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Abstract

Stochastic fluctuations in gene expression give rise to cell-to-cell variability in protein levels which can potentially cause
variability in cellular phenotype. For TRAIL (TNF-related apoptosis-inducing ligand) variability manifests itself as dramatic
differences in the time between ligand exposure and the sudden activation of the effector caspases that kill cells. However,
the contribution of individual proteins to phenotypic variability has not been explored in detail. In this paper we use
feature-based sensitivity analysis as a means to estimate the impact of variation in key apoptosis regulators on variability in
the dynamics of cell death. We use Monte Carlo sampling from measured protein concentration distributions in
combination with a previously validated ordinary differential equation model of apoptosis to simulate the dynamics of
receptor-mediated apoptosis. We find that variation in the concentrations of some proteins matters much more than
variation in others and that precisely which proteins matter depends both on the concentrations of other proteins and on
whether correlations in protein levels are taken into account. A prediction from simulation that we confirm experimentally is
that variability in fate is sensitive to even small increases in the levels of Bcl-2. We also show that sensitivity to Bcl-2 levels is
itself sensitive to the levels of interacting proteins. The contextual dependency is implicit in the mathematical formulation of
sensitivity, but our data show that it is also important for biologically relevant parameter values. Our work provides a
conceptual and practical means to study and understand the impact of cell-to-cell variability in protein expression levels on
cell fate using deterministic models and sampling from parameter distributions.
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Introduction

Variability in the responses of tumor cells to biological stimuli is

often ascribed to genetic differences. However, it has become

increasingly clear that even genetically identical cells growing in a

homogenous environment respond differently to ligands, drugs, or

other stimuli. Non-genetic variability at the single-cell level has

been demonstrated in the activation of immune responses

[1,2,3,4], viral infectivity [5,6,7], developmental fate [8,9,10,11],

antibiotic resistance [12], and sensitivity to therapeutic drugs

[13,14,15]. Such variability can arise from relatively long-lasting

‘‘epigenetic’’ changes that have their origins in stable and heritable

programs of gene expression [16] and can be sensitive to histone

deactylase inhibitors that disrupt the histone code [14]. Substantial

phenotypic variability also arises from fluctuation in the levels or

activities of proteins (or other biomolecules) that control cell fate;

the current paper is concerned with this type of variability.

Two sources of non-genetic variability can be distinguished.

The first, often called ‘‘intrinsic noise’’, arises when the copy

number of molecules participating in a reaction under study is

sufficiently small that probabilistic fluctuations in protein-protein

interactions or biochemical reactions have observable effects [17].

Such processes are modeled using stochastic methods. The second

source of variation, often called ‘‘extrinsic noise,’’ arises when

protein concentrations in individual cells are high enough that

single-cell reaction trajectories are well approximated by mass-

action kinetics, but ‘‘external’’ or pre-existing cell-to-cell differ-

ences in the activities or concentrations of biomolecules have an

effect [17]. With either intrinsic or extrinsic noise, phenotypes vary

from one cell to the next but the processes that cause cells to differ

are either part of or external to the biological process under study.

When clonal cell populations are treated with TNF-related

apoptosis inducing ligand (TRAIL), their response is dramatically

different from cell to cell: some cells die with 45 min, some die

after as long as 12 hr, and some do not die at all [15,18]. We have

investigated the contributions of intrinsic and extrinsic noise to this

variability by studying sister cells [15]. Were cell-to-cell variability

to arise predominantly from intrinsic noise, we would expect sister

cells to be no more correlated phenotypically than two cells

selected at random from a population: intrinsic noise cannot be
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inherited. However, time-lapse microscopy has shown that the

time and probability of TRAIL-induced cell death are highly

correlated in newly born sister-cell pairs. The correlation in time of

death between sister cells decays on a time scale of hours to days so

that older sister cells are ultimately no more similar to each other

than are pairs of cells selected at random from the population.

Were cell-to-cell variability in phenotype to arise from differences

in protein levels or activities, we would expect phenotypes to be

transiently heritable (as observed with TRAIL) because binomial

partitioning of cellular contents at division causes sisters to inherit

similar numbers of high abundance biomolecules [19,20].

Subsequent decorrelation in protein levels, and thus in time and

probability of death, is also expected because fluctuations in

protein synthesis and degradation (processes that exhibit signifi-

cant intrinsic noise [6]) have an increasing impact as time

progresses. The time required for sister cells to diverge and

recapitulate the steady state distribution is known as the ‘‘remixing

time’’. Factors that determine remixing times are not fully

understood [8,9,21] but translation rates are one contributor.

Because cell-to-cell variability in responses to TRAIL can be

ascribed primarily to differences in protein concentrations existing

at the time of ligand addition and not to intrinsic noise in signal

transduction reactions, deterministic mass-action modeling is

appropriate [15]. Indeed, attempts to reproduce observed

variability in cell death dynamics using conventional stochastic

simulations have not succeeded, probably because proteins that

regulate apoptosis are abundant [22].

TRAIL-mediated apoptosis involves binding of TRAIL ligand

to transmembrane DR4/5 receptors and consequent activation of

effector caspases. To simulate these processes we have developed a

series of mass-action models based on networks of ordinary

differential equations (ODEs; referred to as extrinsic apoptosis

reaction models, or EARMs) that have been validated in single-cell

studies using small molecule drugs, pathway-wide RNAi, and

protein overexpression [18]. EARM describes the dynamics of

death in single cells with good accuracy, particularly when cells are

exposed to low-dose cycloheximide that blocks de novo protein

synthesis (from the perspective of modeling, use of cycloheximide

obviates the need to model TRAIL-induced transcription and

translation and reduces the number of model parameters). Upon

TRAIL stimulation, death-inducing signaling complexes (DISCs)

assemble on the cytoplasmic tails of TRAIL-bound DR4/DR5

receptors, activating initiator pro-caspases-8 and -10 (hereafter

referred to as caspase-8 or C8 for simplicity, Figure 1). Active

caspase-8 directly cleaves effector pro-caspases-3 and -7 (hereafter

simplified to caspase-3 or C3) but in most cell types, including

those studied here, caspase-3 activity is held in check by XIAP

until mitochondrial outer membrane permeabilization (MOMP)

takes place. MOMP is controlled by members of the Bcl-2-family

of proteins, which includes both positive and negative regulators.

Active caspase-8 cleaves Bid into tBid which then induces a

conformational change in Bax. Active Bax translocates to the

mitochondria, where it (or its homolog Bak) multimerizes and

form transmembrane pores. Pore assembly is antagonized by anti-

apoptotic Bcl-2 proteins present in the cytosol and outer

mitochondrial membrane. Only when levels of active Bax/Bak

exceed those of inhibitory Bcl-2 proteins does pore formation

begin and MOMP take place, releasing cytochrome c and Smac

into the cytosol in a sudden, all-or-none process. Cytochrome c

forms an apoptosome complex that also contains Apaf-1 and

activates caspase-9, thereby creating an additional factor capable

of processing pro-caspase-3. Smac binds to XIAP, which prevents

XIAP from associating with active caspase-3, freeing caspase-3 so

it can cleave substrates such as the inhibitor of caspase-activated

DNase (ICAD) and poly (ADP-ribose) polymerase (PARP), and

thereby promote fragmentation of the genome and proteome.

