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Abstract

Gene expression actualizes the organismal phenotypes encoded within the genome in an environment-dependent manner.
Among all encoded phenotypes, cell population growth rate (fitness) is perhaps the most important, since it determines
how well-adapted a genotype is in various environments. Traditional biological measurement techniques have revealed the
connection between the environment and fitness based on the gene expression mean. Yet, recently it became clear that
cells with identical genomes exposed to the same environment can differ dramatically from the population average in their
gene expression and division rate (individual fitness). For cell populations with bimodal gene expression, this difference is
particularly pronounced, and may involve stochastic transitions between two cellular states that form distinct sub-
populations. Currently it remains unclear how a cell population’s growth rate and its subpopulation fractions emerge from
the molecular-level kinetics of gene networks and the division rates of single cells. To address this question we developed
and quantitatively characterized an inducible, bistable synthetic gene circuit controlling the expression of a bifunctional
antibiotic resistance gene in Saccharomyces cerevisiae. Following fitness and fluorescence measurements in two distinct
environments (inducer alone and antibiotic alone), we applied a computational approach to predict cell population fitness
and subpopulation fractions in the combination of these environments based on stochastic cellular movement in gene
expression space and fitness space. We found that knowing the fitness and nongenetic (cellular) memory associated with
specific gene expression states were necessary for predicting the overall fitness of cell populations in combined
environments. We validated these predictions experimentally and identified environmental conditions that defined a ‘‘sweet
spot’’ of drug resistance. These findings may provide a roadmap for connecting the molecular-level kinetics of gene
networks to cell population fitness in well-defined environments, and may have important implications for phenotypic
variability of drug resistance in natural settings.
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Introduction

Gene expression is the biological process that converts the cell’s

genotype into phenotype (Fig. 1) in an environment-dependent

manner [1]. From an evolutionary standpoint, fitness (cell population

growth rate) may be the most important phenotype encoded, since it

defines the competitive ability of a genotype in specific environments.

The critical role of gene expression as a determinant of fitness in

various environments was confirmed by a variety of gene expression

measurement techniques, including beta-galactosidase assays [2–4]

and microarrays [5–7]. Such techniques typically rely on pooling

millions of cells, and therefore can only measure the average gene

expression of a given sample. Consequently, many studies in the past

have tacitly used the population average of gene expression as a proxy

for ‘‘gene expression’’. However this may be problematic due to the

lack of information of how the gene expression of individual cells

differs from the population average [8].

Accumulating evidence indicates that cells with identical

genomes exposed to the same environment can differ dramatically

in their gene expression and phenotype [9–13]. Protein levels can

vary from cell to cell due to pre-existing differences in cellular

characteristics and microenvironments, or simply due to the

stochastic nature of intracellular biochemical events [14–19]. The

ubiquity of non-genetic heterogeneity in clonal cell populations

implies that gene expression is a complex stochastic process

incompletely described by the mean alone. Rather, gene

expression in a cell population is more accurately represented by

a distribution, and requires further statistical descriptors (such as

the standard deviation, variance, or coefficient of variation) to

quantify the amplitude of deviations from the population mean

(Fig. 1). Recent experiments showed that cell populations with

identical gene expression means, but different gene expression

variances survive differently in stress [20–22]. Yet, an important

aspect that received less attention is that gene expression variation

(noise) can also correspond to variable cell division rates.

Consequently, the average fitness (cell population growth rate)

may not reflect the division rates of individual cells. It is not

entirely clear how to link the molecular-level kinetics of gene

networks to the variable division rates of single cells and to cell

population growth rate in specific environments.
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Deviations of gene expression from the population average are

particularly evident when gene expression is bimodal and cells

belong to distinct ‘‘ON’’ and ‘‘OFF’’ subpopulations of drastically

different protein content. Importantly, cells may switch randomly

between such gene expression states, only transiently residing in a

given subpopulation. This average time for which an individual

cell remains in a given gene expression state defines cellular memory

[23] (Fig. 1). Bistability and stochastic switching have received

substantial attention over the last decade due to growing evidence

for their involvement in cellular decision-making and differenti-

ation [12,24–27]. This motivated recent efforts in synthetic biology

to design positive feedback gene circuits that function as ‘‘cellular

memory modules’’, maintaining a target gene over multiple cell

divisions in one of two or more distinct expression states [28–33].

However, tuning cellular memory appears inherently coupled to

changes in subpopulation balance: gene expression states become

more populated as their stability increases (Fig. 2A). Could it be

possible for an unpopulated gene expression state to be

nevertheless much more stable than a highly populated state?

Besides the possible practical applications of synthetic memory

modules, they can also be used to address fundamental questions

on bet hedging, a frequently revisited topic in economics, ecology

and evolutionary biology [34–36]. The essence of bet-hedging is to

preemptively assign parts of a population to diverse survival

abilities in expectance of unpredictable external changes. Individ-

ual cells may stochastically transition in and out of these protected

and usually costly phenotypic states. For example, specific

switching rates between a stress-resistance gene’s ‘‘ON’’ and

‘‘OFF’’ expression states can optimize population survival in

recurrent stress [37–40]. Moreover, high variance in the duration

of competence episodes optimizes DNA uptake in Bacillus subtilis,

suggesting that the variability of temporal gene expression

characteristics can have functional relevance [41]. Yet, most

studies so far have assumed that phenotype switching rates can

change without an internal fitness cost, and focused on a constant,

single fitness level associated with each phenotypic variant in each

environment. What happens if altering the time scales of

phenotypic fluctuations involves a fitness cost? And how do such

convoluted changes of fitness and memory affect optimal switching

rates and the tolerance to increasing levels of sustained stress?

These important questions remain to be examined experimentally.

To address these questions using a specific synthetic system, we

developed and quantitatively characterized a chromosomally

integrated, inducible synthetic gene circuit that enforced bimodal

distribution of a bifunctional protein (yEGFP::ZeoR) in Saccharo-

myces cerevisiae [42]. This bifunctional protein served as a

fluorescent reporter while also protecting yeast cells from the

antibiotic Zeocin, enabling us to directly relate gene expression

variability to the corresponding fitness variations.

Proper understanding of the environment-fitness connection

would imply that we can predict the phenotype (fitness) given the

Author Summary

It is common belief that the properties of cells depend on
their environment and on the genes they carry. Yet, many
cases exist where individual cells in the same environment
behave very differently, despite sharing the same genes.
This creates a problem when we try to explain the behavior
of a cell population based on the genes these cells carry. For
example, it is difficult to predict how fast the overall number
of cells increases based on the genes they all carry if some
cells divide much faster than others. We addressed this
problem using a synthetic gene circuit that could randomly
allocate cells into drug resistant and drug sensitive states.
We could control the fractions of cells and the time they
resided in these states by adding an inducer to the growth
solution. After measuring how fast cells transitioned
between these two states, and how fast they grew in
inducer and drug alone, we predicted computationally how
fast they should grow when both inducer and drug are
present. We validated experimentally these predictions and
found a ‘‘sweet spot’’ of drug resistance where cells grew
fastest in the presence of drugs.

