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Abstract

High-throughput RNA sequencing enables quantification of transcripts (both known and novel), exon/exon junctions and
fusions of exons from different genes. Discovery of gene fusions–particularly those expressed with low abundance– is a
challenge with short- and medium-length sequencing reads. To address this challenge, we implemented an RNA-Seq
mapping pipeline within the LifeScope software. We introduced new features including filter and junction mapping,
annotation-aided pairing rescue and accurate mapping quality values. We combined this pipeline with a Suffix Array Spliced
Read (SASR) aligner to detect chimeric transcripts. Performing paired-end RNA-Seq of the breast cancer cell line MCF-7 using
the SOLiD system, we called 40 gene fusions among over 120,000 splicing junctions. We validated 36 of these 40 fusions
with TaqMan assays, of which 25 were expressed in MCF-7 but not the Human Brain Reference. An intra-chromosomal gene
fusion involving the estrogen receptor alpha gene ESR1, and another involving the RPS6KB1 (Ribosomal protein S6 kinase
beta-1) were recurrently expressed in a number of breast tumor cell lines and a clinical tumor sample.
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Introduction

The transcriptome comprises the set of all transcripts in a cell and

their quantity at a specific stage and time. RNA-Seq enables

hypothesis-neutral investigation of the expression of the transcripts

including non-coding RNA and viruses [1]. RNA-Seq provides

advantages over microarray technology such as the detection of

novel transcripts (both truly novel as well as those arising from

alternative splicing) and sensitivity over a greater range of

expression [2]. Methods to more comprehensively analyze RNA

sequencing data are being developed, with particular focus on

normalization of differential gene expression, annotation of the

transcriptome, and characterization of the splicing junctions [3–12].

Paired-end RNA-Seq further enhances quantification of alternative

transcripts [13–16]. Analysis of tissue and single-cell-specific RNA is

revealing cellular gene expression diversity and phenotypy [17–19].

Gene fusions arise from mutations including translocations,

deletions, inversions, or trans-splicing. Fusion genes are thought to

cause tumorigenesis by over-activating proto-oncogenes, deacti-

vating tumor suppressors, or altering the regulation and/or

splicing of other genes which lead to defects in key signaling

pathways [20]. Fused RNAs are found to occur in significantly

higher frequency in cancer than in matched benign samples and

may be potential biomarkers [21]. For example, 95% of patients

with clinical chronic myeloid leukemia (CML) express the BCR-

ABL gene fusion in their leukemia cells due to a reciprocal

translocation between the long arms of chromosomes 9 and 22

[22,23]. BCR-ABL is also found to be a factor in 30% to 50% of

adult acute lymphoblastic leukemia cases [24]. Imatinib is a

specific tyrosine kinase inhibitor targeting BCR-ABL and is an

effective treatment for CML [25,26]. Gene fusions are also

detected repeatedly in other tumors. Examples include ETV6-

NTRK3 in mesoblastic nephroma, congenital fibrosarcoma, and

breast carcinoma [27–29]. MYB-NFIB in head and neck tumors

[30], TMPRSS2-ERG/ETS in prostate cancer [31–34], and

EML4-ALK in lung cancer [33,35]. Most lung tumors with ALK

rearrangements are shown to shrink and stabilize when patients

are given the ALK inhibitor Crizotinib [36].

Hypothesis-neutral gene fusion detection with RNA-Seq was

recently demonstrated by different groups [37–46]. For example,

the FusionSeq software uses paired-end reads to find candidate

fusions, and applies a set of filtration modules to remove false

positive candidates [41]. FusionSeq applies misalignment filters for

large- and small-scale homology, low complexity repetitive

regions, and mitochondrial genes particularly considering reads

that fall on SNP regions or on RNA edited transcripts that may

cause misalignments. deFuse guides a dynamic programming

based spliced read detection module with paired-end alignments

[42]. Both of these methods reply upon paired-end alignments as

the initial evidence and apply spliced read mapping on the
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candidate regions. PERAlign relies upon mapping spliced reads to

the whole genome first and then guiding them with paired-end

alignments [38].

In this study, we describe a new method which considers

spliced-read and paired-end alignments independently from each

other, enabling detection of fusions from single fragment or

paired-end experiments. We also introduce techniques for

mapping of spliced-reads to a suffix array based virtual gene

fusion reference with annotation-aided pairing rescue and

methods for quality assessment of alignments and splice junctions.

We tested our analysis tool by calling the exon/exon junctions and

gene fusions from data generated by sequencing three paired-end

RNA-Seq libraries, each with two technical replicates. We also

compared our results to TopHat and FusionSeq software on the

MCF-7 sample. Next we validated candidate MCF-7 gene fusions

using TaqManH assays and showed that 90% of the calls were

valid and over 65% were specific to MCF-7. We also identified

what appears to be an early breakpoint bias at the 59 fused genes.

Finally, we surveyed a subset of MCF-7 and UHR fusions on a

panel of breast cancer cell lines and discovered evidence for

recurrence.