The current work aims to evaluate the impact of changes in the

concentrations of apoptosis regulators on the dynamics of effector

caspase activation in cells treated with TRAIL, particularly for

changes that arise from natural variation in protein levels from one

cell to the next. Because we observe such variation to be constant

across a continuously growing cell population (that is, to be quasi-

static) time-invariant distributions of initial protein concentrations

Figure 1. The TRAIL-induced signaling network. (A) Schematic
diagram of the TRAIL-induced cell death signaling network including
live-cell imaging reporters for MOMP, the inter-membrane space
reporter protein (IMS-RP), and for initiator or effector caspase activity
(IC-RP or EC-RP, respectively). The features tPARP, fPARP, and tswitch can all
be evaluated based on EC-RP dynamics and tMOMP can be measured in
live cells using IMS-RP. IC-RP enables measurement of the threshold of
cleaved initiator caspase substrate required for MOMP and of an initial
rate of caspase activity (kIC). See also Figure 2 and Table Box 1 for
description of how reporter dynamics were modeled and for precise
definitions of features.
doi:10.1371/journal.pcbi.1002482.g001

Author Summary

Variability among members of a clonal cell population is
increasingly recognized as a near-universal characteristic of
prokaryotic and eukaryotic cells. Variability can arise from
random fluctuations in the biochemical reactions that
control gene transcription, protein synthesis or signal
transduction networks. For variability in receptor-mediated
signaling responses (in the current work, those activated
by the death-inducing ligand TRAIL), we can often
distinguish between the influence of stochastic processes
that occur prior to ligand exposure and those that occur
subsequently. One manifestation of prior variability is cell-
to-cell differences in protein concentrations, and this
paper uses a combination of modeling and experimenta-
tion to ask how these differences impact variability in
phenotype, specifically with respect to the timing and
probability of cell death. We find that fluctuations in
multiple proteins contribute jointly to phenotypic variabil-
ity, that the contributions of specific proteins to pheno-
typic variability are highly sensitive to the concentrations
of other proteins, and that correlations in protein levels
(detectable experimentally) also have a measurable impact
on phenotype. Our work provides insight into the
regulation of apoptosis and also represents a general
approach for understanding cell-to-cell variability in signal
transduction pathways.

Modeling Cell-to-Cell Variability
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can be used as inputs for ODE modeling. We measured protein

concentration distributions in asynchronous cell populations using

flow cytometry and microscopy and, when suitable reagents were

available we also measured correlations in the concentrations of

different proteins. Variability in the dynamics of apoptosis was

then simulated by sampling from these distributions. In principle,

we expect variation in the levels of some proteins to matter more

than variation in others, and we show that this is indeed the case.

We explore the impact of correlations in the levels of one or more

model species and also ask how many species must be measured to

accurately predict phenotype. Finally, we show that the pheno-

typic consequences of variation in particular proteins are affected

by changes in the concentrations other apoptotic regulators,

demonstrating contextual dependency in the contributions made

by regulatory molecules to the timing and probability of cell death.

Results

Feature-based sensitivity analysis of cell death dynamics
Cell death is represented in EARM by caspase-mediated

proteolysis of PARP to generate cleaved PARP (cPARP): previous

studies have shown that HeLa cells are inviable when cPARP

exceeds ,10% of initial PARP levels ([cPARP].0.10*[PARP]0)

[23]. Under normal circumstances, cleavage of effector caspase

substrates constitutes a ‘‘snap-action’’ switch that is well described

by a sigmoidal Boltzmann trajectory in which an extended delay is

followed by sudden and complete PARP proteolysis [18,24]. The

delay time is long (45 min to 12 hr), varies from cell to cell, and

increases as the dose of TRAIL decreases. In contrast, the rate of

PARP cleavage is rapid once begun, and dose-invariant (the time

between the first detectable cleavage of PARP and its completion

is typically 20–25 min). However, RNAi-mediated depletion of

regulatory proteins such as XIAP or treatment of cells with

proteasome inhibitors such as MG132 changes the dynamics so

that PARP is cleaved more slowly and may not go to completion.

We have previously argued that these qualitative changes create a

pathological state in which caspase-activated DNase is active,

genomic DNA damaged, but some damaged cells do not die

[18,23]. Such cells have been proposed to play a role in tumor

initiation [25,26,27,28]. Thus there is a fundamental difference

between natural variation in the timing of apoptosis and the

breakdown associated with slow and incomplete execution of the

apoptosis program.

The impact of changes in the initial protein concentrations or

other parameters on model output is determined using sensitivity

analysis. For extrinsic apoptosis we can distinguish between

normal and pathological behaviors using four features of cPARP

and cytosolic Smac trajectories: 1) tPARP, the time between ligand

exposure and 50% PARP cleavage (i.e. time of cell death), 2)

tMOMP, the time between ligand exposure and MOMP (defined

experimentally as the first image in which a fluorescent MOMP

reporter appears diffuse in the cytoplasm and in the model as the

Box 1. Feature-based sensitivity

Parameters in mass-action biochemical models include initial
protein concentrations, and kinetic parameters such as
association, dissociation, and catalytic rate constants, Hill
coefficients etc. The impact of changes in parameter values
on model outputs, typically dynamical variables such as the
concentrations or activities of proteins over time, is
calculated using sensitivity analysis. In EARM, the dynamical
variable reporting on MOMP is the level of cytosolic Smac
and the variable reporting on effector caspase activity is the
level of cleaved PARP (cPARP) (Figure 2A). The conventional
sensitivities of these variables are the normalized changes at
a particular point in time arising from an infinitesimal change
in a parameter value. Often, these partial derivatives are
integrated over time (Figure 2B, gray areas).
If we consider the impact of RNAi and naturally occurring
cell-to-cell variability on the trajectories of cytosolic Smac or
cPARP we realize that conventional sensitivity values are not
particularly informative: variation in the timing of cPARP
accumulation is normal (Figure 2B, top panel) while
incomplete or abnormally slow PARP cleavage is patholog-
ical (Figure 2B, center and bottom panels respectively), but
the time integrated sensitivities for all three scenarios are
similar (approximated by the gray areas between the curves).
Physiological and pathological changes in cPARP dynamics
can be discriminated using features of the trajectories such as
the time at which PARP is 50% cleaved (tPARP), the time
required for cPARP to go from 10% to 90% cleaved (tswitch) or
its final fraction relative to [PARP]0 (fPARP) (Figure 2A;
mathematical definitions in Table 1). As shown in this paper,
feature-based sensitivities are more effective than conven-
tional sensitivity in analyzing apoptotic regulators because
they report on biologically meaningful variation. The
concept of feature-based sensitivity can also be reformulated
for different types of trajectories in any dynamical system
and these sensitivities can be computed locally (e.g. Figure
S1) or as part of global sensitivity analysis (see for example

algorithms in ref. [42,43,44] and reviewed in ref. [45]).
The sensitivity of time-based features such as tPARP or tMOMP is
approximated by:

Lt

Lk
%{

Ly

Lk

����
t~t

Ly

Lt

����
t~t

� �{1

ð1Þ

where k is a model parameter, t represents the time-based
feature of interest (tPARP, tMOMP) and y is the dynamical
variable that governs the feature (cPARP and cytosolic Smac,
for tPARP and tMOMP respectively; the derivation of Equation 1
is described in Text S2). Thus, feature sensitivity is
approximately equal to the conventional sensitivity

{
Ly

Lk

����
t~t

divided by the slope of the trajectory
Ly

Lt

����
t~t

evaluated at the appropriate time point for the feature (t~t;
e.g. when PARP is 50% cleaved for tPARP or when Smac is 50%
cytosolic for tMOMP). Equation 1 also has an appealing
geometric interpretation when we graph y as a function of
time, as we illustrate in Text S2. Equation 1 is valid in the
ideal case where MOMP and PARP cleavage are observed in
every simulation, however when simulations are performed
for finite time intervals (and not all cells die in certain regions
of k) the formula breaks down (Figure S1 in Text S1). A
practical alternative is to use numerical methods for
computing tMOMP and tPARP (see main text and Figures 3A
and S2, S3, S4).
Both tswitch and fPARP can be defined by expressions based on
evaluating the cPARP dynamic variable at specific time
points, and therefore exact analytical expressions can be
derived for their sensitivities to changes in parameter values;
these are listed in Table 1.

