhibit

different local recombination behavior.

This is not biologically justifiable. Finally,

a generalization (with uniformity main-

tained) to mimic the real biological process

with multiple crossovers is not conceivable.

A better mathematical model is needed

to rectify the above deficiencies. In princi-

ple, the model should satisfy the following

three laws with multiple crossovers:

1. Segregation: The probability that a

given allele of the gene is inherited is

1=2.
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2. Linkage (missed by Mendel): The

probability of recombination of two

genes is an increasing function of the

distance between them, so it is higher

for distant genes. Nevertheless, it

should not depend on the chromosome

length.

3. Independent assortment: This is

impossible due to linkage where dis-

tance is a determining factor in the

recombination. The alternative is to

require genes to be asymptotically

independent. As a result, the probabil-

ity of recombination must approach

1=2 when the distance between the two

genes becomes large.

Being a computer scientist by training

and not a biologist, when I first suggested

to my students a model based on a Markov

chain, I called it the jumping model of

recombination. I also expressed to them my

concern that it may not be real, but as it

turned out, it made perfect sense. To be

loyal to my first terminology, I will call it

here the jumping model.

The Jumping Model
The jumping model is based on a

Markov chain. A Markov chain consists

of a set of states with probabilities of

transition between them (thus the jumping

term). For computer scientists, this is often

illustrated as a directed weighted graph

with vertices representing the states and

directed edges representing the transitions

between states. The weight of an edge is

the probability of the corresponding tran-

sition. This is shown in Figure 4 for a

Markov chain with two states. Operation-

ally, one would start at a given state and

follow transitions in discrete time steps as

indicated by their probabilities, thus

changing state from one step to another.

Let akl be the probability of transition

from state k to state l, and xi be the state

at time step i. Figure 4 shows a transition

probability p between the two states (and

1{p to the same state, because the

transition probabilities of a given state

must sum up to 1). A generalized notion of

a transition is captured by a conditional

probability with the following property:

Markov property: For jwi,

P(xj~ljxi~k and xi{1~ . . . )

~P(xj~ljxi~k)

When j~iz1, this probability is the transi-

tion probability akl~P(xiz1~lDxi~k). In

the event (xi~k and xi{1~ . . . ) only

xi~k is relevant. In other words, the

probability of a state at a given time depends

only on the most recently known state.

What is the biological significance of the

Markov chain in Figure 4? Each state

represents a chromosome of the pair, and

time in the Markov chain corresponds to

Figure 3. The uniform 2-crossover model. Probability of recombination of the first gene and a gene at a distance given as a percentage of the
chromosome length. A maximum probability of 1=e~0:367879 occurs at (1{1=e):100&63%.
doi:10.1371/journal.pcbi.1002462.g003

Figure 4. A simple Markov chain. Arguably the simplest Markov chain with two states, where each state represents one chromosome of the pair.
Transitions between the two states (chromosomal crossovers) occur with probability p.
doi:10.1371/journal.pcbi.1002462.g004
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genes on the chromosome. A transition

between states in one time step signifies a

crossover, and the probability of such a

crossover is p. Therefore, xi represents a

crossover when xi=xiz1. One could then

inquire about the probability of being in a

given state at a given time. The event of

being in a given state at time i parallels the

event that the corresponding chromosome

is the source of the allele for gene i. This is

illustrated in Figure 5 by conceptually

duplicating the chain for each gene to

reflect the change of state over time.

A useful representation of a Markov

chain is by a matrix P where Pkl (the term

in the kth row and lth column of P) is the

probability of transition from state k to

state l; therefore, every row in P must add

up to 1. If we call the states in Figure 4

state 1 and state 2, then our Markov chain

can be expressed as:

P~
1{p p

p 1{p

� �

In this matrix, Pkl can be interpreted as

P(xiz1~lDxi~k)~akl . Why is this matrix

representation useful? Let’s multiply P by

itself:

P2~
1{2p(1{p) 2p(1{p)

2p(1{p) 1{2p(1{p)

� �

Note for instance that P2
12~2p(1{p) is

equal to P(xiz2~2Dxi~1), because to

transition from 1 to 2 in two time steps

we can transition from 1 to 1 to 2 with

probability (1{p)p or from 1 to 2 to 2

with probability p(1{p). As it turns out,

P(xizd~lDxi~k)~Pd
kl . The proof of this

fact is in the ‘‘Markov Transitional

Probabilities’’ section and uses conditional

probability and the Markov property.