Results

A combined strategy to detect splice junctions and
fusion breakpoints

We prepared strand-specific, paired-end RNA libraries from the

Universal Human Reference (UHR), the Human Brain Reference

(HBR), and the breast cancer cell line MCF-7 using the Total

RNA-Seq kit from Applied Biosystems. These RNA libraries were

sequenced using ligation-based high throughput SOLiDTM system

[47]. Fragments were gel-selected for insert sizes between 100–200

base pairs (Figure S1 in Text S1). Using a new transcriptome

alignment pipeline in which each pair of reads is mapped to

genome, junction, exon and filter references and paired with a

pairing quality value (PQV), we obtained total of 580 million read

pairs that were confidently mapped to the human genome (Table

S1 in Text S2). Histograms of gene expression showed a wide

range of distribution, and average R2 correlation of gene

expression between replicates ranged from 0.95 to 0.96 (Figures

S2, S3 in Text S1).

Splice junctions were discovered by combining three approach-

es: (1) BRIDGE evidence found by paired-end reads in which the

forward read maps on an exon and the reverse read maps on

another exon with a PQV above a confidence threshold; (2) SPAN

evidence found by single reads (of paired-end reads) in which the

read alignment spans the breakpoint of a set of known and

putative splice junctions; (3) Fusion SPAN evidence found by

fusion alignments spanning hypothetical breakpoints of any two

exons discovered using the SASR aligner which assesses all exon-

exon combinations in the genome (Figure 1). Using this strategy,

for each sample, we identified an average of 133,000 RefSeq and

15,315 non-RefSeq (putative) splice junctions and 5 to 56

candidate fusion breakpoints (Table 1 and Table S1 in Text S2).

To assess the performance of mapping quality values generated

with the system, we compared fold-change ratio (Log2 [UHR/

HBR]) of gene RPKM values with gene expression assays from the

MicroArray Quality Control (MAQC) project [48,49]. We

compared correlation of four different PQV (1, 10, 20 and 40)

thresholds with the assays (Figure S4 in Text S1). Pearson

correlations of data from TaqMan assays with that of the data

from the SOLiD system were not significantly different between

PQV thresholds. The slope (m) of the regression fits, however, was

significantly affected by the threshold settings. As PQV is increased

from 1 to 40, the slope increased dramatically from 0.77 to 0.88,

indicating significantly greater accuracy compared to a ‘‘gold

standard’’ qPCR method. The increase in accuracy is likely a

result of increased specificity. Essentially, the log ratio dynamic

range increases with increasing PQV settings (Figure S5 in Text

S1). RPKM distributions show an increase in low-end signal for

lower PQV. If this increase in ‘‘sensitivity’’ represents additional

noise, it can contribute to a loss of accuracy in the fold change

calculations. The increase in the low end suggests that these reads

may be spurious (Figure S6 in Text S1).

Parameter stringency and quality assessment
In order to find optimal filters for detecting splice junctions with

our combined approach, we compared three quality thresholds

using data from the UHR and HBR barcoded libraries: (1) one

SPAN evidence (1-SR), (2) two unique SPAN evidences (2-SR),

and (3) one BRIDGE and one SPAN evidences (1-PE-1-SR). In

addition to these tested thresholds, we applied default filter of

choosing only primary alignments with PQV.10. The results, as

illustrated in Figure 2, suggest an increased number of false

positives for 1-SR evidence even though it may have greater

sensitivity. 1-PE-1-SR threshold reduced false positives especially

for fusions, generating less calls than 2-SR threshold. For the

analyses described later in the text, 1-PE-1-SR threshold was

chosen for calling splice junctions and 2-PE-2-SR for calling gene

fusions. On average, 82% of junctions identified in the libraries

were present in the RefSeq database. 84% of these known

junctions and 26% of the putative junctions were shared between

at least two of the three libraries (Figure S7 in Text S1). The

highest number of library-specific known junctions was observed

in HBR, and the highest number of library-specific putative

junctions was observed in MCF-7.

Next, we formulated a Junction Confidence Value (JCV) and

investigated its utility to identify true versus false junctions. Details of

JCV and its formulation are explained in supplementary methods in

Text S1. One type of false positive fusion junction is likely called

between highly expressed exons for which the random chance of

encountering a misalignment or mispairing is elevated. Homology

between highly expressed genes would also increase this type of false

positive. We created JCV to test the quantity and quality of

BRIDGE evidences when compared to an ‘error expectation

metric’. This metric is defined as the estimation of the null

hypothesis of encountering a random junction between the two

Author Summary

Advances in sequencing technology are enabling detailed
characterization of RNA transcripts from biological sam-
ples. The fundamental challenge of accurately mapping
the reads on transcripts and gleaning biological meaning
from the data remains. One class of transcripts, gene
fusions, is particularly important in cancer. Some gene
fusions are prominent markers in leukemia, prostate, and
other cancers and putatively causative in certain tumor
types. We present a set of new RNA-Seq analysis
techniques to map reads, and count expression of genes,
exons and splicing junctions, especially those that give
evidence of gene fusions. These tools are available in a
software package with a straightforward graphical user
interface. Using this software, we called and validated
several gene fusions in a breast cancer cell line. By testing
the presence of these fusions in a larger population of
tumor cell lines and clinical samples, we found that two of
them were expressed recurrently.