Modeling Cell-to-Cell Variability
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time at which 50% of Smac has translocated to the cytosolic

compartment), 3) tswitch, the time between the start and finish of

PARP cleavage (a measure of the rate of PARP cleavage), and 4)

fPARP, the fraction of PARP cleaved at the end of the simulation or

experiment (a measure of the completeness of apoptosis). In

unperturbed HeLa cells exposed to 50 ng/ml TRAIL and 2.5 mg/

ml cycloheximide, tPARP and tMOMP varied from 2–6 hr, tPARP

occurred ,10 min after tMOMP (at a single cell level), tswitch was

,25 min, and fPARP was ,1.0 [23,29].

The sensitivities of these features to changes in parameter values

are related to but distinct from conventional sensitivities.

Analytical expressions for feature sensitivities are described in

Box 1 but the calculations in this paper actually involve numerical

methods that account for complex non-local effects (see Text S2

and Box 2 for further details). In the numerical approach,

sensitivities are calculated by Monte Carlo sampling of initial

protein concentrations thereby repeatedly evaluating the local

slope of the response curve for a feature. We evaluated feature

sensitivities with respect to 16 non-zero initial protein concentra-

tions individually by simulating PARP cleavage and Smac

translocation dynamics in cells exposed to 50 ng/ml TRAIL

while sampling uniformly in the exponent over a range of 102–107

proteins per cell (all other parameters remained at their nominal

values). This range of concentrations reflects the range of possible

concentrations for proteins in a mammalian cell [30,31]; for

apoptotic regulators it is a reasonable approximation to the

concentration range achieved by protein overexpression or RNAi-

mediated protein depletion. EARM has been validated using such

methods and it performs well under these conditions [15,23,29],

although most analysis has been performed for protein levels

present in unperturbed HeLa cells.

The sensitivity of model features to changes in protein levels

broadly conformed to expectation: for tMOMP, higher levels of pro-

apoptotic proteins lying upstream of pore formation decreased its

value (Receptor, caspase-8, Bid, and Bax; Figure 3A, green curves

show responses, blue curves show sensitivities) whereas higher

levels of upstream anti-apoptotic proteins (FLIP, Bar, Mcl-1, Bcl-2;

Figure 3A) increased its value. In contrast, changes in the levels of

downstream proteins had little effect (e.g. caspase-3, caspase-9,

Apaf1; Figure 3A, bottom row). The sensitivities of other features

are shown in Figures S2, S3, S4 in Text S1. They reveal that

different features exhibit different sensitivity with respect to protein

initial concentrations. These sensitivities varied considerably in

magnitude with position in parameter space: over some concen-

tration ranges, small changes in the levels of proteins such as FLIP,

Mcl-1 or Bcl-2 had a large impact on model output but over other

ranges the impact of small changes was minimal (Figure 3A). For

example, when [Bcl-2] lay between 104 and 105 molecules per cell,

tMOMP changed rapidly whereas with [Bcl-2] between 102 and 104

molecules per cell, tMOMP changed very little. Because sensitivity is

a local property of a model, this result is expected from a

mathematical perspective but is often overlooked from a biological

perspective.

To estimate mean concentrations of apoptotic regulators in

HeLa cells, we used calibrated immunoblotting and recombinant

protein standards (Figure S5 in Text S1); to estimate variation in

Box 2. Variance in system behavior relates to variance and co-variance in parameter values

Although it is conventional to emphasize individual deter-
minants of cellular phenotype, natural variation in TRAIL-
mediated cell death is regulated by multiple factors in
surprisingly subtle ways ([15,23,29,34]; and this work). We
can understand why this is true by deriving an approximate
relationship between the variance of a feature and changes
in the level of a particular parameter; in the current work we
are particularly concerned with the impact of naturally
occurring fluctuations in initial protein concentrations.
Variance of feature q (s2

q) is approximately:

s2
q&

XN

a,b~1

Lq

Lln c0
a

� �Ma,b
Lq

Lln c0
b

� � ð2Þ

where the indices a, b refer to pairs of N concentration

parameters, c0
a and c0

b are their initial concentrations (in log
units) and Ma,b is the covariance matrix of concentrations
(see Supplemental Text S1 for the derivation). If protein
levels are assumed to be uncorrelated then off-diagonal
terms are zero and the entire expression is reduced to a sum
of squared terms over all proteins having non-zero initial
concentrations:

s2
q&

XN

a~1

Lq

Lln c0
a

� �
 !2

s2
a ð3Þ

From Equation 3 we see that variances in protein concen-
trations contribute only positively and additively to variances
in features. A caveat to Equations 2 and 3 is that sensitivities
are local and the approximations do not account for changes

in sensitivity as parameters vary; these effects (which can be
large in some cases) are most easily estimated with
numerical methods such as Monte Carlo sampling of
parameter distributions (as in Figure 3). Nevertheless,
Equation 2 would provide an extensible approach to
approximate the impact of covariance of sets of three or
more parameters.
We can also use Equation 2 to understand the possible
phenotypic consequences of measured or postulated
correlations in protein concentrations. The right-hand side
of Equation 2 is a product of three terms comprising two
feature sensitivities and co-variation between two concen-
trations. Sensitivities can be positive or negative (‘‘anti-
apoptotic’’ or ‘‘pro-apoptotic’’ if considering tPARP or tMOMP,
for example) and co-variation between two protein concen-
trations can also be positive or negative, although positive
co-variation is expected [35] in the absence of a specific
regulatory mechanism to enforce negative co-variation (e.g.
by a ubiquitin ligase and its target). Considering the sign of
individual terms, we arrive at four scenarios (Table 2). In
scenario 1, in which sensitivities to variation in two
parameters have opposite signs (one positive and one
negative) and covariance is positive, variation in features
controlled by the parameters will decrease, precisely what
we observe for XIAP and Smac (Figure 5B). Conversely,
positive covariance for two parameters having the same
influence on a feature (either negative or positive) will
increase variance in the feature (scenario 2), which is what is
observed for the pro-apoptotic proteins Apaf1 and Smac
(Figure 5B). Scenarios 3 and 4 are the converse, and pertain
to situations where covariance is negative.

Modeling Cell-to-Cell Variability

PLoS Computational Biology | www.ploscompbiol.org 4 April 2012 | Volume 8 | Issue 4 | e1002482



protein levels from one cell to the next we used flow cytometry

([15]; Figures S6, S7, S8 in Text S1). The selectivity of antibodies

was validated using siRNA-mediated protein knockdown and/or

protein over-expression (Figure S7 in Text S1). Bcl-2, for which

good antibodies are available, was assayed using both immuno-

fluorescence microscopy and flow cytometry and we observed

excellent agreement between the two types of measurement

(Figure 3B). Both measurements rely on immunodetection and we

wanted to exclude the possibility that variability in antibody-

antigen binding might have a significant impact on the measured

distributions. We therefore transfected cells with a construct

expressing GFP-Bcl-2 and quantified the intensities of GFP and of

anti-Bcl-2 immunofluorescence in the same cells (Figure 3C). In a

two-dimensional scatter plot of these measurements, variation

along the diagonal represents real cell-to-cell differences in Bcl-2

concentration whereas off-diagonal variation represents differenc-

es between antibody-based and GFP-based estimates of Bcl-2

abundance. Off-diagonal variation can arise from antibody

binding, instrument error, the presence of some immature and

non-fluorescent GFP-Bcl-2 molecules, or variability in levels of

endogenous Bcl-2. Off-diagonal variation therefore represents an

upper-bound estimate of measurement error arising from antibody

binding and detection. We observed that off-diagonal variation

was significantly smaller than natural cell-to-cell variation in

endogenous Bcl-2 levels, suggesting that estimates of variability in

Bcl-2 levels do indeed reflect real differences in protein abundance

from cell to cell (Figure 3D).

Across a set of five proteins for which we could demonstrate

antibody selectivity (only a subset of commercially available

antibodies are suitable), measured distributions of protein

abundance were unimodal and long-tailed as has been observed

previously in mammalian cells [21,32]. All were well fit by log-

normal distributions, although we cannot exclude the possibility

that gamma distributions or other long-tailed distributions are also

appropriate representations of the data (Figure S8 in Text S1).