Thus, every row in Pd must also add up

to 1.

Because P is a symmetric matrix

(P12~P21), a final note is that all powers

of P are symmetric matrices. Therefore,

Pd
kl~Pd

lk, which now implies that every

column in Pd must also add up to 1. We

can finally establish that the probability of

recombination is

pd~P(xi~1 and xizd~2

or xi~2 and xizd~1)

~P(xi~1)P(xizd~2Dxi~1)

zP(xi~2)P(xizd~1Dxi~2)

~P(xi~1)Pd
12zP(xi~2)Pd

21

~Pd
12½P(xi~1)zP(xi~2)�

~Pd
12
:1~Pd

12~Pd
21

Segregation and Independent
Assortment

Following the logic of previous sections,

the probability that a given allele of gene i

is inherited is:

q(1{pi{1)z(1{q)pi{1

Figure 5. Crossover and recombination as a Markov chain. Dashed lines represent transitions (crossovers) with probability p, and solid lines
(black and white) represent transitions (on the same chromosome) with probability 1{p.
doi:10.1371/journal.pcbi.1002462.g005
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Again, if q~1=2 the above probability is

1=2, which makes the jumping model

subject to the same sensitivity to q as the

uniform 1-crossover model. However, this

can now be alleviated. The theory of

Markov chains tell us that Pd will

converge for large values of d and all rows

of Pd become identical. Therefore, the

rows will define a steady state probability for

each state. In other words, the effect of q
will be washed out. This theory will not be

presented here, but Figure 6 shows a few

powers of a given matrix P.

Because Pd is symmetric in our case,

Pd
11~Pd

21 (convergence)

Pd
21~Pd

12 (symmetry)

Pd
12~Pd

22 (convergence)

Since rows and columns of Pd must both

add up to 1, pi{1~Pi{1
12 ~Pi{1

21 converges

to 1=2 for large enough i. By exchanging the

roles of q and pi{1 in the top expression, we

also get 1=2, maintaining the segregation

law for large enough distances when

q=1=2.

In addition, since both P(xizd~lDxi~k)
and P(xizd~l) approach 1=2, we have

that P(xizd~lDxi~k)&P(xizd~l) for

large d. This makes P(xi~k and xizd~l)
~P(xi~k)P(kizd~lDxi~k)&P(xi~k)

P(xizd~l) when d is large. Therefore,

genes i and izd are asymptotically inde-

pendent, confirming the law of independent

assortment for large enough distances.

Linkage (and Hotspots!)
The previous sections show that

pd~Pd
12 and that Pd

12 converges to 1=2
for large values of d, thus establishing the

laws of segregation and independent

assortment. However, we wish to deter-

mine pd for every value of d. This will re-

establish the above results. This time,

however, and instead of using the theory

of matrices (e.g., eigen decomposition) to

study how Pd evolves, I will revert to

elementary mathematics. Two genes at a

distance d from each other will recombine

if and only if their chromosome experi-

ences an odd number of crossovers along

that distance. This is equivalent to the

event of making an odd number of

transitions between the two states of the

Markov chain during d time steps. Let Ed

be this event (thus pd~P(Ed )). It is not

hard to see that

Ed|{z}
odd

~( Ed{1|ffl{zffl}
odd

and not E1|fflfflffl{zfflfflffl}
even

)

or ( not Ed{1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
even

and E1|{z}
odd

)

Observe that p1~P(E1)~p. Therefore,

we can write:

pd~pd{1(1{p)z(1{pd{1)p

The Markov property is essential to justify

the multiplication by 1{p and p in the

above equation because it makes E1

independent of the history Ed{1. Techni-

cally, P(E1DEd{1) does depend on the

state at time step d{1, but given the

symmetry in our Markov chain, it is

always p. By rearranging and taking care

of the special case when d~1 we get:

pd~
(1{2p)pd{1zp dw1

1 d~1

�

It is easy to verify that the solution

pd~
1{(1{2p)d

2

satisfies the above recurrence with a base

case p1~1 (following the pattern of the

recurrence, we can retrieve the above

expression if we replace d by d{1,

multiply by (1{2p), and add p).