RNA-Seq Mapping and Detection of Gene Fusions
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exons. Increasing JCV increased known/putative junction ratio

which was predictive of the false discovery rate and at the same time

distinguished significant number of novel junctions to either lower

or higher score bins (Figure 3A). Known/putative ratios ranged

from 0.15 for JCV cutoff of 0; 3 for JCV cutoff of 50 and 16 for JCV

cutoff of 100. In order to test the sensitivity of JCV, we simulated

1,000,000 junctions based on a combination parameter model of

true junction expression ratio and false junction misalignment ratio.

True positive rate (TPR) and false positive rate (FPR) were

calculated by comparing whether a called junction was real (Figures

S8, S9, S10 in Text S1). These simulations showed that JCV was

predictive of true junction calls and higher JCV thresholds resulted

in much less FPR and slightly less TPR. We performed a separate

simulation of gene fusion detection using reads from a DH10B

(E.coli) DNA sequencing experiment where introns, exons and a

gene model were simulated to make the data similar to RNA-Seq

experiments. Our algorithm was able to detect 86 out of 93

simulated fusions in this experiment (Figure S11 in Text S1).

Figure 1. RNA-Seq mapping and splice junction detection methodology. A. Four reads that span (spliced single reads), and three reads that
bridge (paired-end reads) the junction are shown. The top chart shows a bird’s eye view of the genomic alignments detected for seven pairs of reads
between the two exons. Areas of the read highlighted in red correspond to colors that do not align to a genomic reference, and dots in the reference
are unknown colors/bases. B. Mapping pipeline is reviewed in the Methods sections. Candidate junctions correspond to a sparse graph of junction
evidences. After the candidates are found, splice junction and fusion predictions are made with optional quality thresholds. C. As a first step in SASR,
10 to 35 bp ends from each end of the exon are stored in two lexicographical dictionaries. Stored suffix starts are shown as a vertical stop and end
with empty triangles. D. 10 base pairs from the left and right ends of the read (decamers) are searched in the 39 and 59 end dictionaries, respectively,
with a binary string search. Decamers are matched without mismatches. Matching decamers are extended as possible (with up to two mismatches) to
determine whether they cover the entire suffix. Mismatches are illustrated as vertical lines. Up to ten bases are clipped from the ends of the reads
until a matching read is found. E. Decamer block size frequency in the hg18 RefSeq database.
doi:10.1371/journal.pcbi.1002464.g001

RNA-Seq Mapping and Detection of Gene Fusions
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Next, we ran TopHat (v1.3.0) on the MCF-7-1 dataset by using

default paired-end parameters for color space. TopHat reported

124,236,156 mapped reads of which 33,634,800 were properly

paired whereas LifeScope reported 404,901,929 mapped reads, of

which 300,341,259 pairs were mapped to the same chromosome

and 158,050,096 were properly paired (Table S1 in Text S2). Of

note, TopHat allows 2 mismatches on mapped reads by default

and does not report pairs of reads mapped across different

chromosomes. Next we identified appropriate score threshold for

calling TopHat junctions. For each junction found, TopHat

reports a score which corresponds to the number of reads that

span the junction. TopHat reported 1,391,319 total junctions

without any score filter and with score.5 threshold this number

reduced to 53,402 (Figure S12 in Text S1). We used TopHat

candidate junctions with score.5 for comparison to RefSeq

known and Lifescope candidate junctions (Figure 3B). There is

some evidence that score.10 may yield more specific results for

TopHat (Figure S12 in Text S1). Of note, known (RefSeq)

junctions called by TopHat dropped from 129,316 (score.0) to

106,962 (score.5). These results suggest that TopHat detects a

large number of putative novel junctions yet is not as sensitive

when distinguishing false positives. LifeScope detected 15,074

putative novel junctions between known exons of the same gene

that weren’t called by TopHat. We could distinguish that more

Table 1. Mapping and splicing statistics for paired-end runs.