The coefficients of variation (CV; standard deviation divided by

mean) were between 0.43 and 0.47 but some of this variation is

expected to arise from differences in cell size. We therefore

selected cells with similar forward and side scatter measurements,

which reduced CVs to 0.2860.02 to 0.3060.03 depending on the

protein. Given the relatively narrow range of values for the CV, it

seemed reasonable to assume similar variance for those proteins

we could not assay experimentally. We therefore set CV = 0.25 for

proteins whose distributions were assumed rather than measured

(to err on the conservative side). In Figure 3A we relate the

sensitivity of tMOMP to endogenous protein concentrations in HeLa

cells by positioning double vertical bars at the 5th and 95th

percentiles of the protein concentration distributions (see also

Figures S1, S2, S3, S4 for other features). In general, data and

simulations predicted HeLa cells to be more sensitive to increases

than to decreases in the levels of anti-apoptotic proteins across the

endogenous range; the opposite is true for pro-apoptotic proteins.

The endogenous distributions of Bcl-2 and Bax were particularly

interesting because they suggested that HeLa cells lie close to a

region of parameter space in which small changes are expected to

have a large impact on tMOMP, a finding we analyze in greater

detail below.

Variability in some but not all protein concentrations
changes death dynamics

To compute the impact of natural variation in protein levels on

tMOMP, tPARP, fPARP, and tswitch, we used Monte Carlo methods that

sample from log-normal distributions of initial protein concentra-

tions (based on measured or assumed values for the mean and

Figure 2. Feature-based description and sensitivity of apopto-
sis dynamics. (A) Plot showing the simulated time courses of cleaved
PARP (blue; an effector caspase substrate), total cytosolic Smac (green)
and total cleaved Bid (tBid, yellow; an initiator caspase substrate).
Cleaved PARP corresponds to model species 23. Total cytosolic Smac is
the sum of Smac_r (species 47), Smac (species 45) and Smac:XIAP
(species 57). Total cleaved Bid is the sum of tBid (species 26), tBid:Bax
(species 28), and tBid:Mcl1 (species 30). The four model features under
investigation are indicated (tMOMP, tPARP, fPARP, and tswitch), as well as two
features used to classify proteins in Figures 4 and 7 (the initiator
caspase rate, kIC, and threshold). (B) Schematic representations of three
classes of changes in the cPARP trajectory and the corresponding time-
integrated value of the parameter sensitivity (gray). Changes that are
quantitatively similar in terms of conventional sensitivity are distinct by
feature sensitivity. The same qualitative distinctions apply to sensitiv-
ities calculated in the limit of an infinitesimal change in parameter
values. Therefore the curves in panel B are related to feature
sensitivities (and to Equation 1) as shown by the expressions on the
right.
doi:10.1371/journal.pcbi.1002482.g002

Modeling Cell-to-Cell Variability
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variance; Figure 4A). The predicted distributions of all four

features were unimodal regardless of whether we varied each

protein concentration individually (with all others fixed at their

nominal values; Table S2 in Text S3) or varied all proteins

simultaneously (while sampling independently; Figure 4B–E). In

no case did natural variation in the concentration of a single

protein generate as much variation in tMOMP as simultaneous

variation in all proteins (CV = 0.11 for tMOMP when Bax alone was

varied as compared to CV = 0.24 for tMOMP when all proteins were

varied independently). Results for tPARP were similar except that

variation in XIAP levels (and to a lesser extent, variation in other

proteins downstream of MOMP) also had an impact (Figure 5C).

This is expected since XIAP is a direct negative regulator of

caspase-3, and caspase-3 is the enzyme that cleaves PARP. From

these data we conclude that experimentally observed variation in

the time of MOMP or PARP cleavage is controlled in a multi-

factorial manner and that total phenotypic variation cannot be

explained by measured variation in any single protein concentra-

tion. A mathematical explanation of this effect is presented in Box

2.

In contrast, variability in fPARP was dominated by variability in

the levels of XIAP, and the impact of varying XIAP alone was

almost as great as that of varying all proteins simultaneously (Box

2, Equation 3 shows that it cannot be greater; Figure 5E). The

situation was similar for tswitch, except that factors downstream of

MOMP also had an effect on this feature. These observations help

to explain previous RNAi and over-expression data showing that

forced changes in the levels of proteins that impact fPARP also affect

tswitch, and that both features are particularly sensitive to changes in

the levels or activity of XIAP [18,23,33]. Indeed, the most potent

way to reduce the efficiency of apoptosis experimentally in HeLa

cells (i.e. increase tswitch or reduce fPARP) and generate ‘‘half-dead’’

cells, appears to be to interfere with the levels or activity of XIAP

[23]; the same is true in HCT116 human colon carcinoma cells

[34]. Taken together, these results make the point that the

‘‘robustness’’ of a cell to variation in any single parameter is

strongly dependent on the feature being evaluated: tMOMP is robust

to variation in [XIAP] but tswitch and fPARP are particularly sensitive

to it. We find that virtually all of the proteins in the model are

determining factors (sensitive parameters) for at least one

physiologically important variable.

Impact of co-variance in protein levels
Correlation in the levels of regulatory proteins is expected to

alter the relationship between variability in protein concentration

and variability in phenotype (Box 2, Equation 2). Using two-color

flow cytometry, we measured correlations in the concentrations of

Bax, Bcl-2, Bid, caspase-3 and XIAP across all ten pairwise

combinations (suitable antibodies pairs were not available for other

regulatory proteins). Gating on forward and side scatter was used

to select for cells of similar size since positive correlation is

expected simply based on cell volume. With stringent gating, we

observed positive linear correlation coefficients that ranged from

R,0.4 for caspase-3 and Bcl-2 to R,0.7 for Bax and Bcl-2

(Figure 5A–B). No negative correlations were observed, consistent

with results from bacteria showing that extrinsic noise is expected

Table 1. Mathematical definitions of features of the apoptosis process modeled in EARM and their analytical expressions for
parameter sensitivity.

Feature Analytical expression for feature sensitivity

tMOMP is t at which: total cytosolic Smac½ �~ 1

2
� Smacm½ �t~0 LtMOMP

L log kð Þ&{k �

L total cytosolic Smac½ �
Lk

����
t~tMOMP

L total cytosolic Smac½ �
Lt

����
t~tMOMP

tPARP is t at which: cPARP½ �~ 1

2
� PARP½ �t~0 LtPARP

L log kð Þ&{k �

L cPARP½ �
Lk

����
t~tPARP

L cPARP½ �
Lt

����
t~tPARP

fPARP:
cPARP½ �t~end

PARP½ �t~0

LfPARP

L log kð Þ~
k

PARP½ �t~0

� L cPARP½ �
Lk

����
t~end

tswitch:
d cPARP½ �

dt

����
t~tPARP

 !{1

Ltswitch

L log kð Þ~{k �
L

d cPARP½ �
dt

� �
Lk

��������
t~tPARP

� d dPARP½ �
dt

����
t~tPARP

 !{2

doi:10.1371/journal.pcbi.1002482.t001

Table 2. Impact of co-varying protein concentrations on variation in features.