While it is easy to verify the solution,

obtaining it should not remain a wild

guess. By working out a few iterations for

pd , the ‘‘Recurrence for pd ’’ section shows

how to derive the solution using a

geometric series.

The mathematically savvy could verify

that 1{2p is an eigenvalue of P, and that

the same expression could have been

Figure 6. Convergence to steady state probabilities. Computation is performed with a rounding error {5:10{7
vEƒ5:10{7 .

doi:10.1371/journal.pcbi.1002462.g006
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obtained using a technique called eigen

decomposition. This expression for pd

reveals interesting properties (all can be

verified from Figure 7):

N When d is large (and pw0), (1{2p)d

goes to zero, causing pd to converge to

1=2. This convergence was discussed

in the previous section, and should not

be surprising by now.

N When 0vpv1=2 (1{2p is positive),

(1{2p)d is greater than zero and less

than one, causing pd to increase with d
(linkage). This increase, however, is

not linear as in the uniform 1-cross-

over model; therefore, it is biologically

more realistic.

N When pw1=2 (1{2p is negative), the

sign of (1{2p)d alternates, causing pd

to alternate between a typical value for

d and high (hotspots, first time cap-

tured).

The jumping model captures the essen-

tial biology of crossover and recombina-

tion through the laws of segregation,

linkage, and independent assortment. In

addition, it reveals the non-typical high

recombination probabilities of hotspots.

Hotspots are regions on the chromosome

that experience a high probability of

recombination even at small distances.

Therefore, depending on the parameter

p, the jumping model embodies two

modes of chromosomal recombination.

While a hotspot does not present a

difficult concept, it is usually misinterpret-

ed by students as a region with high probability

of recombination. This is true if the region is

too small (a peak in Figure 7), which is

biologically typical of hotspots. However,

if the region is large enough, there can be

a high probability of recombination only if

there is a corresponding low probability,

as seen by the alternating pattern in

Figure 7. What is interesting about the

jumping model (which may not be true

biologically) is that this low probability is

the typical one for the given distance when

p is replaced with 1{p. This is also

confirmed by the expression we derived

for pd , because when pw1=2 and

pdv1=2, d is even and, therefore,

(1{2p)d~(2p{1)d :

1{(1{2p)d

2
~

1{(2p{1)d

2

~
1{½1{2(1{p)�d

2

The alternation itself should be intuitive

because a high probability of recombina-

tion at a small distance must be driven by

a high probability of crossover, which in

turn means a high probability of crossing

over back to the same chromosome. The

jumping model captures this fact through

the parameter p with a threshold of 1=2 as

a high probability of crossover.

Back to the Days of Morgan
Morgan established that the probability

of recombination as a function of distance

is the following:

pd~
1{e{2d

2

which does not account for hotspots. In

addition, the notion of distance in the

above expression is not the same as ours.

To see this, assume that p is close to zero

in the jumping model (no hotspots) and,

therefore, 1=p is large. Using the expo-

nential limit,

(1{2p)d~ (1{
2

1=p
)
1
p

� �pd

&½e{2�pd
~e{2pd

By making l~pd, and replacing (1{2p)d

with e{2pd in the expression obtained for

pd , we get

pl~
1{e{2l

2

which has the same form as Morgan’s

expression. So what is l?

l~
d

1=p

where d is the distance and 1=p is the

average distance until the next crossover

(because a crossover occurs with probabil-

ity p). So l is the average number of

crossovers between the two genes, and this

is how Morgan defined his distance.

Why This Way?

I could have simply argued that the

probability of recombination pd is

(1{e{2d )=2, and that this is consistent

Figure 7. The jumping model, two modes of recombination, for pv0:5 and 1{p.
doi:10.1371/journal.pcbi.1002462.g007
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with the laws of inheritance. Therefore, I

will list what I believe are important

aspects of this exposition.