Dataset #Confidently Aligned Pairs #Known Splice #Putative Splice #Putative Fusion

UHR-1 79,654,007 127,987 9,025 5

UHR-2 113,699,316 136,839 14,365 13

HBR-1 89,066,940 129,031 8,709 8

HBR-2 130,521,674 138,718 14,204 14

MCF-7-1 79,654,007 123,442 17,373 40

MCF-7-2 86,796,592 120,503 19,437 56

Notes: Confidently aligned pairs was defined as primary alignments with PQV.10. 120 and 150 refer to insert size of RNA library. MCF-7 and MCF-7 -2 libraries were
prepared separately from the same lot. Known splicing events are found in RefSeq database whereas putative splicing events were not.
doi:10.1371/journal.pcbi.1002464.t001

Figure 2. Combined evidence improves specificity of splice and
fusion detection. Scatterplots show the increasing mapped coverage
(x-axis) versus Left: Known RefSeq junctions; Middle: Putative junctions;
Right: Fusion junctions. Top track shows results for UHR and bottom
track for HBR. Three different evidence thresholds were compared: 1)
red line: one SPAN (SR) evidence required for junction call, 2) magenta
line: two SPAN (2-SR) evidences required for junction call, and 3) blue
line: one SPAN and one BRIDGE evidence (1-SR-1-PE) required for
junction call.
doi:10.1371/journal.pcbi.1002464.g002

Figure 3. Improvements by junction confidence value and
comparison to TopHat. A. Logarithms of number of known and
putative junctions are shown with yellow and blue bars respectively.
The ratio of known over putative is shown with dashed line. Dataset
consisted of 64,000 sample UHR junctions called with default
thresholds. B. TopHat and Lifescope candidate calls were compared
to each other and also to RefSeq database. TopHat junctions were
filtered with score.5, and Lifescope junctions were filtered with 1-SR-1-
PE threshold (requiring one span and one bridge evidence).
doi:10.1371/journal.pcbi.1002464.g003

RNA-Seq Mapping and Detection of Gene Fusions
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than half of these ‘LifeScope-only’ junctions were likely true

positives by looking at their JCV; 3,520 had JCV = 0 and 8,481

had JCV = 100 with the rest having scores between 0 and 100.

Detection and validation of fusion transcripts in the MCF-
7 cell line

Using the combined BRIDGE&SPAN approach described

above on the UHR sample, we called and validated previously

reported gene fusions including BCR-ABL1, GAS6-RASA3,

ARFGEF2-SULF2, NUP214-XKR3 and BAT3-SLC44A4

[37,39,40]. These fusions were not described in the literature for

HBR, and as expected were not identified in the HBR samples

sequenced. In MCF-7, a total of 40 putative fusions were identified

in the first sequencing run (50625 paired-end), of which 26 were

detected again in a second run (75635 paired-end) out of a total

56 fusion calls (Table S2 in Text S2). We also analyzed first MCF-

7 sequencing dataset using FusionSeq (Sboner et. al.). Six of the

forty gene fusions identified by LifeScope were also called by this

software. FusionSeq’s confidence value (RESPER) for these calls

ranged from 1.15 to 4.53. Of importance, the ribosomal filter and

single read validation module of FusionSeq (version 0.7) did not

handle color space data or data with different read length pairs

adding to 5807 total calls with RESPER.1 (Table S3 in Text S2).

Based on the calls from the first MCF-7 sequencing experiment,

we prepared 40 TaqMan fusion assays and run them on the UHR,

HBR, and MCF-7 samples along with the prostate cell line PC-3

as an additional control. 36 (90%) of the fusions were validated

with the assays and 25 (63%) were found to be specific to MCF-7

and UHR (Table 2 and Table S4 in Text S2). To note, 19 of these

‘‘specific’’ fusions were called with our algorithms in the second

run of MCF-7. JCV values correlated with whether a fusion was

called again, and also with the number of unique start points

(Figure S13 in Text S1).

Real-time PCR Cycle Threshold (CT) values showed that each

of the MCF-7 gene fusions was expressed in UHR with around

ten-fold less expression (Table 2). This suggests that MCF-7 or one

of its parent or sister cell lines is very likely part of the UHR pool.

According to the information provided by the supplier, UHR

RNA is prepared from a pool of ten different cancer cell lines, one

of which is an ‘adenocarinoma, mammary gland’. MCF-7 is an

adenocarcinoma cell line from mammary gland. From the RNA-

Seq calls, nine of the MCF-7 gene fusions were detectable in UHR

with ,200 million confidently mapped reads whereas these fusions

were detectable in MCF-7 with only ,80 million reads. It is likely

that deeper sequencing of the UHR pool would have identified the

remaining fusions.

Many MCF-7 fusions were between genes in three bands of Chr

1, Chr 17 and Chr 20 (Figure 4). These bands were previously

described as rearrangement ‘‘hot-spots’’ [50]. Of the total 11 inter-

chromosomal or inverted intra-chromosomal fusions, five had

premature stop codons (not in frame), while six were in frame.

Two of the fusions were alternatively spliced including the fusion

from the second exon of ESR1 to the sixth and seventh exon of

C6orf97, and the fusion from the first and second exon of

ADAMTS19 to the tenth exon of SLC27A6. We also found

several new intra-chromosomal gene fusions mostly between

adjacent or neighboring genes (Table S4 in Text S2).