Scenario Sensitivity of A, Ba Co-variation of A,B Impact on variance in feature

1 +,2 or 2,+ + 2

2 +,+ or 2,2 + +

3 +,2 or 2,+ 2 +

4 +,+ or 2,2 2 2

Notes:
a‘‘A’’ and ‘‘B’’ refer to two parameters for which a feature sensitivity has been computed.
doi:10.1371/journal.pcbi.1002482.t002

Modeling Cell-to-Cell Variability

PLoS Computational Biology | www.ploscompbiol.org 6 April 2012 | Volume 8 | Issue 4 | e1002482



Figure 3. Sensitivity of tMOMP to changes in protein initial concentrations and measurements of protein variance and co-variance in
HeLa cells. (A) Scatter plots show the simulated relationship between initial protein concentration and tMOMP (green) or numerically calculated tMOMP

sensitivity (blue; tMOMP sensitivity is unitless and is calculated using finite-difference approximations of the derivatives, or slopes, of the green curves)
following TRAIL addition, for the indicated proteins. The initial concentration for the indicated protein was uniformly sampled in the exponent for
values between 102 to 107 proteins per cell while all other initial protein concentrations and rate constants were set at their default value. Vertical
bars represent the 5th and 95th percentiles of the measured (orange, see panel B–D and Table S2) or assumed (gray) distributions in endogenous
protein concentrations for untreated HeLa cells. Shaded regions in the plot for Bid show an example of concentration ranges that were attained
experimentally using RNAi knockdown and GFP-fusion protein overexpression [15,23,29]. (B) Overlays of endogenous Bcl-2 concentration
distributions in untreated HeLa cells as measured by flow cytometry (FACS, blue), or immunofluorescence (IF, green). The FACS data are well fit by a
log-normal distribution (Fit, red); a.u., arbitrary units. (C) Scatter plot of anti-Bcl-2 vs. GFP-Bcl-2 signal in GFP-Bcl-2-transfected HeLa cells measured by
2-color flow cytometry. (D) Histograms of the endogenous Bcl-2 concentration distribution in wildtype HeLa cells measured with an anti-Bcl-2
antibody (left) and of the off-diagonal noise distribution for the scatter plot in (B) (right). Both distributions are for mean-centered data to allow
comparison of variability; std is the standard deviation and IQR is the interquartile range.
doi:10.1371/journal.pcbi.1002482.g003
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to cause all protein levels to be positively correlated unless they are

specifically counter-regulated [35].

To determine the impact of correlation in protein expression on

model features we constructed a five-dimensional joint distribution

based on pair-wise measurements and performed Monte Carlo

sampling. Protein pairs whose co-variance is unknown were

assumed to be uncorrelated. Including the measured correlations

in initial protein concentrations reduced the predicted variability

in tPARP from a CV = 0.23 to CV = 0.19, a statistically significant

improvement in the match to experimental data (for which

CV = 0.18; Figure 5C). We conclude that measured co-variation

in protein levels has a significant impact on variability in the

timing of death.

To investigate the impact of correlations in protein concentra-

tions in cases in which experimental data could not be collected,

we performed simulations considering each protein pair and

assuming either independent distributions or a single joint pairwise

distribution with R = 0.7 (the highest correlation observed

experimentally; Figure 5B). All other proteins were sampled

independently from their respective log-normal distributions. tPARP

is the feature whose variance was affected by the greatest number

of parameters (Figure 4B–E) and we therefore focused on it. For

each pair of proteins in the model, we computed the ratio between

the variance in tPARP expected under assumptions of independence

or positive correlation (Figure 5D). In many cases effects were

relatively modest. The largest single difference involved the anti-

apoptotic XIAP protein and its pro-apoptotic binding partner

Smac whose assumed correlation reduced dispersion in tPARP two-

fold. This represents one example of a general phenomenon:

positive correlations in the concentrations of pairs of proteins

having opposing roles in apoptosis reduced the spread in death

times (Figure 5D, red shading; see Box 2 for further explanation).

Although correlations in protein levels had a modest impact on

variability in tPARP, it significantly altered the phenotypic

consequences of variation in individual proteins. This can be seen

by sampling from the experimentally determined joint distribu-

tions for Bax, Bcl-2, Bid, caspase-3 and XIAP (allowing all other

proteins to vary independently) and using the Pearson correlation

coefficient (R) to score the relationship between tPARP and the

initial concentration of each model species (Figure 5E and Figure

S9 in Text S1; similar results were obtained using Spearman’s rank

correlation coefficients, not shown). As expected, the R value for

pro-apoptotic proteins was negative and for anti-apoptotic proteins

it was positive (see also Figure S10 in Text S1 for an analysis

yielding similar results using the slope of the regression line).

Unexpectedly, Bcl-2 had virtually no correlation with tPARP

(R = 0.002, Figure 5E) when concentrations were sampled from

joint distributions even though it was significantly correlated when

protein levels were assumed to be independent (R = 0.37). To try

to explain this, we removed only the correlation between Bcl-2 and

Bax from the joint distribution and re-computed R values for tPARP.

This restored the impact of variance in Bcl-2 on tPARP,

demonstrating the contextual dependency of feature sensitivities

Figure 4. The impact of variability in protein initial concentra-
tions is feature-specific. (A) Histograms showing the distributions of
initial concentrations of Bcl-2 and XIAP used as inputs to the model
(left) and the model output distributions for tMOMP and tswitch (right).
Input distributions were generated by sampling 10,000 times from a
log-normal distribution parameterized with measured or assumed
mean and CV as listed in Table S2 in Text S3. Output distributions were
calculated from104 simulations where the initial concentration of the
indicated protein was sampled from the distributions shown on the left;
all others protein concentrations were set to their default value (Table
S2 in Text S3). (B–E) Bar graph showing the coefficients of variation (CV)
obtained for model output distributions of tMOMP (B), tPARP (C), fPARP (D),
and tswitch (E) from series of 104 simulations where the indicated protein

initial concentration is sampled from a log-normal distribution and all
other concentrations set to their default value (Table S2 in Text S3).
Proteins were classified as affecting the pre-MOMP rate of initiator
caspase activity (Rate; gray), the MOMP threshold (Threshold; purple) or
post-MOMP processes (Post-MOMP; green) based on their position in
the TRAIL-induced signaling network (Figure 1). In panels B–E, the black
bar (‘‘All’’) indicates the variability observed in a series of 104

simulations where all non-zero initial conditions were independently
sampled from log-normal protein distributions using the measured CV
where available or else CV = 0.25 (as listed in Table S2 in Text S3).
doi:10.1371/journal.pcbi.1002482.g004
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Figure 5. Correlations in protein levels affect the distribution of death times and the rank ordering of the most sensitive species. (A)
Scatter plots showing joint measurements of the levels of pairs of proteins in a population of HeLa cells by flow cytometry (least correlated pair, Bcl-2
and caspase-3 (C3), left; most correlated pair, Bcl-2 and Bax, right). (B) Bar graph showing the measured Pearson correlation coefficients (calculated by
linear regression) in the level of ten protein pairs. Error bars show the standard error of the mean. For all protein pairs, measurements were on cells
that were size-selected by stringent gating for forward and side scatter. (C) Bar graph of the CVs of tMOMP distributions measured by monitoring IMS-
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(Figure 5E). At the mechanistic level, this result can be explained

by the fact that cells that have higher Bcl-2 levels (which should

cause them to die later, on average) also have more Bax (causing

them to die earlier, on average) because of positive correlation

between Bcl-2 and Bax concentrations. Thus, the correlation

between Bax and Bcl-2 dampens the variability in the [Bcl-

2]0:[Bax]0 ratio and masks the impact of Bcl-2 on tPARP. More

generally, correlations in protein concentrations can substantially

alter individual parameter sensitivities and such effects could be

strong enough to alter apparent mechanistic relationships between

proteins and phenotypes. Conceivably, these effects could also be

sufficient to mask the impact of forced changes in protein

expression induced by RNAi or overexpression.