Figure 1. Gene expression connects genotype to phenotype. Gene expression (middle panel) is a complex process that bridges the genotype
(left panel) and fitness (right panel). Stochastic gene expression at any instant of time can be described by a distribution (gray bars). The distribution
can be further characterized by its mean (red arrow; the arithmetic average taken over all cells), standard deviation (blue arrows; quantifies deviations
from the mean), and possibly other moment-related metrics. Moreover, gene expression also has temporal aspects, which can be characterized by
nongenetic (cellular) memory (horizontal black arrows; the average time for which cells maintain a specific expression state in a constant
environment). Ten time course simulations of stochastic gene expression in bistable cell lineages are shown as illustration (gray traces).
doi:10.1371/journal.pcbi.1002480.g001

Environmental Fitness Landscape of a Gene Circuit
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Figure 2. Characterization of gene expression in cells bearing PF circuit. (A) The positive feedback (PF) synthetic gene circuit and its
functional schematic, consisting of the rtTA-MF transactivator that activates itself and the yEGFP::zeoR reporter when bound by the ATc inducer.
Idealized plots of expected outputs illustrates that tuning the inducer concentration upward is expected to result in progressively higher fractions of
yEGFP::zeoR-expressing ON cells (green peaks), which should correspond to increasing fitness during drug treatment. Another naı̈ve expectation is
that increasing fractions of ON cells correspond to higher cellular memory of ON cells relative to the OFF cells, such that equal memories (or switching
rates, indicated by the arrows) correspond to equal fractions of ON and OFF cells. (B) Dose-response of the population average (mean) of yEGFP::ZeoR
expression controlled by the PF gene circuit. Mean fluorescence values are shown for overall cell populations, as well as for low and high expressor
subpopulations separately (dark and light red markers) where applicable, based on a custom bimodality detection algorithm (see Section 2 in Text
S1). (C) Dose-response of the overall coefficient of variation (CV) of yEGFP::ZeoR expression for the PF gene circuit. (D) Dose-response of the
subpopulation ratio R, defined as the number of low yEGFP::ZeoR-expressing cells divided by the number of high yEGFP::ZeoR-expressing cells. (E)
Experimental fluorescence histograms of yEGFP::zeoR for the PF strains at increasing ATc concentrations (0–50 ng/mL).
doi:10.1371/journal.pcbi.1002480.g002

Environmental Fitness Landscape of a Gene Circuit
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genotype and the environment. Therefore, we first characterized

cell population fitness in two specific sets of environmental

conditions (i.e., antibiotic alone and inducer alone), and aimed

to make experimentally testable fitness predictions in new

environments defined as combinations of the same inducer and

antibiotic. We found that the nongenetic (cellular) memory of

yEGFP::zeoR expression and individual cell division rates at specific

gene expression states were necessary to predict overall cell

population fitness with a high degree of precision. Based on these

considerations, we identified a specific inducer-antibiotic combi-

nation that defined a ‘‘sweet spot’’ where cells maximized their

drug resistance due to cellular memory. This ‘‘sweet spot’’ appears

for different reasons than the optimum predicted by recent bet-

hedging models [37–40], and does not co-locate with it. The

reason for this disagreement is the fitness cost associated with

increasing the memory of the drug resistant state in our system.

This effect was not considered in recent bet hedging models [37–

40], but is likely wide-spread in nature, due to the metabolic cost

or toxicity of various survival mechanisms, including drug

resistance protein expression.

Results

A synthetic gene circuit confers bistable expression to a
drug resistance gene

We constructed a chromosomally integrated synthetic gene

circuit in yeast, which controlled the expression of a bifunctional

fluorescent reporter and antibiotic resistance gene, yEGFP::zeoR

[42]. This ‘‘positive feedback’’ (PF) gene circuit consisted of a

modified version (rtTA-MF) of the rtTA activator [43] that, upon

binding to the inducer ATc, activated its own expression as well as

the expression of yEGFP::zeoR from synthetic PTETREG promoters

[29] (Fig. 2A). The degree of rtTA activation was adjusted through

varying the concentration of the inducer anhydrotetracycline

(ATc) in the growth medium, which diffuses through the cell

membrane, associates with rtTA and promotes its binding to tetO2

sites near the TATA box of the target promoter.

We used flow cytometry to collect steady-state gene expression

measurements at increasing inducer (ATc) concentrations from

an isogenic yeast cell population carrying the PF gene circuit. We

repeatedly resuspended the cells into identical medium every

12 hours until the gene expression histograms stabilized. We

established dose-response curves (Fig. 2B, C) based on these

steady-state measurements, by calculating the yEGFP::zeoR

reporter expression mean and CV (coefficient of variation =

standard deviation divided by the mean; see the Materials &

Methods).

As observed previously for similar constructs [29], yeast cell

populations carrying the PF gene circuit (called ‘‘PF cells’’

hereafter) had unimodal gene expression at very low induction,

and bimodal expression above a low but nonzero ATc threshold

(Fig. 2B, D, E and Section 2 in Text S1). The proportion of cells in

the high yEGFP::zeoR expression state increased with the inducer

concentration at the expense of cells with low yEGFP::zeoR

expression. We quantified this by the subpopulation ratio R

(Fig. 2D), defined as the number of cells with high yEGFP::zeoR

expression divided by the number of cells with low yEGFP::zeoR

expression. The pronounced gene expression bimodality indicated

that isogenic PF cells in the same environment separate into high-

and low yEGFP::zeoR expressors, causing the rise in CV at

intermediate ATc concentrations (Fig. 2C, E). This is due to the

bistability that arises from combining a nonlinear promoter

response with explicit or implicit, growth rate-mediated [44,45]

positive feedback regulation. Based on our earlier insights on

related gene expression constructs [42,46] involving the repressor

from which rtTA was derived [43], we developed a mathematical

model that agreed with earlier models [29] and the current

observation that the PF construct became bistable once the

inducer concentration exceeded a threshold value (<1 ng/ml).

These theoretical results (see Section 3 in Text S1) were consistent

with the sharply distinct peaks of yEGFP::zeoR expression observed

experimentally beyond this threshold (Fig. 2B, E).

In biological terms, the bistability of the PF gene circuit implies

that PF cells can undergo random phenotypic switching between

high and low yEGFP::zeoR expression states due to noisy

intracellular dynamics. This situation can be depicted as random

movement in some potential, which is analogous to Waddington’s

landscape [47]. Cells will repeatedly dedifferentiate and rediffer-

entiate into these distinct gene expression states as they are forced

to explore the landscape under the influence of gene expression

noise. Importantly, since the yEGFP::zeoR gene product confers

resistance to Zeocin, the cells also assume two distinct phenotypes:

they can be drug sensitive, low yEGFP::zeoR expressors or drug-

resistant, high yEGFP::zeoR expressors. This leads to the question:

how can we utilize this information on the yEGFP::zeoR expression

pattern, and what else is needed to predict cell population growth

rate in well-defined sets of environments defined by various

inducer and antibiotic concentrations? The rest of this paper seeks

to answer this question.

Two different types of fitness
Fitness is a central and often controversial concept in

evolutionary theory that quantifies the contribution of a given

genotype to the next generation [48–50]. For historical and

practical reasons, there are many different definitions of fitness.

For example, models and experiments focusing on competition

between genotypes have measured fitness relative to a specific

genotype [50,51]. Alternatively, absolute fitness can be defined as

the per capita rate of increase in absolute population size

[48,50,52,53], which is relevant in non-competitive scenarios. In

the remainder of this paper we will adhere to the latter definition,

considering a single haploid genotype (PF) that we carefully

maintain in exponential growth phase while exposing it to various

well-defined environments.

The above gene expression measurements imply an important

distinction between two types of fitness that we define below with

regard to nongenetic (phenotypic) variation. At intermediate

inducer concentrations, two different cell types coexist that

constantly convert into each other and potentially divide at

different rates. Therefore, individual cell division rates may be very

different from the overall rate of cell population increase. For

example, in the presence of Zeocin, high yEGFP::zeoR-expressing

cells will divide much faster than their low yEGFP::zeoR-expressing

peers. To account for this effect, we define instantaneous or transient

cellular fitness as the typical rate of division for single cells of a given

fluorescence, at specific inducer and antibiotic concentrations. On

the other hand, any change in cell population size over time results

from individual cells dividing while they randomly switch between

various gene expression states. The rate of clonal cell population

growth will therefore be described by the overall cell population fitness

[53]. These notions correspond to the individual and absolute

fitness, respectively, as defined in [50], except that we emphasize

random fitness changes both from cell to cell and over time. The

precise relationship between the two types of fitness will be

established below. Our goal will be to understand how the

genotype and the environment jointly determine the overall cell

population fitness.