We observed an enrichment of fusions for which the breakpoints

were in the first intron of a gene, a similar bias explained also in

Inaki et al., 2011. This pattern was not observed for the UHR and

HBR samples (Figure 5A–B). On average, first introns in the

RefSeq database (hg18) constitute 22% of a gene. We asked

whether the large intron size alone might explain the breakpoint

bias at the 59 introns. We used a parametric bootstrap approach to

test the hypothesis that gene fusions are more likely to occur

towards the 59 end of a gene; for example, after the first exon.

Assuming that the breakpoint was in the middle of the intron

following the fused exon, we considered breakpoints for 23 fusions

from Table 2 (omitting multiple splices for ESR1 and

ADAMTS19). We simulated 100,000 gene fusion locations in

these 23 genes from a uniform distribution within the gene. We

normalized the location of the real gene fusions by gene length

(defined as the distance between the start of the first exon and the

end of the last exon). We calculated the mean fusion location of the

23 genes, in the observed fusions and in the simulated fusions. In

the real fusions, the mean insert location was 0.2587 (26% of the

length of the gene, Figure 5C). In 100,000 simulated sets of 23

fusions, the mean was 0.5 and the standard deviation was 0.06.

Only three in 100,000 of the simulated sets of fusions had a value

less than 0.2587. Thus the observed location of the gene fusions is

statistically significantly biased towards the 59 end of the gene, with

a p-value estimated at 361025.

Survey of UHR and MCF-7 fusions in cell lines and clinical
tumor samples

To test recurrence, we selected 24 fusions from UHR and

MCF-7 and investigated their expression in 20 cancer cell line

samples (Figure 6). UHR fusions BCR-ABL1 and BAT3-

SLC44A4 were found expressed in the myelogenous leukemia

cell line K562 but with eightfold higher expression than in UHR.

GAS6-RASA3 fusion was expressed only in UHR. Most of the

fusions in MCF-7 were also expressed at a low level in the Du4475

cell line with a higher CT value (.35 for most cases). Both MCF-7

and Du4475 cell lines are traced to a 69/70-year old Caucasian

female from Georgetown, but contamination, mixing, mislabeling,

or differences in culturing may have caused the observed

expression.

Two of the intra-chromosomal gene fusions were expressed in

multiple samples: ESR1-C6ORF97 and RPS6KB1-TMEM49.

The first of these fusions, between the estrogen receptor alpha

gene ESR1 and its neighboring gene C6ORF97 on Chr 6 was

expressed in two other ER+ breast cancer cell lines in addition to

UHR, MCF-7, and Du4475. This fusion may have occurred due

to an inversion or rearrangement, as normally the ESR1 gene is

downstream of C6ORF97 on the genome (on the same strand,

128,831 base pairs apart); yet the fusion junction was observed to

be from the second exon of ESR1 to the sixth exon of C6ORF97,

in the reverse order of expected transcription. We noted that these

two genes were considerably expressed in MCF-7 (RPKM 16 and

46 average), though not expressed at all in HBR (RPKM,0.5),

and weakly expressed in UHR (RPKM 1 and 1.8). The second

recurring fusion, RPS6KB1-TMEM49, was found expressed in

four cancer cell lines including HCC2157 and HelaS3. We further

tested the presence of 24 candidate fusions in cDNA from 48

Clinical Samples of Normal and Breast Tumors (Origene). We

found ESR1-C6ORF97 expressed in one ER+ tumor, and none of

the other fusions were expressed.

Discussion

RNA-Seq allows interrogation of known and novel transcript

expression and discovery of gene fusions. We describe a new suffix

array algorithm to find fusion breakpoint spanning reads in a

hypothesis-neutral fashion. We combine this algorithm with a new

paired-end mapping approach to detect gene fusions sensitively

and reliably. Our mapping method works with a predefined set of

exon boundaries which is readily available for the human genome

from RefGene or Ensembl databases. To detect novel splicing sites

RNA-Seq Mapping and Detection of Gene Fusions
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different from the known junctions, one can first find novel

expressed islands of reads with tools such as TopHat [8], and next

add the predicted novel exons to the gene model, prior to using

our tool. Other de novo assembly algorithms, as long as they

generate de novo exon boundaries, and mapped back to genome

coordinates, may also be used with our tool [51–54].

By sequencing and analyzing the MAQC samples UHR and

HBR, and the breast cancer cell line MCF-7, we validated 25 gene

fusions specific to MCF-7 and UHR. Of these, five were not in

frame and had premature stop codons. These fusions might still

deploy a negative constraint on the fused genes by increasing non-

sense mediated decay (NMD) [55]. In addition, several gene

fusions that occur at the genomic level might not have been

detected by messenger RNA sequencing (mRNA) because their

pre-cursor mRNAs would have been degraded by the NMD

mechanism. Such fusions may be identified by DNA-level

sequencing.

Of the 29 intra-chromosomal fusions called in MCF-7 in this

study, 12 were not described in investigated literature (Table S4 in

Text S2). Interestingly, most of the adjacent MCF-7 gene fusions

did not fit the standard definition of ‘‘read-through’’ since they did

not occur between last and first exons of the fused genes and in

some cases they occurred in inverse order of expected transcrip-

tion. This indicates that these fusions may had arisen due to trans-

splicing or structural mutations such as deletions or inversions.