N There is a rapid prototyping with a

simple uniform 1-crossover model that

reflects the essential biological proper-

ties of crossover and recombination

(though not perfectly). This allows the

student to quickly make a connection

between the biology and the mathe-

matics.

N There is no need for advanced calculus

or probability (e.g., no mention of

Poisson processes or probability distri-

butions other than uniform).

N To achieve a better understanding of

the biological properties, the exposi-

tion proceeds by pointing out the

deficiencies of the simple model.

N The simple model itself is a useful tool

that is actually used for simulation,

e.g., genetic algorithms.

N Having a model (whether mathemati-

cal or not) provides some operational

sense, so the biology is made more

concrete.

N Moving progressively through the

models illustrates what it takes to make

attempts, including wrong ones, in the

modeling of biological systems.

N Multiple models reinforce the ideas by

exposing them in different settings.

N Markov chains are useful as a tool for

modern biological sciences and,

therefore, introducing them in this

context gives the student an early

preparation.

N The jumping model captures two

modes of recombination, normal and

hotspots, and puts them in their

biological context by means of the

parameter p.

N The jumping model also provides the

insight that the probability of crossover

must be less than 1=2 to observe the

typical behavior of recombination

(linkage), and hence giving the correct

impression that p is rather small.

N The alternating behavior of the jump-

ing model corrects one major misun-

derstanding of hotspots.

N Morgan’s first result can be derived as

a special case.

N The jumping model can be described

(not necessarily analyzed) very easily

and satisfies all the required biological

properties of crossover and recombi-

nation. Therefore, a student can effec-

tively retain and communicate the

recombination process.

A Computational Example of
Genetic Mapping

Consider the hypothetical family in

Table 5 where alleles take values in

f0,1g (inspired by a homework assigned

by Bonnie Berger at MIT).

To map the genes (genetic mapping), we

count the number of recombinations, both

paternal and maternal, for each pair of

genes, AB, AC, and BC. Then we

estimate the probabilities of recombination

and relate them to distances.

There are 2n{i recombinations of A
and B, 2n{izx recombinations of A and

C, and 2i{1zx recombinations of B and

C. Therefore, A and B recombine with

probability (2n{i)=(2n), A and C with

probability (2n{izx)=(2n), and B and C
with probability (2i{1zx)=(2n). Let’s

denote these probabilities by P(AB),
P(AC), and P(BC), respectively. If n is

large enough, P(AB)&P(AC)&1{a=2
and P(BC)&a.

First Attempt
Since 1{a=2w1=2 (for AB and AC),

and it is not generally assumed that genes

represent hotspots, we might suspect that

our knowledge of the alleles of gene A is

wrong. It is more plausible that the alleles

of gene A are 1,0 for the father and

mother, as shown in Table 6.

This will make P(AB)&P(AC)&a=2
and will keep P(BC)&a. Since the

probability of recombination of distant

genes is higher, the order of genes is B, A,

C or C, A, B.

This solution puts B and C at equal

distances from A and, therefore, makes the

distance from B to C twice the distance

from A to B (and that from A to C).

However, doubling the distance should

not double the probability of recombina-

tion unless the probability is a linear

function of distance like in the uniform

1-crossover model. We may adopt this

model here if we know in advance that

only one crossover occurs; this condition-

ing makes the crossover uniform even

when the underlying model is the jumping

one (because of the symmetry in the

Markov chain). For this argument to work

we will also need x~1; otherwise, we

observe a double crossover for Offspring i
in Table 6.

Second Attempt
If we believe that our knowledge of the

alleles in Table 5 is correct, then the genes

are in a hotspot region. The obtained

probabilities 1{a=2 and a must correspond

to the alternating pattern in Figure 7.

Therefore, the order is again B, A, C or

C, A, B, with A situated at equal distances

from B and C. But are the probabilities

consistent? In the jumping model, one could

easily show that (1{2pd )2~1{2p2d .

Therefore, we must verify that ½1{
2(1{a=2)�2~1{2aza2&1{2a, so we

will need a to be small enough. Note also

that if a is small enough, the probability that

B and C recombine is P(AB)½1{P

Table 5. A hypothetical family and
three genes A, B, and C shown with
their alleles.