Environmental Fitness Landscape of a Gene Circuit
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Defining the environmental fitness landscape of
uninduced PF cells at various levels of Zeocin

Understanding the environment-fitness connection for drug

resistance implies that we can predict the overall cell population

fitness given the genotype and the environment. Therefore, we set

out to predict computationally the fitness of PF cell populations in

arbitrary inducer and drug concentrations based on two pieces of

information: (i) the fitness of uninduced cells (drug-sensitive state,

ATc = 0) in various Zeocin concentrations; and (ii) the probability

of cells residing in Zeocin-resistant and Zeocin-sensitive states at

various inducer concentrations, in the absence of drug (Zeo-

cin = 0). Since we already knew the latter from the dose-response

(Fig. 2D), we measured experimentally the fitness gE of uninduced

(ATc = 0) PF cell populations at various Zeocin concentrations

over several days, using the formula

gE~
Dln(N)

Dt
, ð1Þ

where N is the number of cells and Dt is the time between two

subsequent cell count measurements. We resuspended the cells

every 12 hours into fresh Zeocin-containing medium to maintain

them in exponential growth, and applied a linear fit to obtain

robust estimates of gE (see Section 7 in Text S1).

Using simple biochemical considerations (Materials and Meth-

ods), we defined the instantaneous fitness of uninduced PF cells

semi-phenomenologically by the marginal fitness reduction c1

(shown in Fig. 3A). The value c1(Z) refers to various extracellular

Zeocin concentrations (Z) and is normalized by fitness in the

absence of Zeocin. We then calculated the overall cell population

fitness by averaging the instantaneous fitness reduction over all

fluorescence values, weighted by the fluorescence distribution p(F)

(Fig. 3A, C):

g1~g0Sc1(F ,Z)T~g0

ð
c1(F ,Z)p(F )dF , ð2Þ

where g0 is the maximal fitness (at Zeocin = 0 and ATc = 0) and

p(F) is the fluorescence distribution determined from flow

cytometry measurements (Fig. 2E). A similar calculation based

on arithmetic averaging was used recently by another group [54].

This is a common way of defining overall fitness in genetically

mixed cell populations [55], although we average here over

phenotypic (rather than genetic) variants. We obtained the

parameters determining internal Zeocin concentrations by fitting

the function g1(F,Z) to the overall cell population fitness values gE

measured in increasing Zeocin concentrations at ATc = 0 ng/ml

(Fig. 3C). Parameter values are listed in the Materials and

Methods. Further details can be found in Section 5, Text S1.

In conclusion, measuring the fitness of uninduced PF cell

populations at various levels of Zeocin revealed a gradually

decreasing fitness landscape (Fig. 3C) that could be traced to

typical cell division rates of individual cells by simple biochemical

considerations.

Defining the environmental fitness landscape of PF cells
in the absence of antibiotic

Since our goal was to predict overall cell population fitness at

arbitrary inducer (ATc) and antibiotic (Zeocin) combinations, we

had to test whether varying the inducer concentration had any

fitness impact itself. Therefore, we followed the approach

described above to experimentally measure the overall PF cell

population fitness at various ATc concentrations, in the absence of

antibiotic. We observed a decline in fitness as the fraction of high

yEGFP::zeoR expressors became larger at increasing ATc concen-

trations (Fig. 3B). This decline in fitness may be attributed to a

combination of costs related to transcription, translation [56,57]

and rtTA toxicity or ‘‘squelching’’ described previously [58]. The

rtTA-specific squelching toxicity arises from the VP16 activation

domain of the activator, which may form non-specific transcrip-

tional complexes with general transcription factors, sequestering

them from vital cellular processes. Since all of the above processes

harm cell fitness, there is an overall cost associated with processes

related to active (ATc-bound) rtTA. We characterized the typical

rate of division for cells of a given fluorescence at a specific inducer

concentration by a semi-phenomenological marginal fitness

reduction c2 (Figs. 3B, D) as we did for Zeocin alone. Parameter

values are listed in the Materials and Methods and further details

are provided in Section 5, Text S1.

In summary, ATc-bound activator toxicity implies that defense

from Zeocin is costly. The more populated the protected, high

yEGFP::zeoR expressing state, the higher the active rtTA

expression, and the slower the division rate of individual cells

and of the entire cell population.

Fitness landscape predictions assuming low memory are
not confirmed experimentally

To predict cell population fitness in various combinations of the

inducer and the antibiotic, we assumed that the joint effects of

these molecules followed Bliss independence [59]. This implied

that the combined action of these two molecules could be

calculated by multiplying their individual effects. This assumption

was reasonable, considering the different mechanisms involved in

the toxicities of Zeocin and active rtTA. Thus, we calculated the

instantaneous fitness reduction c(F,C,Z) at arbitrary levels of ATc

and Zeocin by simply multiplying the previously defined marginal

fitness components c1(F,Z) and c2(F,C):

c~c1 c2: ð3Þ

Relaxing the assumption of Bliss independence, and introducing

various forms of dependence between Zeocin and ATc-bound

activator toxicity did not affect our conclusions (see Section 5 and

Fig. S6 in Text S1).

First, we calculated the overall cell population fitness gT

assuming cellular memory was much lower than typical cell

division times. Thus, we obtained gT by averaging the instanta-

neous fitness reduction, c = c1c2, weighting by the fluorescence

distribution p(F) measured in the absence of Zeocin (Fig. 3D) as in

equation [2] above. This calculation assumes very fast transitions

across the gene expression distribution such that the probability

distribution p(F) remains unchanged after the onset of selection

(Zeocin treatment). Based on these assumptions, we predicted the

overall cell population fitness gT for PF cells at different levels of

induction (ATc ranging from 0 to 20 ng/ml) with Zeocin

concentration set to 2 mg/ml. The predictions showed a mild,

gradual rise in fitness as ATc increased (Fig. 3E).

To experimentally test these predictions, we induced PF cells

over the range of 0 to 20 ng/ml ATc. After the yEGFP::zeoR

distributions became stable (did not change from day to day), we

exposed these populations to 2 mg/ml Zeocin, and measured the

cell density every 12 hours over several days as described above.

Fitness was then estimated over the last 6 time points to minimize

the transient effects immediately after exposure to Zeocin (see the

Materials & Methods and Table S3 in Text S1). We used the R2

metric to determine how much of the PF cell population fitness

Environmental Fitness Landscape of a Gene Circuit
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Figure 3. Experimentally measured and predicted fitnesses of PF cells assuming fast switching at various combinations of ATc and
Zeocin. (A) Instantaneous fitness reduction c1 as a function of varying Zeocin concentrations and fluorescence at 0 ng/ml ATc. The antibiotic
prolongs the cell cycle, thereby reducing the instantaneous fitness (which is the typical division rate of cells with a certain level of yEGFP::zeoR
expression). (B) Instantaneous fitness reduction c2 as a function of varying inducer (ATc) concentrations and fluorescence (used as a proxy for rtTA
concentrations) in the absence of antibiotic (0 mg/ml Zeocin). The cell cycle slows down due to the toxic effects of activated rtTA molecules, causing
an instantaneous fitness cost as noise forces the cells to explore the potential landscape. (C) Overall population-level fitness reduction as a function of

Environmental Fitness Landscape of a Gene Circuit
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was explained by the computational model. The percentage of the

data explained by the fitness landscape was very low, with an R2

measured at ,0.001, consistent with the disagreement between

the predicted and measured overall cell population fitness at low

inducer concentrations (ATc,10 ng/ml, Fig. 3F).

Estimates of cellular memory based on cellular current
Seeking to reconcile the predicted and measured cell population

fitness values, we asked whether the fast inter-conversion between

various fitness levels used in those calculations was realistic. If not,

then slow cellular phenotype switching (cellular memory) may

enable individual cells to reside for prolonged times in advanta-

geous regions of the fitness landscape, thus improving overall

population fitness [60]. Such an effect was suggested theoretically

[37–39] and demonstrated experimentally [40] in fluctuating

environments, but not in sustained stress.

We developed a novel computational method related to cell

population balance modeling [61] to determine the cellular

memory based on a stationary distribution of expression for

proteins with long half life, such as yEGFP::ZeoR (see the Section

6 in Text S1). To do this, we defined the directional cellular current as

the number of cells crossing a specific fluorescence threshold in a

given direction (up or down) per unit time. We designated cells

into two phenotypes, the (L)ow and (H)igh yEGFP::zeoR expression

states, separated by an arbitrary yEGFP::ZeoR concentration

threshold, h (Fig. 4A). The H and L states do not need to imply

bistability and are quite general: they simply indicate that cells

express yEGFP::zeoR below or above a threshold. Importantly, the

yEGFP::ZeoR protein is highly stable (data not shown) and is

mainly lost through dilution of cellular contents by cell growth

[62]. Therefore, the downward current IHRL of cells escaping

from the H to L state across the threshold mainly depends on the

rate at which cell growth dilutes out the protein yEGFP::ZeoR.