These hypotheses may be tested by directly sequencing the DNA

from these regions.

By surveying cancer cell lines with TaqMan assays, we observed

that two of the MCF-7 fusions involving adjacent genes, ESR1-

C6ORF97 and RBS6KB1-TMEM49 were expressed recurrently.

Fusions of the ESR1 gene may disrupt estrogen signaling pathways

and thus events involving this gene may be significant. RBS6KB1-

VMP1 fusion was described as a recurrent event recently by

another group [45]. VMP1 is another name for TMEM49.

Amplification of the RPS6KB1 loci (Ribosomal protein S6 kinase

beta-1) was described in other breast cancers as an oncogene event

[56]. Still, it is possible these recurrent fusions arise only in

immortalized cell lines rather than being driver mutations. In fact,

the ESR1 fusion tested positive in only one of the 48 clinical breast

samples, while the RPS6KB1 fusion was not expressed in any of

them. Of interest, six of the fusions originated on the band 17q23,

which was previously identified as a common region of

amplification in cancer [57].

In many of the MCF-7 fusions, the first or early introns of the 59

genes harbored the gene fusion breakpoint. A similar pattern was

observed in prostate cancer: the complete exon-1 of TMPRSS2

was identified to fuse with ETV1 or ERG as one of the most

recurrent rearrangements [31]. Recent studies on prostate cancer

found extended breakpoints at the androgen receptor binding sites

possibly due to LINE-1-induced ORF or topoisomerase-II beta.

Table 2. Validated MCF-7 gene fusions and TaqMan expression ratios.

59 Gene Exon Chr 39 Gene Exon Chr Distance MCF-7 UHR HBR PC-3

ARFGEF2-1 20 SULF2-3 20 Inverted 20.6 24.2 40.0 39.7

SLC25A24-4 1 NBPF6-16 1 Inverted 23.9 27.9 40.0 40.0

USP31-1 16 CRYL1-4 13 Inter-chr 27.5 31.8 40.0 40.0

TBL1XR1-1 3 RGS17-2 6 Inter-chr 26.1 30.6 40.0 40.0

TAF4-1 20 BRIP1-5 17 Inter-chr 25.6 29.2 40.0 40.0

RPS6KB1-6 17 DIAPH3-30 13 Inter-chr 22.6 26.1 40.0 36.7

BCAS4-1 20 BCAS3-24 17 Inter-chr 21.3 25.3 40.0 40.0

AHCYL1-1 1 RAD51C-10 17 Inter-chr 31.0 34.8 40.0 40.0

ABCA5-4 17 PPP4R1L-4 20 Inter-chr 26.1 29.9 40.0 40.0

C16orf45-1 16 ABCC1-15 16 641567 25.3 29.2 40.0 40.0

C16orf62-8 16 IQCK-10 16 264613 26.7 30.5 40.0 40.0

CXorf15-1 X SYAP1-2 X 251362 29.1 32.7 40.0 40.0

MYO6-1 6 SENP6-15 6 270841 28.4 31.9 40.0 40.0

RPS6KB1-2 17 TMEM49-11 17 272316 24.4 28.4 40.0 39.8

SMARCA4-7 19 CARM1-2 19 281642 29.9 33.1 40.0 40.0

POP1-2 8 MATN2-15 8 286928 28.5 31.8 40.0 40.0

GATAD2B-1 1 NUP210L-28 1 2107321 28.3 32.4 40.0 40.0

ESR1-2 6 C6orf97-7 6 2116116 32.3 35.0 40.0 40.0

ESR1-2 6 C6orf97-6 6 2128831 25.2 29.1 40.0 40.0

DEPDC1B-7 5 ELOVL7-8 5 2118895 25.6 29.0 39.8 40.0

GCN1L1-2 12 MSI1-12 12 2157216 25.3 28.2 40.0 39.8

ATXN7L3-1 17 FAM171A2-4 17 2158568 24.8 28.3 40.0 40.0

SYTL2-1 11 PICALM-20 11 2217187 26.7 30.7 40.0 40.0

ADAMTS19-1 5 SLC27A6-10 5 2432137 26.5 31.3 40.0 40.0

ADAMTS19-2 5 SLC27A6-10 5 2433412 25.8 30.5 40.0 40.0

Notes: Each exon name (gene name-dash-exon-order) was obtained from RefSeq database. Inverted fusions are on same chromosome but different strands. Last four
columns show the Cycle Threshold (CT) value in TaqMan assays. Lower CT values indicate higher expression.
doi:10.1371/journal.pcbi.1002464.t002
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These enzymes, when co-recruited with an androgen receptor,

were linked to increased chromosomal translocations of the

TMPRSS2, ETV1, and ERG genes [58,59]. Presence of the

early 59 breakpoints in MCF-7 genes suggest that recurrent

Figure 4. Localization of gene fusions on specific chromosomal regions. A. Whole genome and B. Chr 1, 17 and 20 gene fusions circular
graph. Red lines represent inter-chromosomal gene fusions, blue lines represent inverted intra-chromosomal and black lines represent same-strand
intra-chromosomal fusion events. Graphs were drawn with Circos software [61].
doi:10.1371/journal.pcbi.1002464.g004