Accurate prediction of time-to-death requires knowledge
of many protein levels

To determine the practical consequences of multi-factorial

control over tPARP, we asked how many measurements are required

to accurately predict time of death in a single cell. We performed

105 simulations of PARP cleavage in cells treated with 50 ng/ml

TRAIL and low-dose cycloheximide assuming Bax, Bcl-2, Bid,

caspase-3 and XIAP concentrations to co-vary and all other

proteins to vary independently. We modeled the process of

measuring one to eight proteins at a single-cell level assuming

experimental error of 612.5% and then computed how accurately

tMOMP could be determined. In actual microscopy experiments

tMOMP is typically sampled at 3 min intervals, resulting in a mean

squared error (MSE) of ,0.03. When we assumed knowledge only

of [Bid]0, the MSE in predicting tMOMP was 0.26, a poor estimate

given experimental error (reflected in the scatter of points around

the trend line in Figure 6A, left). Next, we prioritized measurements

by ranking them based on their contributions to variation in tPARP

(as judged by CV or R2 values with respect to tPARP as shown in

Figures 4C and 5E) or to variation in tMOMP (as judged by R2 values

with respect to tMOMP, as shown in Figure S10 in Text S1). We

observed that ability to predict tMOMP increased progressively

(Figure 6B and Figure S11 in Text S1) and that knowledge of the

seven or eight most sensitive protein concentrations was necessary to

achieve an MSE approaching experimental error (i.e. 0.03;

Figure 6A–B). In contrast, selecting proteins for measurement at

random from the full set of 16 species having non-zero initial

concentrations was ineffective in reducing the MSE. We conclude

that accurate prediction of time of death from initial protein

concentrations requires data on many proteins concentrations even

in the best case. Single-cell measurement of 30 or more protein

levels is now possible by mass cytometry [36], but these

measurements destroy cells and it is therefore impossible to use

the method to link multiplex measurement of protein concentration

to events, such as cell death, that occur many hours later. In this

RP translocation via time-lapse microscopy in HeLa cells treated with 50 ng/ml TRAIL with 2.5 mg/ml cycloheximide (green) or obtained from 104

simulations using independent sampling of all initial conditions (independent, blue), or sampling from the experimentally determined joint
distributions for Bax, Bcl-2, Bid, caspase-3 and XIAP (allowing all other proteins to vary independently; correlated, brown). Error bars represent
standard deviations obtained by bootstrapping (n = 1000). Sampling for joint distributions reduced the predicted variability in tPARP from a CV = 0.23
to CV = 0.19, a statistically significant improvement in the match to experimental data: an Ansari-Bradley test for equal variability on median-corrected
data yielded p = 0.006 for experimental data vs. independent sampling simulation, and p = 0.137 for experimental data vs. sampling with correlated
distributions, rejecting the equal variance hypothesis only for data vs. independent sampling. (D) Heat map showing the effect of pairwise
correlations on tPARP variability. Above the diagonal (gray), color indicates the ratio of the CV of tPARP for 104 simulations with sampling from
correlated vs. independent distributions for the indicated pair (all other proteins were sampled independently from log-normal distributions
parameterized as in Table S2 in Text S3). Below the diagonal, the most significant p-value from a two-sample Kolmogov-Smirnov test is indicated in
green (p = 0.04). (E) Bar graph of the Pearson correlation coefficients (R-values) of tPARP with the indicated protein initial concentration for simulations
sampling from fully independent distributions (blue), from joint distribution for Bax, Bcl-2, Bid, caspase-3 and XIAP (brown), or from a joint
distribution for the same five proteins where the Bcl-2-Bax correlation was set to zero (yellow bar). Scatter plots of tPARP as a function of initial protein
levels for the same simulation sets are presented in Figure S9 in Text S1.
doi:10.1371/journal.pcbi.1002482.g005

Figure 6. Predictability of death time is improved by knowl-
edge of key protein concentrations. (A) Scatter plot of predicted
tMOMP as a function of Bid initial concentration when no other initial
protein concentrations are known (left) or when the initial concentra-
tions of the next seven most influential proteins as ranked by R2 of
tMOMP are also known with precision within 612.5% (right). Simulations
shown were selected from a series of 105 simulations sampling from a
joint distribution for Bax, Bcl-2, Bid, caspase-3 and XIAP (as measured)
and independently for all other proteins with non-zero initial
concentration. To mimic knowledge of a protein concentration,
simulations were randomly selected from those with an initial
concentration of mean value 612.5% for this protein. Black points
represent the predicted death times given perfect knowledge of the
concentrations of all model species. MSE is the mean squared error
relative to perfect knowledge (black points). (B) Graph of the mean
squared error in tMOMP (relative to perfect knowledge, black points in
(A)) as a function of the number of proteins whose concentration is
‘‘known’’; values are the averages from different runs and error bars
represent the standard deviations (n = 10). ‘‘Known’’ proteins were
added either randomly (blue), by high-to-low R2 for tMOMP (gray; Figure
S10) or tPARP (yellow; Figure 5E), or by high-to-low CV for tPARP (brown;
Figure 4C).
doi:10.1371/journal.pcbi.1002482.g006

Modeling Cell-to-Cell Variability

PLoS Computational Biology | www.ploscompbiol.org 10 April 2012 | Volume 8 | Issue 4 | e1002482



sense, identifying the factors that determine the time of death of a

single cell is not yet achievable experimentally, even though

determining distributions of death times is straightforward.

Bcl-2 over-expression shifts cells to a region of variable
cell fate where Bax levels become the primary
determinant of fate

HeLa cells are predicted to be highly sensitive to even modest

increases in Bcl-2 concentrations above endogenous levels

(Figure 3). To test this prediction, we expressed variable levels of

GFP-Bcl-2 in HeLa cells and then monitored tMOMP using a live-

cell reporter (IMS-RP, [23]) in cells exposed to 50 ng/ml TRAIL

plus low-dose cycloheximide. At wild-type levels of Bcl-2, all cells

died within 5 hr, but as GFP-Bcl-2 levels increased above 46105

molecules/cell (,13-fold above wild-type), a sudden transition was

observed in tMOMP such that cell death was blocked indefinitely

(Figure 7A). Between 26105 and 46105 Bcl-2 molecules/cell we

observed a region of variable fate, with a subset of cells undergoing

MOMP and others surviving (Figure 7A, gray shaded region). To

Figure 7. Overexpression of Bcl-2 in HeLa cells shows a region of variable fate before a threshold is reached where all cells survive.
(A–B) Scatter plots showing the relationship between tMOMP and total Bcl-2 amount as measured in HeLa cells treated with 50 ng/ml TRAIL and
2.5 mg/ml cycloheximide (left) or simulated in EARM1.3, sampling linearly in the exponent for GFP-Bcl-2 levels and from a joint distribution for Bax,
Bcl-2, Bid, caspase-3 and XIAP and independently for all other non-zero initial protein concentrations (right). Quantitative immunoblotting (Figure S5
in Text S1) and single-cell fluorescence quantification were combined to derive the absolute levels of GFP-Bcl-2 for each cell, to which the average
endogenous Bcl-2 amount (30,000 molecules/cell; experimentally unobservable) was added to convert the x-axis to units of total Bcl-2 molecules per
cell. Cells that did not undergo MOMP by 12 hr were assumed to have survived. (C) Boxplots of initial protein concentration distributions for surviving
(green) or dying (gray) simulated cells selected for having a range of total Bcl-2 expression where ,50% died (,53,000–57,000 molecules/cell). Box
edges show the 25th and 75th percentiles, notches show the 95% confidence interval for the median (horizontal line), and whiskers extend to the
most extreme data points that are not considered outliers. Asterisks indicate proteins for which the surviving and dying simulated cells show
significantly different medians for initial concentration (p,0.05), double asterisks mark the distributions for [Bax]0 which have the most significant
difference. (D) Bar graph showing the coefficients of variation (CV) obtained for model output distributions of tMOMP when using 36104 Bcl-2/cell as
the mean [Bcl-2]0 (striped bars; reproduced from Figure 4B), or when the average [Bcl-2]0 was changed to 66104 Bcl-2/cell (solid bars). As in Figure 4,
proteins were classified as affecting the pre-MOMP rate of initiator caspase activity (Rate; gray), the MOMP threshold (Threshold; purple) or post-
MOMP processes (Post-MOMP; green).
doi:10.1371/journal.pcbi.1002482.g007
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determine how this variability arises, we ran a series of simulations

using correlated initial conditions and sampled GFP-Bcl-2 levels

over the experimentally observed range of 104 to 1.26106

molecules per cell. Simulations were run for 12 hr, well past the

time at which the last cells died in experiments; any simulated cells

that had not undergone MOMP by 12 hr were assumed to have

survived. As in real cells, we observed a region of variable fate at

intermediate levels of Bcl-2 (Figure 7B, gray shaded region)

although Bcl-2 levels bounding the region of variable fate were

,3–4-fold lower in simulations than in experiments, a discrepancy

we attribute either to error in the measurement of absolute protein

abundance or to imprecise model calibration. When we used

simulation to compare initial protein concentrations in cells that

are predicted to survive vs. cells that are predicted to die (within

the region of variable fate), we observed that [Bax]0 differed the

most: cells that died had higher [Bax]0 and those that survived had

lower [Bax]0 (Figure 7C, double asterisks). Thus, whereas multiple

proteins play a role in controlling variability in death time under

wild-type conditions (Figure 4B–C), under conditions of moderate

Bcl-2 over-expression, [Bax]0 becomes the primary regulator of

cell fate (Figure 7C).