Thus IHRL is proportional to: (i) the density of cells hN(F)/hF

expressing yEGFP::zeoR immediately above the threshold h; and (ii)

the rate of protein dilution by cell growth, hg2(h,C), calculated at

the threshold h:

IH?L~g0hc2(h,C)
LN(F )

LF

����
h

, ð4Þ

assuming that protein dilution occurred due to cell growth at the

rate g0c2, from equation [3].

Next, we calculated how long it would take on average for an

arbitrary cell with high yEGFP::zeoR expression to cross the

threshold downward. If the total number of cells in the (H)igh state

is NH, the average waiting time tH spent in the state H is given by

[63,64]

tH~ln 2ð Þ NH

IH?L

: ð5Þ

This is equivalent to asking: how long would it take for an

arbitrary cell to leave the H state, if cells exit at rate IHRL? The

time spent in state H is therefore the cellular memory of the high

yEGFP::zeoR expression state. These calculations provide a simple

way to estimate the memory of any gene expression state defined

by an arbitrary threshold within any stationary distribution. We

also applied other approaches, including escape rate theory

[23,65,66] to estimate cellular memory and obtained consistent,

but less accurate results (see Section 4 in Text S1). Our semi-

phenomenological approach based on cellular current may be

more attractive because, unlike escape rate theory, it does not

require an underlying mathematical model and a set of

parameters.

Normally, in the absence of instantaneous fitness differences,

when stationary distributions do not change in time, the

downward and upward cellular currents across any threshold

must be in balance, and as a result the net current is 0:

ILRH = IHRL. However, when instantaneous fitness changes with

the gene expression level, the cellular currents must compensate

for these fitness differences (see the Materials and Methods). As a

result, cells of higher individual fitness will constantly migrate

towards regions of lower fitness in the gene expression space. This

creates a nonzero net cellular current that moves cells upward

throughout the gene expression distributions in Fig. 2E. The

‘‘power sources’’ for this current are fitness differences across these

distributions (Fig. 3A).

We estimated cellular memories at various ATc concentrations

by applying the above formula to the experimental yEGFP::ZeoR

expression distributions (Fig. 2E) and cell population fitness values

(Fig. 4B). We found that soon after the ATc concentration crossed

the bistability threshold and some PF cells started to differentiate

into a drug-tolerant high expressor subpopulation, these cells

gained increasingly higher memory, while the memory of low

expressors showed a monotone decrease (Fig. 4B). The decreasing

and increasing trends in Fig. 4B indicate that ATc can be used to

tune the memory of the high and low expression states (or

equivalently, the rates of stochastic transitions between these

expression states). These trends mirror the inducer-dependent

changes in subpopulation fractions (Fig. 2D), indicating that

changes in memory and subpopulation fractions are coupled in the

absence of Zeocin, as illustrated in Fig. 2A. In particular, at

10 ng/ml ATc, the memory of high yEGFP::ZeoR was

.283 hours, an order of magnitude higher than the memory of

low expressing cells (,16 hours), as indicated by the vertical

dashed line in Fig. 4B. Importantly, we had to smooth the

experimental fluorescence distributions to deal with empty bins

(instances of N(h) = 0). As a result, the memory tH obtained for

high expressors should be considered a conservative lower

estimate.

Experimental confirmation of cellular memory estimates
in PF cells

Based on the cellular current, we predicted that the memories of

high and low yEGFP::zeoR expression at [ATc] = 10 ng/ml should

be greater than 283 hours and 16 hours, respectively, with more

than an order of magnitude difference between the two. To

validate these memory predictions, we measured experimentally

the nongenetic memory of high and low gene expression states

conferred by the PF gene circuit at [ATc] = 10 ng/ml. We selected

this intermediate inducer concentration because it gave approx-

increasing Zeocin concentrations at 0 ng/ml ATc, reflecting the toxic effect of the antibiotic. (D) Overall population-level fitness reduction as a
function of increasing ATc concentrations at 0 mg/ml Zeocin due to various costs related to inducer-bound rtTA. (E) Predicted overall population-
level fitness landscape for PF cells as a function of various extracellular ATc and Zeocin concentrations. The fitness landscape is calculated by
averaging the product of instantaneous fitness reductions c1(F,Z) and c2(F,C), shown in panels (A) and (B) weighted by the fluorescence distributions
shown in Fig. 2E. (F) Measured and predicted overall fitness of PF cell populations at different concentrations of ATc and Zeocin = 2 mg/ml.
Predictions based on the fitness landscape (blue) explained ,0.1% of overall cell population fitness.
doi:10.1371/journal.pcbi.1002480.g003
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imately balanced high and low expressor subpopulations, which

facilitated fluorescence-activated cell sorting (FACS). After pre-

inducing the PF cell population with [ATc] = 10 ng/ml, and

allowing the fluorescence distribution to stabilize over 3 days, we

sorted the high and low expressors apart. Subsequently, we

resuspended each of these sorted subpopulations, as well as the

unsorted control cells every 12 hours into the same medium as

before sorting to determine how fast the yEGFP::ZeoR distribu-

tions relaxed to their original stationary distribution via stochastic

switching (Fig. 4C).

To quantify the stochastic switching rates between high and low

reporter gene expression from this data, we estimated the

switching rates of the following two-state population dynamics

model that results directly from the cellular current (Fig. 4D) and

Figure 4. Cellular memory estimation and measurement based on the cellular current. (A) Cellular currents characterize the constant
upward and downward movement of cells within stationary distributions under the influence of noise. Cells were first partitioned into 2 gene
expression states, of (L)ow and (H)igh yEGFP:zeoR expression, depending on how their fluorescence compared to a preset threshold h. The upward
cellular current (ILRH) was defined as the fraction of cells leaving the L gene expression state per unit time, while the downward cellular current IHRL

described movement in the opposite direction. For stationary distributions where fitness is unaffected by particular expression state, the upward and
downward cellular currents must cancel each other. On the other hand, unequal high and low expressor fitness values (gL?gH) imply unequal cellular
currents (IL?IH), even in stationary distributions. (B) Cellular memories estimated from the gene expression distributions in Fig. 2E using the cellular
current model, incorporating instantaneous cellular fitness differences. For example, cellular memory of the H state is the average time it takes for a H
cell to cross the preset threshold downward. (C) Histograms of cells sorted into high and low yEGFP::zeoR expression states and maintained in 10 ng/
ml ATc-containing medium over several days. Cell sorting occurred at time 0 after fluorescence distributions stabilized (did not change between
subsequent measurements). Experimental fluorescence histograms of high-sorted and low-sorted cells relaxing back to the stationary distribution are
shown for 122 hours. (D) Schematic of the two state population-dynamics model used to estimate switching rates. (E) Low to high expressor
subpopulation ratio (R = NL/NH) after sorting PF cells into predominantly high and low expressor subpopulations. Experimental time course data
(dots) of low-sorted and high-sorted subpopulations and the corresponding fits (lines) based on the two-state population dynamics model illustrate
their relaxation back to their original bimodal distributions. The ‘‘rising’’ and ‘‘falling’’ rates were estimated from both low-sorted and high-sorted cell
populations, revealing a higher gene expression memory for PF high expressors as compared to low expressors.
doi:10.1371/journal.pcbi.1002480.g004
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has been applied successfully by others to estimate cellular

memory [23,37,40]:

_NNL~{rNLzfNHzgLNL:

_NNH~rNL{fNHzgH NH

ð6Þ

Here, the variables NL and NH corresponded to the number of cells

in the low (L) state that could either ‘‘rise’’ into the high (H) state at

the rate r = IL/NL, or divide at the rate gL, and to the number of

cells in the H state that could either ‘‘fall’’ into the L state at the

rate f = IH/NH, or divide at the rate gH, respectively. From these

equations, we obtained the analytical solution for the subpopula-

tion ratio of low expressors to high expressors over time, R(t) = NL

(t)/NH (t), as a function of r and f (see the Materials & Methods)

(Fig. 4D). Fitting R(t) to the experimentally measured subpopula-

tion ratios from both sorted and unsorted populations (Fig. 4E), we

obtained switching rates of r<28.566.661023 h21; f = 0.76

0.461023 h21 for PF cells grown at 10 ng/ml ATc. The obtained

PF switching rates correspond to cellular memories of high and

low yEGFP::zeoR expression of 990 hours and 24 hours, respec-

tively. These values differed by more than an order of magnitude,

and compared well with the memory estimates based on the

cellular current (Fig. 4B). We made similar predictions and

measurements for a few other synthetic gene circuits, confirming

the utility of our approach based on cellular current to predict

cellular memory (see Fig. S3 in Text S1).