Genes

A B C

Father 0,1 0,1 0,1

Mother 0,1 0,1 0,1

Offspring 1 0,0 1,0 0,1

..

. ..
. ..

. ..
.

Offspring i{1 0,0 1,0 0,1

Offspring i 0,0 0,1 x,0

Offspring iz1 0,0 1,1 1,1

..

. ..
. ..

. ..
.

Offspring n 0,0 1,1 1,1

For simplicity of illustration, the chromosome of
the pair with allele 0 inherited for gene A (both
parental and maternal) is chosen for the
offsprings, so this is not to be interpreted as if
allele 0 is always inherited for gene A. Offsprings 1
to i{1 are identical, and similarly, offsprings iz1

to n are identical. Allele x is either 0 or 1, and i~an

for some 0vav1=2.
doi:10.1371/journal.pcbi.1002462.t005

Table 6. The same hypothetical family
after the alleles of gene A have been
switched.

Genes

A B C

Father 1, 0 0,1 0,1

Mother 1, 0 0,1 0,1

Offspring 1 0,0 1,0 0,1

..

. ..
. ..

. ..
.

Offspring
i{1

0,0 1,0 0,1

Offspring i 0,0 0,1 x,0

Offspring
iz1

0,0 1,1 1,1

..

. ..
. ..

. ..
.

Offspring n 0,0 1,1 1,1

doi:10.1371/journal.pcbi.1002462.t006
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(AC)�z½1{P(AB)�P(AC)&a(1{a=2)
~a{a2=2&a, which is consistent. More-

over, the probability of a double crossover is

P(AB)P(AC)&(1{a=2)2~1{aza2=4
&1{a, which is the proportion of

offsprings in Table 5 that exhibit the

double crossover.

A Possible Delivery Method

Here’s a possible method for delivering

the content of this exposition to students:

1. Describe the recombination process

and genetic linkage with the uniform

1-crossover model as a hypothetical

prototype, and explain how genetic

mapping can be done based on ob-

served probabilities. Introduce hotspots

as an exception to the normal behavior

of recombination.

2. As part of a homework assignment, ask

which biological properties are satisfied

by the uniform 1-crossover model and

which are not. Assume that q in the

‘‘Segregation’’ section is 1=2. In addi-

tion, ask the students to solve a genetic

mapping problem with the biological

properties in mind and determine

whether hotspots are involved or not.

3. (optional) As an advanced question, ask

to prove that a uniform 2-crossover

model breaks the linkage property.

4. Provide solutions and briefly go over

them in class. Introduce Markov chains

and the jumping model.

5. As a programming assignment, ask to

simulate the jumping model with various

values of the parameter p and observe

how the probability of recombination

changes with distance. Assume that q in

the ‘‘Segregation’’ section is 1=2.

6. Provide solutions and wrap up by

explaining some of the properties of a

Markov chain through the jumping

model, including the ability to model

hotspots.

Uniform 2-Crossover Model

The derivation of the result is as follows:

P(x1ƒd and x2wd)

~P(x1~1 and x2wd

or x1~2 and x2wd

or . . . or x1~d and x2wd)

By the exclusivity of events, this is

P(x1~1 and x2wd)

zP(x1~2 and x2wd)

z . . . zP(x1~d and x2wd)

~P(x1~1)P(x2wd Dx1~1)

zP(x1~2)P(x2wd Dx1~2)

z . . . zP(x1~d)P(x2wd Dx1~d)

and since x1~i means x2 is in fi, . . . ,ng,
this is

1

n
P(fdz1, . . . ,ngDf1, . . . ,ng)

z
1

n
P(fdz1, . . . ,ngDf2, . . . ,ng)

z . . . z
1

n
P(fdz1, . . . ,ngDfd, . . . ,ng)

~
1

n

n{d

n
z

n{d

n{1
z . . . z

n{d

n{dz1

� �

~
n{d

n

1

n
z

1

n{1
z . . . z

1

n{dz1

� �

&
n{d

n
½ln n{ln(n{d)�

when n{d is large.

Markov Transitional
Probabilities

The proof is by induction where

P(xiz1~lDxi~k)~akl~P1
kl is the base

case.