Control over variability of time-to-death in a multi-
dimensional landscape

Given these findings, we asked whether simply doubling Bcl-2

levels would change which proteins were most influential in

controlling variability in tMOMP. Strikingly, simply doubling the

average initial Bcl-2 concentration from 36104 to 66104 proteins

per cell was sufficient to alter the sensitivity of tMOMP to variation in

the levels of other apoptosis regulators proteins. At 36104 Bcl-2/

cell, no single protein had a dominant effect on variability in tMOMP

(Figure 4B) whereas at 66104 Bcl-2/cell, Bax and Bcl-2 had nearly

three times greater impact than any other protein, and varying

either Bax or Bcl-2 yielded nearly as much variability in tMOMP as

did varying all proteins simultaneously (sampling independently;

Figure 7D). This demonstrates that protein over-expression (and

presumably also protein depletion) changes the relative impor-

tance of other proteins in control of tMOMP. We also note that

doubling [Bcl-2]0 significantly increased the variability of tMOMP:

CV increased from 0.25 to 0.36 (black bars in Figures 4B and 7D,

and Figure S12 in Text S1). Thus, the contribution made by

variation in the level of particular proteins to variability in

outcome is not necessarily a constant: contributions of individual

proteins can vary dramatically over biologically plausible concen-

tration ranges. Such contextual dependence of protein sensitivity

also shows how protein over-expression can be misleading with

respect to identifying factors that regulate a phenotype under

endogenous conditions.

To further explore this context sensitivity, we focused on the

joint control of tMOMP by three proteins that most influenced its

variability in the model: Bcl-2, Bax, and Bid (Figure 4B). We

changed [Bax]0 and [Bid]0 above and below default values in

discrete three and ten-fold steps, respectively (the magnitude of

these steps was chosen based on the sensitivity of tMOMP to the

initial protein concentrations when evaluated under baseline

conditions), while computing the relationship between tMOMP and

[Bcl-2]0. We observed that changing [Bax]0 shifted the tMOMP vs.

[Bcl-2]0 curves along the x-axis whereas increasing [Bid]0 shifted

the curves along the y-axis and also changed the sharpness of the

curves (Figure 8A). The net result was that changes in [Bax]0

affected the concentration of Bcl-2 at which cell fate switched from

death to survival, whereas changes in [Bid]0 affected the mean and

variance of tMOMP. The impact of natural variability in Bcl-2

expression (measured in HeLa cells; orange shading) on variance

in tMOMP was greater at lower Bax levels (Figure 8B). For cells with

normal [Bid]0, lowering [Bax]0 shifted the cells such that

endogenous variability in [Bcl-2]0 created a huge spread in death

time, with some cells surviving even at endogenous [Bcl-2]0

(Figure 8A–B, left). Taken together, these results demonstrate that

the sensitivity of tMOMP to Bcl-2 levels is itself sensitive to the levels

of two interacting proteins (a form of second-order sensitivity).

Discussion

In this paper we examine the impact of naturally occurring

variability in protein levels on variability in TRAIL-induced

apoptosis. Our approach builds on previous work showing that

variability in the timing and probability of death arises from cell-

to-cell differences in protein levels that exist prior to TRAIL

exposure and that this variability can therefore be modeled within

a deterministic framework [15]. We make use of four features of

apoptosis dynamics to explore the contributions made by

variability in regulatory molecules to variability in the timing

and efficiency of cell death. These dynamics were simulated by

sampling from either independent or joint distributions whose

variances were determined experimentally or estimated to

represent the range of endogenous protein expression. Model

parameters were not adjusted in this study to reproduce observed

variability in responses to TRAIL; rather our ability to reproduce

experimental data simply arose from substituting single values for

initial conditions with log-normal distributions centered on

previously determined EARM protein concentrations

[15,23,29,34]. Using sampling and feature-based sensitivity

analyses, we find that multiple upstream proteins control the

timing of death (tMOMP or tPARP) in HeLa cells, but that XIAP is the

primary determinant of the rate and extent of death (tswitch and

fPARP, respectively). We also find that co-variation in protein levels

reduces variability in death time, particularly when activator-

inhibitor pairs are assumed to co-vary positively (e.g. Bcl-2 and

Bax). Finally, we show through simulation and experiment that

HeLa cells reside near a region of extreme sensitivity to Bcl-2 such

that modest Bcl-2 over-expression causes cells to enter a region of

parameter space associated with variable fate in which the primary

determinants of phenotypic variability are quite different from

those pertaining to normal conditions.

Correlations in the levels of different proteins across a

population of single cells changes the apparent importance of

specific proteins in controlling cellular phenotypes. Simulations

based on measured correlations in protein concentrations appear

to better represent the biology of real cells. However, we have

found that such correlations can also have unexpected results

because correlations can mask the biochemical roles of specific

proteins. To date, we have only measured ten pairwise correlations

(creating a joint distribution for five protein species) but in real

cells, extrinsic noise will correlate all proteins to some degree

unless they are actively regulated otherwise [35]. Using Equation 2

(Box 2), it is straightforward to estimate the potential impact of

correlated protein expression (for pairs or larger sets of proteins) on

model output and to prioritize measurement of those correlations

with the greatest potential impact.

Under wild-type conditions, variability in the time at which a

cell dies arises from variability in the concentrations of multiple

regulatory molecules. Even perfect knowledge of the concentra-

tion of the model species that most strongly influences phenotype

is only partially predictive of time-to-death because variability in

other proteins makes a substantial contribution. In wild-type

HeLa cells, knowledge of the eight most sensitive proteins is

required to achieve a level of predictive ability (R2,0.8) that can

Modeling Cell-to-Cell Variability

PLoS Computational Biology | www.ploscompbiol.org 12 April 2012 | Volume 8 | Issue 4 | e1002482



be achieved by experimentally measuring the rate of the single

reaction corresponding to cleavage of the initiator caspase

reporter protein [15]. This reflects the fact that a dynamic

measurement reporting on a complex reaction has significantly

more ‘‘information content’’ than a series of static measure-

ments.

The ability of Bcl-2 to block apoptosis is well known [37,38,39]

but our analysis sheds light on the precise mapping between the

levels of Bcl-2 in individual cells and time of death. A relatively

modest increase in Bcl-2 concentration (6-fold to 13-fold over

endogenous Bcl-2 levels) causes cells to enter a region of parameter

space associated with variable fate; in this region, Bax becomes the

primary factor determining whether a cell lives or dies. A further

increase in Bcl-2 over-expression (.13-fold) causes MOMP to be

blocked indefinitely and corresponds approximately to the degree

of Bcl-2 over-expression found in leukemic cells [40]. We note that

in other cell types, this degree of over-expression might have no

effect due to compensatory changes in the levels of other proteins

in the apoptotic network. In Type I cells, for example, over-

expression of Bcl-2 does not block death because MOMP is not

needed to trigger apoptosis [41]. We have previously suggested

that tPARP in HeLa cells is primarily determined by proteins

controlling the rate of initiator caspase activation [15], but the

results in this paper suggest that in other cells (e.g. those with

slightly higher Bcl-2 levels than HeLa cells, Figure 7D), time-to-

death may be primarily determined by other proteins, such as

those that control the MOMP threshold. Whether the particular

sensitivity of HeLa cells to natural variation in Bcl-2 and Bax levels

confers a selective advantage or whether it is accidental cannot yet

be determined.