Figure 5. Fusion breakpoints are biased to 59 end of the genes.
Histogram of order of 59 (yellow) and 39 (green) intron breakpoints for
A. MCF-7, B. UHR and HBR combined gene fusions. Breakpoint is
inferred to happen at the intron (X axis) following the exon that is
fused. Y axis shows the count of breakpoints that are inferred to
happen at numbered intron. C. Boxplot of the distribution of simulated
gene fusion locations for each of the 23 genes in which a fusion was
observed. Magenta star marks the location of the observed fusion,
relative to the 59 exon. 23 fusions correspond to the gene fusions from
Table 2 (except for ESR1- C6orf97, and ADAMTS19- SLC27A6 alternatively
spliced fusions merged into single data points).
doi:10.1371/journal.pcbi.1002464.g005

Figure 6. Screening of fusion assays in cancer cell lines reveal
recurring fusions. Heat map of the expression of selected gene
fusions (rows) in 20 samples including 18 cancer cell lines (columns).
Lower cycle threshold (CT) indicates a higher level of expression and is
highlighted in blue. High CT (max 40, yellow) indicates no expression.
PPIA is used as positive control and non template control sample (NTC)
as negative control.
doi:10.1371/journal.pcbi.1002464.g006
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double-stranded breaks may occur in breast tumors at the gene

promoter and early splicing sites due to factors not mediated by

the androgen receptor.

In conclusion, we presented a novel method of splice and fusion

detection from RNA-Seq data. We sequenced MCF-7, UHR and

HBR, and demonstrated high specificity in finding splices and

fusions de novo. We further showed that two of the MCF-7 gene

fusions are expressed recurrently in a number of tumor cell lines.

Materials and Methods

The instruments and reagents used in this study are for research

use only and not intended for diagnostic procedures. Additional

methods are provided at Supplementary Information Online.

RNA-Seq alignment pipeline
Reads were aligned to a reference using the Mapreads module

of the BioScope 1.3 and LifeScope 2.0 software (http://www.

lifetechnologies.com/lifescope). Four fasta references were used for

increased throughput and accuracy: (1) genomic reference, (2)

junction reference, (3) exon reference, and (4) filter reference

(Figure 1B). Filter reference contained polyA, polyC, polyG,

polyT, ribosomal RNAs, tRNAs, LINE, SINE, LTR and satellite

repeats, rRNA, scRNA and snRNAs, as well as adaptor, barcode,

and primer sequences. In our experiments, most reads filtered to

ribosomal RNAs and merged adaptor-barcode-primer sequences.

When aligning reads to the genome, two mismatches were allowed

on the seed, and alignments were extended when possible based

on a dynamic scoring function. The junction reference library was

generated from a list of known and putative exon-exon pairs

within RefSeq transcripts and contained approximately two

million fasta entries. Reverse reads in our experiments were

shorter than forward reads (25 vs 50, or 35 vs 75). To increase the

mapping rate for the shorter reverse reads, they were additionally

aligned to an ‘exon reference’ by allowing three mismatches on the

seed. This exon reference contained each known exon as a

separate reference entry. An exon rescue step was performed for

reads where one pair was mapped within a gene and its pair was

unaligned, by aligning the unmapped read within the downstream

exons of the same gene with up to six mismatches. The genome,

exon, junction, and rescued alignments were merged to generate a

single set of alignments for the forward and reverse tags separately.

Reads that aligned confidently to the filter reference were

subtracted from these alignments. A final pairing step was

performed to find most probable alignment pairs and assign a

pairing quality value (for formulas see Methods in Text S1). These

final paired alignments were put in a genome-coordinate BAM file

which represents the summary of mapped alignments except for

fusion alignments found by SASR.

Suffix Array Spliced Read (SASR) fusion finder
For reads that were admissible as a candidate to be spliced on a

fusion junction (see Methods in Text S1 for admission criteria), we

performed a suffix array search as follows. A read was defined to

provide evidence of a splice junction between an exon X and exon

Y if and only if (1) exon X maps to the prefix of the read, (2) exon

Y maps to the suffix of the read and (3) the sum of the two map

lengths is equal to the length of the read. For 50-bp long reads (or

49 colors plus a leading base), the suffix data structure was simply a

list (an array) of all suffixes of length 10 through 38 from all exons.