These results indicate that instead of being controlled by

comparable rising and falling rates, balanced populations of PF

low and high expressors result from low expressor cells

preferentially transitioning to high expression, whose lower fitness

due to rtTA toxicity prevents them from dominating the

population (horizontal arrows on Fig. 4A). Importantly, these

effects are completely different from recently noted cases of

implicit, growth rate-mediated positive feedback [44,45]. Rather, a

similar case has been described in prokaryotes [9], where different

fitnesses compensate for unequal switching rates, re-establishing

the subpopulation balance between high and low expressors.

Inspired by this classical work on the Lac operon, we further

confirmed the strong, but finite non-genetic memory of PF high

expressors by purifying single high expressor cells by serial dilution

and observing them over several days [9] (see Section 8.2 and Fig.

S10 in Text S1). Finally, switching rates estimated from a video

recorded in a microfluidic chamber [67] agreed well with the other

estimates (see Section 11 in Text S1 and Video S1).

Overall fitness predictions incorporating cellular memory
identify a ‘‘sweet spot’’ of drug resistance

Incorporating the memories obtained from the cellular current

[11,13] (Fig. 4B) as well as fitness values associated with high and

low expressors obtained from the instantaneous fitness functions

(Fig. 5A, B) , we altered our previous predictions (Fig. 3E) of

overall population fitness at a variety of inducer and antibiotic

concentrations (Fig. 5C). Using the two-state population dynamics

model, which accounts for cellular memory, we determined the

overall cell population fitness over long periods of time as the

largest eigenvalue of [6] (see the Materials & Methods for the exact

expression). Interestingly, the model predicted that population

fitness would peak sharply at the lowest level of ATc at which

bistability ensued and some cells started switching to the high

expression state (Fig. 5D).

The switching rates from the cellular current model predicted

that the memory of high expressors would remain well above the

cell division rates even when cells were minimally induced. This

minimal level of ATc should have minimal cost of rtTA expression

(Figs. 3A and 3C), but could still drive high yEGFP::zeoR expression

in a small fraction of the cells to completely protect them from

Zeocin. Importantly, these few ‘‘sentinel’’, persister-like cells have

time to expand into a large population over several days due to the

long memory of the protective high yEGFP::zeoR expression state at

all ATc concentrations, which is necessary to observe this effect.

The inclusion of nongenetic memory into the model

dramatically improved the agreement between computational

predictions and experimentally measured fitness of PF cells

(Fig. 5D, E). Specifically, we found that with no additional

information, our model was able to explain 98% of fitness

differences simply by incorporating memory (compared to

,0.1% without memory). Thus, consistent with the computa-

tional predictions, the experiments confirmed that bimodal

distributions with fewest high expressors had the greatest relative

fitness at ,1 ng/ml ATc (Fig. 5D), which is where bimodal gene

expression first appears. This level of induction defines a ‘‘sweet

spot’’, where the small high expressor subpopulation can reside

and expand optimally. Here cells experience sufficient protection

from Zeocin at a minimal cost of ATc-bound rtTA, while the

strong non-genetic memory of this ‘‘protected’’ gene expression

state prevents switching to low expression where cells become

vulnerable.

Importantly, the location of this fitness optimum disagrees with

predictions of recent bet-hedging models [37–40], which imply

that optimal phenotype switching rates should match the rates of

environmental fluctuations. Measuring the fitness of PF cells over

several days in Zeocin corresponds to very long periods of stress

in bet-hedging models (‘‘very long’’ in terms of cell division

times). Thus, according to the previous studies, extended memory

of the protective high expressor state should improve survival in

long stressful periods (Fig. 6B). However, these earlier conclusions

were drawn assuming that nongenetic switching rates could be

altered without any fitness cost, and disagree with our observation

of a sweet spot at the minimal memory of the high expression

state (see the Discussion as well as Section 9 and Fig. S11 in Text

S1).

Confirming the crucial role of the minute high expressor

subpopulation in conferring protection from Zeocin, the steady

state distribution was completely reshaped after selection of

nongenetic variants in antibiotic (Fig. 5F). From almost 100%

low expressors in the absence of Zeocin, the distribution changed

to nearly 100% high expressors, corresponding to a dramatic ,45

fold increase in the fraction of high expressing cells in Fig. 5F. This

implies that subpopulation fractions and cellular memory can be

uncoupled for cells carrying gene circuits similar to the one

described here, with nongenetic memories longer than their

division times. Indeed, the same cellular memory corresponds to

very different subpopulation fractions in the absence and presence

of drug (Fig. 5F).

We performed parameter scans to determine how various

properties inherent to our system and assumptions in our model

affect the sharp peak that defines the ‘‘sweet spot’’. We found that

the sharp peak was robust to the inclusion of various interactions

between rtTA and Zeocin toxicities (i.e., relaxing the Bliss

independence), and remained consistent as long as the cellular

memories were less than the overall cell population growth rates.

Fitness surfaces generated from other toxicity models based on

Loewe additivity, Loewe antagonism, and Loewe synergy all

showed a characteristic sweet spot (see Section 5 and Fig. S6, Text

S1). However, as the switching rates became comparable to cell

division rates, the sharp fitness peak was reduced and became

gradually flatter.

Environmental Fitness Landscape of a Gene Circuit
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Figure 5. Experimentally measured and predicted fitness of PF cell populations after incorporating cellular memory at various
combinations of ATc and Zeocin. (A) Overall population-level fitness reduction as a function of increasing Zeocin concentrations at 0 ng/ml ATc,
reflecting the toxic effect of the antibiotic. (B) Overall population-level fitness reduction as a function of increasing ATc concentrations at 0 mg/ml
Zeocin due to various costs related to inducer-bound rtTA. (C) Predicted overall population-level fitness landscape for PF cells as a function of
extracellular ATc and Zeocin. The fitness landscape is calculated from the 2-state cell model with division rates and switching rates inferred from
cellular memory and the marginal fitness functions c1(F,Z) (green edge) and c2(F,C) (purple edge) shown in panels (A) and (B), respectively (D)
Experimental measurements (black dots) and computational predictions either incorporating (red line) or omitting (blue line) cellular memory of
overall fitness of PF cell populations at different concentrations of ATc and Zeocin = 2 mg/ml. The incorporation of cellular memory improves the
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Discussion

Our goal in this paper was to map the environmental fitness

landscape, and to identify aspects of stochastic gene expression

that are necessary for establishing the environment-fitness

connection. This required developing a simple modeling frame-

work to account for the mutual dependency of cell growth and

gene expression, so that the behaviors of cells with multiple

phenotypes could be better understood and controlled. To allow

for predictive quantitative modeling and properly test the

modeling predictions, it was necessary to minimize the biological

complexity inherent in natural gene networks. Thus, we chose to

focus on cell populations carrying an inducible synthetic gene

circuit, in the spirit of the booming field of synthetic biology [68–

72]. The synthetic gene circuit controlled a bifunctional antibiotic

resistance protein, which provided protection from Zeocin, and

could also be visualized in single cells due to its fluorescence [42].