The context dependence of classical and feature-based sensitiv-

ities is obvious mathematically but it is generally under-

appreciated: sensitivity is not simply a function of network

topology but also of position in parameter space. We show that

‘‘context dependence’’ is relevant over the natural range of protein

concentrations found in populations of human cells. In HeLa cells,

for example, variation in the levels of six proteins contributes

roughly equally to variability in time of death under normal

conditions, but when Bcl-2 levels are raised just two fold, only two

proteins exert a significant impact. A clear implication is that we

cannot consider experiments in which proteins levels are altered

one at a time (by RNAi or over-expression) to represent univariate

explorations of regulatory mechanism. Instead, protein over-

expression and protein depletion shift cells in parameter space

such that different proteins are dominant in controlling phenotype

as compared to a wild-type context. This is true even if we

Figure 8. Variability in cell fate and time-to-death depends on the interplay between multiple factors. (A) Plots of tMOMP as a function of
Bcl-2 level for three levels of Bax (0.3X [Bax]0, left, 1X [Bax]0, center, and 3X [Bax]0, right) and Bid (0.1X [Bid]0, blue, 1X [Bid]0, green, and 10X [Bid]0, red).
Orange shading represents the 5th and 95th percentiles of the measured distribution of endogenous Bcl-2 in HeLa cells. (B) Histograms of the tMOMP

distributions in the range of endogenous Bcl-2 (indicated by the orange shading) for varying Bid and Bax levels. For panels A and B, initial
concentrations of Bcl-2 were sampled uniformly in the exponent between 102 to 107 molecules per cell and all other proteins concentrations were set
at their default mean values (Table S2 in Text S3).
doi:10.1371/journal.pcbi.1002482.g008
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consider only the immediate properties of the regulatory network

and leave out the undoubtedly significant compensatory effects

that occur at the level of other cellular pathways. Thus, the

importance of specific proteins in a regulatory pathway is likely to

be mis-estimated based on univariate and qualitative assessment of

experimental perturbation; quantitative, system-level approaches

promise to be more accurate in this regard.

Non-genetic heterogeneity has recently emerged as an important

topic in a variety of fields and it has become increasingly clear that

cell-to-cell variability in protein expression is a key factor in a wide

range of cellular decisions [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. We

expect the approach described here for analyzing cell-to-cell

variability in receptor-mediated apoptosis to be generally useful in

the analysis of other signaling systems in which phenotypic

variability is observed. This is particularly true in those cases in

which pre-existing variation in protein levels is a dominating

influence and it is appropriate to use deterministic modeling

coupled to Monte-Carlo procedures for sampling parameter

distributions.

Methods

Cell culture and transfections
HeLa cells were maintained in DMEM (Mediatech, Inc)

supplemented with L-glutamine (Gibco), penicillin/streptomycin

(Gibco) and 10% fetal bovine serum (FBS, Mediatech, Inc).

FuGENE 6 (Roche) was used to transfect HeLa cells expressing

IMS-RP [23] with a pExchange vector (Stratagene) into which we

cloned a cDNA for EGFP-Bcl-2. Stable EGFP-Bcl-2 transfectants

were isolated by selecting with neomycin and sorted on a FACSAria

(BD Biosciences) to sample expression levels across a wide range.

Live-cell microscopy
HeLa cells expressing IMS-RP and GFP-Bcl-2 were plated in a

96-well glass bottom plate (Matrical). For all live-cell microscopy

experiments, cells were treated with 50 ng/ml Superkiller TRAIL

(Alexis Biochemicals) and 2.5 ug/ml cycloheximide (Sigma-

Aldrich) and imaged on a Nikon TE2000E at 206magnification

with frames every 5 min in a 37uC humidified chamber in phenol-

red free CO2-independent medium (Invitrogen) supplemented

with 1% FBS, L-Glutamine, and Penicillin/Streptomycin). GFP-

Bcl-2 fluorescence was quantified at t = 0 (time of treatment) by

manually outlining the cell and measuring the average fluores-

cence intensity within the outline. MOMP was scored manually by

monitoring cytosolic translocation of IMS-RP. To convert the x-

axes in Figure 6A to proteins/cell, the average GFP fluorescence

intensity at t = 0 was set equal to the average number of GFP-

tagged proteins per cell as measured by quantitative immunoblot-

ting (Figure S5 in Text S1).

Flow cytometry
Distributions of initial protein levels were measured in untreated

HeLa cells (fixed with 4% paraformaldehyde and permeabilized

with methanol) on a FACSCalibur (BD Biosciences). Antibodies

were carefully validated as described in Figures S6, S7 in Text S1

and the following antibodies were found to be suitable for

measurement of total protein levels: a-Bid (HPA000722, Atlas

Antibodies), a-Bax (MAB4601, Chemicon International), a-Bcl-2

(SC7382 and SC783, Santa Cruz Biotechnology), a-XIAP (610717,

BD Biosciences), a-caspase-3 (SC7272, Santa Cruz Biotechnology).

Correlations in protein levels were measured by combining pairs of

antibodies generated in different species or pairing fluorophore-

conjugated version of the primary antibodies listed above (a-

caspase-3-AF488, a-Bax-PE, a-XIAP-AF647). Cells were gated in

both forward scatter and side scatter to select a population of cells of

similar size and the data analyzed in MatLab (Mathworks).

Modeling
Simulations were run in Jacobian (RESgroup) using the

EARM1.3 ordinary differential equation model. EARM1.3 is an

extension of the original EARM1.1 [29], modified to include

general protein synthesis and degradation as described previously

[15]. This model had been manually calibrated to represent the

response of a single HeLa cell to TRAIL treatment [18]. Lists of

reactions, initial protein concentration and parameter values are

included in Tables S1, S2, S3, S4 in Text S3.

When sets of simulations called for sampling from distributions

of initial protein levels, we used a custom Perl script to generate

series of random numbers that were sampled from a multivariate

normal distribution with specified variances and co-variances (see

Tables S2 and S3 in Text S3). These number series were then

transformed to achieve the final log-normally distributed series

with appropriate means and coefficients of variation.

To calculate feature sensitivities numerically, series of simula-

tion pairs were run for each protein by sampling its initial

concentration uniformly in the exponent for values between 102 to

107 proteins per cell and then running simulations using 100% and

101% of this value, setting all other initial protein concentrations

and rate constants at their default value. Sensitivities were then

calculated using:

Lq

Llog10k
&

q101

log10k101

{
q100

log10k100

where k100 and k101 are the values of the sampled initial protein

concentration for the simulation pair (100% and 101%, respec-

tively) and similarly q100 and q101 are the values of feature q using

100% and 101% of the sampled initial protein concentration,

respectively.

Supporting Information

Text S1 Supporting experimental and computational
results. This text contains Figures S1, S2, S3, S4, S5, S6, S7, S8,

S9, S10, S11, S12, a compilation of additional experimental and

computational results.

(PDF)

Text S2 Derivation of equations. This text contains

explanatory notes on the relationships between feature-based

and conventional sensitivities and on how sensitivities propagate

variance in initial protein concentration to variance in pathway

outputs as well as the derivations of Box 1 Equation 1 and Box 2

Equation 2.

(PDF)

Text S3 Description of EARM1.3. This text contains Tables

S1, S2, S3, S4 which list model reactions (Table S1), initial protein

concentrations (averages and coefficients of variation; Table S2),

protein covariances (Table S3) and parameter values (Table S4)

used in EARM1.3.

(PDF)
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