P(xizd~lDxi~k)~

P(xizd{1~1 and xizd~l

or xizd{1~2 and xizd~lDxi~k)

By exclusivity of the two events, this is:

P(xizd{1~1 and xizd~lDxi~k)

zP(xizd{1~2 and xizd~lDxi~k)

Note that

P(E1 and E2jE3)~

P(E1jE3)P(E2jE1 and E3)

which can be derived from the definition

of conditional probability. Therefore, we

can rewrite the above as:

P(xizd{1~1jxi~k)

P(xizd~ljxizd{1~1 and xi~k)

zP(xizd{1~2jxi~k)

P(xizd~ljxizd{1~2 and xi~k)

By the Markov property this is:

P(xizd{1~1jxi~k)

P(xizd~ljxizd{1~1)

zP(xizd{1~2jxi~k)

P(xizd~ljxizd{1~2)

~Pd{1
k1 P1lzPd{1

k2 P2l~Pd
kl

The equality before last represents the

inductive step of the proof. The last

equality follows immediately from the

definition of matrix multiplication.

Recurrence for pd

Knowing that p1~p, we have a recur-

rence for pd that we can solve,

pd~(1{2p)pd{1zp. To obtain pd we

multiply pd{1 by (1{2p) and add p. Here

are a few attempts:

p1~p
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p2~(1{2p)p1zp~

(1{2p)pzp~p½1z(1{2p)�

p3~(1{2p)p2zp

~(1{2p)p½1z(1{2p)�zp

~p½1z(1{2p)z(1{2p)2�

p4~(1{2p)p3zp

~(1{2p)p½1z(1{2p)z(1{2p)2�zp

~p½(1z(1{2p)z(1{2p)2z(1{2p)3�

We can easily generalize those attempts to

obtain a geometric series:

pd~p½1z(1{2p)z

(1{2p)2z . . . z(1{2p)d{1�

pd~p
1{(1{2p)d

1{(1{2p)
~

1{(1{2p)d

2

Conclusion

I am not aware of any other exposition

of chromosomal crossover, recombination,

genetic linkage, hotspots, and genetic

mapping that takes the approach outlined

herein. The approach represents a simple

and modern treatment of an ancient

subject, without a compromise of its

scientific and mathematical integrity.

The reader should find an insightful

explanation with a focus on reinforcing

the ideas by exposing them in different

settings. In addition, there is an attempt to

introduce the reader to the process of

modeling by showing what works and

what doesn’t. Most importantly, this

should provide an early chance to convey

to our students that biology is a compu-

tational science.

Disclaimer

I ignored some of the biological detail in

favor of simplicity and consistency. Keep

in mind, however, that in biology there is

always an exception to the rule!

Further Readings

There is no explicit referencing in the

text. This is intentional. I used what

everyone would now consider folklore

from biology, probability, and calculus.

All can be found in textbooks, even

elementary ones. For the interested reader,

however, and in addition to any introduc-

tory texts on probability and calculus, here

is a list (in alphabetical order by author) of

book chapters that will provide enough

background for further endeavors.

1. Gallager RG (1996) Finite State Mar-

kov Chains. In: Discrete Stochastic

Processes (pp. 103–112). Norwell,

MA: Kluwer Academic Publishers.

2. Hunter LE (2009) Evolution. In: The

Process of Life: An Introduction to

Molecular Biology (pp. 19–47). Cam-

bridge, MA: The MIT Press.

3. Lovász L, Pelikán J, Vesztergombi K

(2003) Combinatorial Probability. In:

Discrete Mathematics: Elementary and

Beyond (pp. 77–80, Uniform Probabil-

ity). New York, NY: Springer.

4. Stein C, Drysdale RL, Bogart K (2011)

Probability. In: Discrete Mathematics

for Computer Scientists (pp. 276–279,

Conditional Probability). Boston, MA:

Pearson Education Inc. (Addison-Wes-

ley).

5. Pevzner PA (2001) Computational

Gene Hunting. In: Computational

Molecular Biology: An Algorithmic

Approach (pp. 1–18). Cambridge,

MA: The MIT Press.
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