After determining fitness and subpopulation fractions in two sets

of well-defined environments, we used this information to predict

fitness and subpopulation fractions in a combination of these

agreement between the predictions and experiment. (E) Computational predictions based on the gene expression distributions assuming fast
switching (blue circles) explained barely ,0.1% of overall cell population fitness, while predictions based on fitness landscape and memory (red
circles) explained 98.5% of overall cell population fitness. (F) Experimental yEGFP::ZeoR histograms at the ‘‘sweet spot’’ of drug resistance of 1 ng/ml
ATc before selection (Zeocin = 0 mg/ml, green line) and after selection (Zeocin = 2 mg/ml, red line). Note the drastic difference between these two
histograms with PF cells changing from almost 100% low expressors to nearly 100% high expressors following selection.
doi:10.1371/journal.pcbi.1002480.g005

Figure 6. Memory and fitness define the gene expression distribution. (A) The cellular memory and fitness of the cellular states interacted in
multiple ways that ultimately defined the overall cell population fitness and the distribution of gene expression. Contrary to the naı̈ve expectations
illustrated in Figure 2A, we observed that (i) the fractions of cells in the ON and OFF states did not reflect the switching rates between these states;
and (ii) forcing most cells into the protected ON state did not provide optimal fitness during drug treatment. (B) Simulated cell population fitness as a
function of ATc when the environment switches either randomly or periodically between 0 mg/ml Zeocin (normal) and 2 mg/ml Zeocin (toxic), with
the average duration of the normal and toxic environments indicated in the figure. The red circles indicate the ATc concentration (ATc = 100 ng/ml)
necessary for setting the phenotypic switching rates to confer optimal fitness based on the Kussell-Leibler theory. (C) Illustration of how cell linage
statistics (purple outline) can be different from population snapshot statistics (orange outline). Cells tend to switch predominantly to the high
expression state and rarely switch back. Consequently, individual cell lineages over time tend to spend most of their time in the high expression state.
However, cellular fitness in the high expression state is lower. As a result, population snapshot measurements will observe more low expressor cells
due to the higher cellular fitness of the low-expressing state.
doi:10.1371/journal.pcbi.1002480.g006
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environments. This is non-trivial when phenotypic variation is

present, because the cell population’s average fitness is an

aggregate of individual cell fitness values that are transient due

to phenotype switching. Thus, to map the environmental fitness

landscape, we defined two different types of fitness (transient

cellular fitness and overall cell population fitness), which relate to

each other as the gene expression in individual cells relates to the

population average of gene expression. A similar distinction has

existed for genetically diverse populations [53], - but here we

defined these types of fitness for genetically homogenous

populations of cells that carry the same noisy bistable synthetic

gene circuit.

Instantaneous fitness was affected by two different factors,

namely the growth-inhibitory effect of Zeocin and rtTA-associated

toxicity. We also used the inducer ATc to separately control

cellular memory, defined as the average lifetime of a gene

expression state (or the inverse of spontaneous switching rates) in a

constant environment [40,73,74]. We found that the instantaneous

fitness and cellular memory jointly shape the overall gene

expression distribution and determine overall cell population

fitness in various environments in a non-trivial manner. Specifi-

cally, we argued that the synthetic gene network forces cells to

explore an intracellular potential analogous to Waddington’s

landscape [47] under the influence of noise. While exploring the

gene expression landscape, cells are also forced to move on a non-

genetic version of Sewall Wright’s fitness landscape [75], and face

selection through the instantaneous fitness associated with their

gene expression. Mapping the environmental fitness landscape

requires integrating the movement on these two different

landscapes, entirely defined by the cellular memories and

instantaneous fitnesses associated with specific cellular states.

The interplay between cellular memory and noisy cellular fitness

results in distributions and fitness values (Fig. 6A) that disagree

with the naı̈ve expectations illustrated in Figure 2A. In summary, a

true understanding of the environment-fitness connection can

benefit from a Darwinian perspective applied to heritable

nongenetic variation [76]. Mapping and computationally predict-

ing the environment-dependent fitness landscape for this synthetic

gene circuit might provide a potential roadmap to follow for other

synthetic gene circuits and even for natural gene networks, to

identify fitness-optimizing conditions relevant for microbial drug

resistance, persistence, and virulence.

We strove to develop mathematical models that were as simple as

possible, but no simpler, when describing population level gene

expression. In isolation, the original goals of these models were to

describe mean gene expression levels, stochastic transitions between

cell states, rtTA-associated toxicity, and cell growth. We also studied

how pairwise interactions between these biological components

shape population level fluorescence distributions. Finally, we

synthesized these modeling approaches into comprehensive popu-

lation-level stochastic simulations of gene expression. By modifying

previous stochastic models [42,46] to describe gene activation rather

than repression and to account for the cost of inducer-bound

activator, cell division, and non-genetic memory we were able to

reproduce the overall experimental distributions of PF cells by

computer simulations (see Fig. S12 in Text S1). In summary, non-

genetic fitness differences between various gene expression states

need to be carefully considered when studying instantaneous

population-level gene expression measurements based on intracel-

lular biochemical kinetics. Modeling approaches that do not

incorporate fitness differences will lead to biased parameter

estimates and misinterpretation of intracellular dynamics.

For example, an important implication of our results is that

temporal averages over individual cell lineages can be dramatically

different from the population means due to slight changes in their

individual fitnesses (Fig. 6). Consider the bimodal population of PF

cells with an approximately 1:1 ratio of low and high expressors.

Using live cell imaging under the microscope in a microfluidic

chamber with controlled environment [67], we have tracked

individual cell lineages from this population (see Fig. S12C in Text

S1, and Video S1). Although cell populations were initially

composed of 45% high expressors, over 30 hours the cell lineages

spent 63% of the time in the high expression state. As the period of

observation approaches the time of cellular memory, we expect

that the cell lineages will converge to a percentage of,97.5% in

the high expression state. Thus, the population-average of gene

expression measured at any time differs from the mean estimated

by tracking individual cell lineages over time (Fig. 6C). The same is

probably true for other statistical measures of gene expression.

This is important as some research groups have been obtaining

single cell-level data from large cell populations at a given time

[10,11], while other groups have been collecting gene expression

data by tracking single live cells over time [74,77]. Neither of these

approaches is ideal, as both ignore information about division

rates in expanding cell lineages. Our results indicate that gene

expression statistics obtained from these different approaches will

in general disagree, and may need to be reinterpreted in light of

the fitness differences caused by gene expression.

Our work differs from earlier studies aimed to determine

stochastic switching rates that optimize fitness in fluctuating

environments, some of which were exclusively theoretical [37–

39,78], while others included experiments, but did not map the

fitness landscape at increasing levels of sustained stress [23,40,73].

Seeking to predict optimal switching rates, these earlier studies

assumed that switching rates could be altered without a fitness

cost. By contrast, adjusting the memory in our system to favor of

the high expression state involved an increasing fitness cost.

Consequently, the switching rates that optimize fitness in our

system differ from the prediction of earlier bet hedging studies,

namely that maximal memory of the high expression state should

optimize fitness for very long periods of drug exposure [39]. In

fact, we found the exact opposite. Minimal memory of the high

expression state optimized fitness in our system, as long as a

minuscule high expressor subpopulation existed to salvage the

population after the onset of stress. This different optimum is

caused by the cost associated with increasing the memory of the

high expression state. While higher memory could salvage a larger

fraction of the population immediately after stress onset, it would

be unfavorable on the long run due to the increased rtTA toxicity

(see Section 9 and Fig. S11 in Text S1).

Is there a similar fitness cost in natural systems for increasing the

memory of a stress-tolerant state? The answer appears to be ‘‘yes’’.

First, bistability of stress-tolerance and stress resistance states are

likely wide-spread in microbes [35], due to implicit, growth rate-

mediated positive feedbacks [44,45] resulting from the expression

cost or toxicity associated with various defense mechanisms.

Examples include the toxin component of toxin-antitoxin systems

[79,80], hipQ expression for type II persisters [73], or the TetA

protein from the tetRA tetracycline resistance operon [81]. While

defense and fitness cost are caused by the same protein in these

natural systems, this is not unlike our synthetic gene network, in

which the sources of cost (rtTA) and defense (yEGFP::zeoR) are

expressed from identical promoters, and are therefore identically

regulated, - almost as if these genes were fused or were part of an

operon. Increasing memory in such implicit, growth-coupled

positive feedback systems implies an elevated level of toxic protein,

which causes slower growth and thereby a higher fitness cost.