The suffixes were stored in lexicographically increasing order. A

string s = s1s2…sm is lexicographically (i.e. alphabetically) less than

a string t = t1t2…tn if s1,t1 or s1 = t1, and string s2s3…sm is

lexicographically less than string t2t3…tn. Each suffix was

represented compactly by a pair of integers (an integer and a

byte in the implementation): an index to the relevant exon in the

input exon list, and the length of the suffix. Such a data structure is

called a suffix array [60]. Because of the lexicographic order

proper, all suffixes that start with any given decamer were

consecutive in such a list. Therefore, one may quickly find all

matching suffixes with a binary search into the suffix array. Once

the list of exons that mapped to the prefix and suffix of the read

were identified, it could be determined whether the read provided

evidence for a unique junction.

Junction evidence graph and evaluation filters
A read was considered to be a SPAN evidence for a junction X-

Y between two exons if it was already junction mapped or if it was

discovered by SASR as described above. A paired-end read was

considered BRIDGE evidence for a junction X-Y if one read of

the pair mapped to exon X and the other mapped to exon Y with

PQV.10.

Candidate junctions were stored, each with a count of evidence,

number of unique start points and corresponding PQV, in a

sparse, directed graph. In this graph, exons corresponded to nodes,

and SPAN and BRIDGE evidences corresponded to two types of

edges between nodes. After all evidence was collected, junctions

were called by evaluating each candidate and assigning a junction

confidence value. At least one and two unique evidences of each

type were respectively required to call same-gene and different-

gene junctions (fusion). Exons could partially overlap, allowing for

junctions with different donor and acceptor sites to be counted as

alternative splices as long as at least two alternatives were detected.

Genes with overlapping annotations were not counted towards a

gene fusion if the evidence was ambiguous.

Paired-end RNA library preparation and sequencing
Human Breast Adenocarcinoma (MCF-7) Total RNA and

FirstChoiceH Human Brain Reference RNA (HBR) were obtained

from Ambion. Universal Human Reference Total RNA (UHR)

was obtained from Stratagene. Oligo(dT) selection was performed

twice by using MicroPoly(A)PuristTM kit (Ambion) according to

the manufacturer’s recommendations. After polyA selection,

500 ng polyA RNA was fragmented using RNase III. 50 ng

fragmented RNA was then subjected to hybridization and ligation

using the SOLiD Total RNA-Seq Kit (Ambion) according to the

manufacturer’s instructions. Duplicate libraries, with three differ-

ent insert sizes (100–200 bp, 100–300 bp, 150–250 bp), were

generated from HBR and UHR RNAs. A total of 12 libraries were

multiplexed using the SOLiD RNA Barcoding Kit (Applied

Biosystems) and pooled at an equi-molar ratio. Two libraries were

made from same lot of MCF-7 polyA RNA with standard insert

size (100–200 bp). The final purified products were quantitated

using a NanoDropH instrument, and the size range of the products

was confirmed by BioanalyzerTM instrument analysis. The samples

were then diluted and used for emulsion PCR. Libraries were

sequenced utilizing 50 or 75 bp forward and 25 or 35 bp reverse

paired-end sequencing chemistry on the SOLiD system [47].

TaqMan real-time PCR assay validation
TaqMan probes and primers were designed for selected fusion

targets. For each putative fusion call, the target region for assay

design was composed of 200 bases around the fusion point: the

first 100 from the 59 gene exon and the second 100 from the 39

gene exon. If either of the exons was smaller than 100 bases, the

entire exon was taken but no bases from a further exon were used.

Therefore, any target region had a maximum of 200 bases. These

target sequences were then used to select TaqMan assay probes
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and primers which were ordered from Applied Biosystems. These

assays were used to validate the novel fusion candidates in

Universal Human Reference RNA sample (Stratagene), MCF-7

RNA (Ambion), Human Brain Reference RNA (Ambion), and a

no template control sample. cDNAs were generated from 2.5 ug

total RNA from each sample using the High Capacity cDNA

Archive Kit and protocol (Applied Biosystems). The resulting

cDNA products were diluted twenty-fold and four replicates were

run for each gene for each sample in a 384-well format plate on

7900HT Fast Real-Time PCR System (Applied Biosystems).

Cancer cell line and breast cancer clinical sample
screening

24 selected fusion targets (Figure 6) were screened across 20

cancer cell line RNAs and negative template control (NTC, Table

S5 in Text S2) using TaqMan probe and primers. Real-time PCR

reactions were run as described above. The same selected 24

fusion targets were also screened in 48 breast cancer clinical

samples (Origene) using TaqMan probe and primers. cDNAs were

generated from 2 ng total RNA from each sample using the High

Capacity cDNA Archive Kit and protocol (Applied Biosystems).

The resulting cDNA was subjected to a 16-cycle PCR amplifica-

tion followed by real-time PCR reaction using the manufacturer’s

TaqMan PreAmp Master Mix Kit Protocol (Applied Biosystems).

Preamplifed cDNA products were diluted twentyfold and four

replicates were run for each gene for each sample in a 384-well

plate on a 7900HT Fast Real-Time PCR System (Applied

Biosystems).
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manuscript.
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