Therefore, toxicity, toxin expression level and memory of high
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toxin expression are practically synonymous in these systems. It

will be highly important to study at the single cell level how toxin

expression coupled with toxicity controls the emergence of

bistability in many microbial toxin-antitoxin systems. This was

exemplified by a recent pioneering study on the hipBA system in

Escherichia coli [80], where tuning the level of the HipA toxin

resulted in the coexistence of normally growing and growth-

arrested cells. The coexistence of such distinct phenotypes implies

bistability somewhere in the network. While a growth rate-

mediated positive feedback [44,45] was not considered by [80], it

would be important to investigate if its inclusion can cause

bistability [82].

The potential implications of the ‘‘sweet spot’’ observed in our

experiments are intriguing, and may relate to the extremely low

fraction of persister cells observed in microbial populations [73]. If

increasing the memory of the drug-tolerant state is costly, it is

advantageous to dedicate as small a fraction of the population as

possible to the persister state. This minute persister population will

then be able to reproduce during drug treatment at a minimal

fitness cost. This is true as long as persisters have extensive

memory and nonzero division rates like type II persisters [73],

which may decrease or vanish as the fraction of persister cells and

the memory of the persister state increases. Our experimental

model and computational approach can therefore be useful in

studying the properties of microbial populations with small

fraction of resistant cells and bet hedging strategies.

In addition, our findings have important implications for

interpreting the outcome of biological measurement techniques

focusing on the average gene expression in the population of cells

(such as gel blot assays or microarrays). Specifically, apparent

‘‘upregulation’’ following stress exposure may be due to nonge-

netic selection of a particular pre-existing subpopulation, and may

have nothing to do with actual gene regulation. For example, at

the ‘‘sweet spot’’ Zeocin treatment caused a drastic apparent

increase in average gene expression in the population that did not

involve any increase in protein levels in individual cells, but was

simply due to the increase of the proportion of high-expressing

cells in the population. This effect was due to the selection of high

expressors in the presence of Zeocin. A similar nongenetic

selection mechanism may also be implicated in the emergence of

microbial or cancer drug resistance, where rare pre-existing drug-

tolerant cells could be selected during chemotherapy, causing

additional resistance to subsequent rounds of treatment. Consis-

tent with these studies, our results suggest that even without

underlying genetic changes, gene expression variability can

generate a stable, selectable subpopulation of rare survivor cells

[73,83,84] that maintains resistance over hundreds of cell

generations, and may serve as a reservoir of increasingly drug

resistant mutants.

The PF circuit design can be easily extended up to mammalian

systems and down to bacterial systems, due to the simplicity of the

circuit design and the availability of equivalent circuit components

in other organisms. Growing evidence supports the feasibility of

transferring synthetic gene circuits across organisms [30,85],

which might someday enable translational applications in the

clinic [70,86]. For example, a potential application for synthetic

gene circuits that consist of a self-activating regulator controlling a

drug resistance gene may be engineering the microbiome [86,87].

All parts of the human body host immense microbial communities,

with cell counts that exceed by an order of magnitude the number

of our own cells [88]. The microbiome can impact human

physiology, and is required for vital functions of the human body.

Consequently, rebalancing the microbiome may facilitate the

reestablishment of homeostasis within the human body. Such

rebalancing may be necessary after antibiotic treatment, which –

in addition to the targeted pathogens – may drastically perturb the

gut microbiome. For this reason, crucial members of the human

microbiome could someday be engineered to survive or even

proliferate during antibiotic treatment. Gene circuits similar to the

one described above operating near the ‘‘sweet spot’’ may be

capable of this task by ensuring near-optimal growth in both the

absence and presence of antibiotic.

Another potential use of gene circuits similar to the one

described above might be for in vitro studies of metastable states of

stem cells or adult progenitor cells. It is known that these cell types

can stochastically transition between various metastable states,

some more prone to differentiation than others [89–92]. These

stochastic transitions and their implications for differentiation may

be difficult to study in vivo. On the other hand, in vitro conditions

may drastically perturb or abolish these metastable subpopula-

tions. Gene circuits similar to PF controlling a metastable-state

specific gene (in addition to a drug resistance gene) may reestablish

the desired subpopulation fractions in vitro. Moreover, applying

selective pressure by introducing a drug into the medium could

adjust the stability of these transient states independently of their

subpopulation fractions. Such a system could someday provide a

constant, desired yield of transient-amplifying or differentiated

cells for further studies or perhaps regenerative medicine [86].

Finally, this work highlights the importance of selective

environments for characterizing the behavior of synthetic gene

circuits, but also has implications for studying natural gene

networks. Diverse environments can broaden the functionality of

regulatory modules that respond to specific external signals. Yet,

understanding the environmental response of gene networks and

their host cell populations is not trivial. As the size of natural and

synthetic gene networks demanding quantitative description

increases, a new challenge will be to describe their behavior in

various well-defined environments. It will be interesting to see how

quantitative modeling can tackle the combinatorial complexity

associated with tuning multiple environmental factors imposed on

regulatory networks.

Materials and Methods

Construction of plasmids
The plasmids for the construction of the PF yeast strain were

created as follows. First, the PTETREG promoter consisting of two

tetO2 sites upstream of the minimal PCYC1 promoter was amplified

from the pBB247 plasmid [29,93] and inserted into the pDN-

G1GZmh plasmid [42] between the AflII and BamHI sites instead

of the PGAL1-D12 promoter resulting in the pDN-T2dGZmh

plasmid. In order to facilitate the planned integration of the

reporter plasmid into the his3D200 locus of the YPH500 strain, a

small region bearing homology to the his3D200 locus was

constructed by PCR and inserted in front of the HIS3 gene

between the AhdI and AfeI sites of the pDN-T2dGZmh plasmid,

resulting in the pDN-T2dGZmlh plasmid. Next, a second ADH1

terminator was removed from the pDN-T2dGZmlh plasmid,

resulting in the final reporter pDN-T2dGZmxh plasmid bearing

the yEGFP::zeoR fluorescent reporter gene under the control of the

PTETREG rtTA-MF inducible promoter. Next, rtTA was amplified

by PCR using the pBB140 plasmid [29] as a template and inserted

between the BamHI and XhoI sites of the pDN-NG1Tt plasmid

[42] resulting in the pDN-NG1At plasmid. Then the PTETREG

promoter was cut from the pDN-T2dGZmxh plasmid and inserted

into the pDN-NG1At plasmid between AflII and BamHI sites,

resulting in the pDN-T2dAt plasmid. After that, the second ADH1

terminator was removed from the pDN-T2dAt, resulting in
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another intermediate pDN-T2dAot plasmid. The modified version

of the rtTA transactivator (rtTA-MF), consisting of the rtetR-M2

variant amplified from pCM190-M2 [43] augmented with the

short FFF activation domain [58], was created by PCR and

inserted into the pDN-T2dAot between the BamHI and XhoI sites,

resulting in the final pDN-T2dMFot regulatory plasmid, bearing

the modified rtTA-MF transactivator gene under the control of the

PTETREG rtTA-MF inducible promoter. The TRP1 and HIS3

marker genes were used for all regulatory and reporter plasmids,

respectively. All cloning procedures were performed in Escherichia

coli XL-10 Gold strain (Stratagene, La Jolla, CA) using selection by

ampicillin (Sigma, St. Louis, MO). All constructs were sequenced

in the insert regions with double coverage. A description of the

oligonucleotides used in this study can be found in Section 1 and

Table S1 in Text S1.

Strains and media
The haploid Saccharomyces cerevisiae strain YPH500 (a, ura3-52,

lys2-801, ade2-101, trp1D63, his3D200, leu2D1) (Stratagene, La

Jolla, CA) was used as a model organism throughout this study. A

modified lithium acetate procedure was used for transformation

[94]. Only the transformed strain with a single copy of the PF gene

construct was used, as confirmed by PCR. Cultures were grown in

synthetic drop-out medium with the appropriate supplements to

maintain selection (all reagents from Sigma, St. Louis, MO) and

supplemented with sugars.

Cell cultures and flow cytometry
Yeast strain colonies were picked from plates and incubated

overnight in synthetic drop-out medium supplemented with 2%

glucose at 30uC. On the next day, cell suspensions were washed to

remove glucose and diluted at the concentration 46106 cells/ml in

the fresh medium to produce starter cultures. Then, 100 ml was

used to inoculate synthetic drop-out medium supplemented with

2% galactose and increasing concentrations of ATc (ACROS

Organics, Geel, Belgium). Cultures were then allowed to grow at

30uC for at least 48 hours, to stabilize the expression in the

population and then read on the FACScan flow cytometer (Becton

Dickinson, Franklin Lakes, NJ). In the experiments where cultures

were maintained over several days, cells were resuspended every

12 hours to keep them in the log growth phase.

Flow cytometry data processing and analysis
We applied a small gate to minimize the contribution of

extrinsic noise due to cell cycle phase, cell size and age on our

analysis. A two-dimensional Gaussian fit was performed on the

log-values of side scatter and forward scatter data for all stabilized

dose response experiments. An elliptical gate corresponding to

90% of the maximal probability of the fit two-dimensional

Gaussian distribution was applied to all data sets.

Custom bimodality test applied to gene expression
distributions

The number of events for an individual bin in the flow

cytometry histograms is nearly Poissonian [95,96]. Data was

smoothed with a 32-point moving average to estimate the

expected number of events for each fluorescence bin. This

smoothed data was assumed to have a normal distribution with

variance equal to the expectation divided by 32 (corresponding to

32 moving average). Bimodality was assessed by determining if

minima located between two maxima were more than 4 standard

deviations below both maxima, using a standard z test such that
mH{mLffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mH=32
p §4, where mH is the maximum height of the smoothed

events and mL is the minimal height of smoothed events to be

tested. A more detailed description can be found in Section 2 in

Text S1.

Classification of cell populations into low and high
expressors

Sub-populations in dose-response experiments were identified

by using the custom bimodality test. Multiple minimal

thresholds were filtered by choosing the threshold that

maximized the product of the two z-scores. The threshold was

found to be ,50 fluorescent a.u. for PF cells at 10 ng/ml ATc.

Subsequently, experimental data obtained from the fluores-

cence-activated cell sorting experiments were classified into sub-

populations using a constant threshold of 50 fluorescent a.u. for

PF cells. A more detailed description can be found in Section 2

in Text S1.

Measures of gene expression variability
We calculated the mean mp and the coefficient of variation CVp

for individual cell populations, p based on gated FL1 (fluorescence

intensity) values of cells from the corresponding culture, according

to the formulae

mp~SFi,pT and CVp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SF2

i,pT{SFi,pT2
q

SFi,pT
,

where Fi,p represents the fluorescence intensity of cell i from

population p, while the angled brackets denote averaging over

individual cells, i from population p.

Purification of high expressor cells by serial dilution
We preinduced and repeatedly resuspended a PF cell popula-

tion for 4 days in 10 ng/ml ATc to obtain a stable bimodal

expression pattern. Next, we estimated the cell concentration using

a NexCelom Cellometer T4 and prepared a set of 80 separate

1 ml cultures using multiple serial dilutions, aiming to obtain

approximately 1 cell per 10 tubes. After repeatedly resuspending

these diluted cultures into the same 10 ng/nl concentration of

ATc inducer, we measured the resulting gene expression

distributions on day 4.

Fluorescence microscopy
We preinduced and repeatedly resuspended a PF cell popula-

tion for 4 days at an appropriate inducer concentration to obtain a

stable bimodal gene expression pattern. Phase-contrast and

fluorescence images were then recorded every 30 minutes over 3

days in a microfluidic chamber with continuous supply of medium

containing the same inducer concentration.

Fitting the population dynamics model to the
experimental data

The set of differential equations for the two state population

dynamic model ([6]) has the analytical ratio of low to high

expressor cells given by

R tð Þ~

NL0{NH0
f

gL{r{a2

� �
f

gL{r{a1
ea1tz NH0

f
gL{r{a1

{NL0

� �
f

gL{r{a2
ea2t

NL0{NH0
f

gL{r{a2

� �
ea1tz NH0

f
gL{r{a1

{NL0

� �
ea2t

:

with the corresponding eigenvalues
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a1~
gLzgH{r{fð Þz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gLzgH{r{fð Þ2{4 gL{rð Þ gH{fð Þ{rfð Þ

q
2

:

a2~
gLzgH{r{fð Þ{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gLzgH{r{fð Þ2{4 gL{rð Þ gH{fð Þ{rfð Þ

q
2

The resulting log transformed ratio ln[R(t)] = ln[NL(t)/NH(t)] was fit

to the measured log-ratios of low to high expressor subpopulations

using Matlab’s fminsearch function based on the Nelder-Mead

fitting algorithm (Fig. 4E). The data was normalized by dividing

the sorted log-ratio at each time point by the corresponding log-

ratio of the unsorted population, and then multiplying by the

mean of all unsorted log-ratios over all time points (see Section 8 in

Text S1 for details). The overall cell division rate after long periods

of time (asymptotic cell division rate) is gT = a1.

Fitting the overall population fitness function to
experimental data

Instantaneous fitness in Zeocin depended on the balance of

cellular Zeocin resistance (approximated by the fluorescence level)

and extracellular Zeocin. Zeocin toxicity was modelled by focusing

on the DNA which transitioned to a damaged state when bound

by Zeocin, and was repaired at a constant rate. The Zeocin fitness

function was defined as

c1~
x

Zi F ,Zð Þzx
,

where Zi is Zeocin concentration within the cell and x is a constant

related to intracellular Zeocin toxicity. Zeocin was as assumed to

diffuse into and out of the cell freely, and to bind irreversibly to

yEGFP::ZeoR. Intracellular Zeocin concentrations were modeled

by mass action kinetic reactions at steady state:

_ZZi~wZ{hZZi{sRZi

_BB~sRZi{dB

where hZ = 0.5, d = 0.25, while Z, B, and R are external Zeocin,

and bound and unbound yEGFP::ZeoR concentrations. The total

fluorescence constrains yEGFP::ZeoR by the equation F = R+B.

The rate constants are hZ (Zeocin diffusion out of the cell

membrane), s (yEGFP::ZeoR binding affinity for Zeocin), and d

(yEGFP::ZeoR degradation/dilution rate, assumed to be constant

for simplicity). A second function describing the instantaneous

reduction in PF fitness as a function of fluorescence and ATc was

defined as

c2~
a

azF C
Czb

where F is the fluorescence value of the cells, and C is the ATc

concentration cells are grown in. The parameter a describes the

toxicity of activated rtTA, and b describes the binding efficiency of

rtTA to ATc.

The parameters we obtained after fitting were: w = 1.182,

x = 0.502861027, s = 1.27326106, a = 936, b = 5.8.

Estimating cellular currents with fitness corrections
Cellular currents were defined by the functions

IH&ghN(h)

IL~IHz

ðh

0

g Fð Þ{gT½ �N(F)dF

where g(F) is the instantaneous fitness at fluorescence F, and gT is

the overall fitness of the cell population. Integrals were numerically

calculated based on the fitness function and flow cytometry

distributions using Matlab’s trapz function.

Supporting Information

Text S1 Details of experimental, theoretical and com-
putational methods used in this study. Text S1 contains:

the list of primers used in this study for constructing the PF gene

circuit; the description of the custom bimodality detection

algorithm; various mathematical modeling approaches for deter-

mining the dynamic behavior and cellular memory of the PF

synthetic gene circuit; the derivation of the formulas for

instantaneous cellular fitness in various conditions; the derivation

of the cellular current and its relationship to cellular memory; the

details of experimental cellular memory measurements; the

description of why the Kussell-Leibler optimality predictions are

invalid for our experimental system; stochastic simulations

accounting for differential cell division; and the results of tracking

individual cells in Video S1.

(PDF)

Video S1 Gene expression dynamics of growing and
dividing PF cells. Genetically identical S. cerevisiae cells carrying

the chromosomally integrated PF gene circuit imaged every

30 minutes over 2 days while maintained at constant temperature

(30 C) and constant, intermediate inducer concentration. The

movies consist of overlays of individual phase-contrast and

fluorescence (EPI) images recorded in the FITC channel on a

Nikon TiE microscope using NIS Elements Advanced Research.

(AVI)
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