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Abstract

Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or
developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for
limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of
selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed
and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and
experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray
platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to
genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the
retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of
Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such
as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in
mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple
silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic
copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define
retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression
microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ
cells and embryonic stem cells.
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Introduction

Repetitive DNA sequences account for around forty percent of

sequenced mammalian genomes [1,2]. The most basic repetitive

elements in mammalian genomes are tandem arrays of repeated

monomeric DNA sequences. These simple repeats and satellite

sequences have repeating units of around 1–5 bp and 100–500 bp

respectively [3]. More complex classes of repetitive element include

DNA transposons and retrotransposons, mobile genetic elements

that are able to integrate into new sites in the genome. DNA

transposons typically encode a transposase enzyme that catalyses the

non-replicative mobilization of the DNA transposon through a cut

and paste mechanism [4]. In contrast, retrotransposons mobilize

using a replicative copy and paste mechanism that involves an RNA

intermediate. However, this retrotransposition can occur by funda-

mentally different mechanisms depending on the structure of the

retrotransposon [5,6]. DNA transposons and retrotransposons

account for ,0.9% and ,37% of the mouse genome respectively

[2]. However, while DNA transposon activity appears to be extinct

in the mouse genome, retrotransposons remain active [2]. Mouse

retrotransposons include long interspersed elements (LINEs), short

interspersed elements (SINEs), and long terminal repeat (LTR)

retrotransposons [3]. Full-length class I LINEs are ,7 kb long and

encode two proteins that are required for the reverse-transcription

of LINE-1 RNA and its subsequent integration into new sites in the

genome [7]. SINEs are derived from reverse-transcription of small

cellular RNAs and utilise LINE-1 proteins in trans to mediate

retrotransposition [8]. LTR retrotransposons, also known as

endogenous retroviruses (ERVs), either encode gag, pol, pro and

sometimes also env genes, or use the retroviral genes encoded by

other ERVs, to drive a retroviral life-cycle [2,3,9].

Retrotransposons have the potential to alter the genomic

landscape and change gene expression when they amplify or

integrate into new sites in the host genome, providing an
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important driving force for evolutionary change [10]. Although

retrotransposition can occur in somatic cells [11,12], repetitive

elements need to amplify in germ cells, or their pluripotent

precursors, in order to successfully propagate. The Repeatmasker

database of repetitive elements [13] currently contains consensus

sequences for 1221 different types of repetitive element, each of

which is present in multiple copies in the mouse genome. These

1221 repetitive elements are organized into 16 different classes

comprising a total of 45 families (see Figure S1 for a schematic

overview of this organization). The repetitive element classes that

contain the greatest number of different repetitive elements are

LTR retrotransposons (471 elements), simple repeats (315

elements), DNA transposons (156 elements) and LINE retro-

transposons (122 elements). Many of the repetitive elements that

are present in the mammalian genome are poorly characterized,

and it is often not clear whether different elements within each

class or family are active at similar stages of germ cell or

pluripotent cell development, or whether different elements are

recognized and regulated by the same host defence mechanisms.

Indeed the rich diversity of successful repetitive elements in the

mammalian genome may indicate that different elements have

evolved different strategies to evade recognition or suppression by

host defence mechanisms.

The high mutational load associated with excessive amplifica-

tion of repetitive elements in the developing germline is likely to be

detrimental to the evolutionary success of the host organism.

Much progress has been made in identifying and understanding

the mechanisms that suppress the activity of repetitive elements in

germ cells and pluripotent cells, particularly transcriptional

repression of retrotransposon activity in mice [reviewed in 14–

17]. Epigenetic modifications such as DNA methylation, histone

methylation and histone deacetylation are all implicated in

transcriptional silencing of retrotransposons. DNA methylation is

required for transcriptional repression of intracisternal A particle

(IAP) elements, a member of the ERVK family of LTR

retrotransposons, in somatic cells and germ cells [18,19].

Targeting DNA methylation to IAP elements during male fetal

germ cell development requires the interaction between the piwi-

piRNA pathway and DNA methyltransferase enzymes [reviewed

in 15–17]. In pluripotent cells such as embryonic stem (ES) cells,

mutations in all three catalytically active DNA methyltransferases

greatly reduce the levels of DNA methylation in the genome [20],

and these Dnmt12/2 Dnmt3a2/2 Dnmt3b2/2 triple knock out

(Dnmt TKO) ES cells have increased expression of IAP retro-

transposons [21,22]. However, the increase in IAP expression in

Dnmt TKO ES cells is relatively modest compared to somatic

cells, and ES cells appear to rely more on the transcriptional co-

repressor Kap1 to repress IAP elements [21–23]. Kap1 probably

acts through recruitment of histone H3K9 methyltransferases,

primarily Eset (also known as Setdb1 or Kmt1e), to deposit

repressive histone modifications on IAP chromatin [22,23]. Together

Kap1 and Eset have been shown to target various ERV1, ERVK

and ERVL LTR retrotransposons [22–24]. However, different

silencing mechanisms are likely to be operating on retrotranspo-

sons that are not enriched for H3K9 methylation in mouse ES

cells [16,25]. Polycomb repressive complex (PRC)-mediated

H3K27 trimethylation and Lsd1-dependent H3K4 demethylation

are also implicated in transcriptional repression of LTR retro-

transposons in mouse ES cells [26,27], and histone deacetylation

has been implicated in transcriptional silencing of newly-

integrated LINE-1 elements in undifferentiated human embryonal

carcinoma (EC) cells [28]. Histone deacetylases, DNA methyl-

transferases, histone lysine methyltransferases and PRC proteins

are all also implicated in transcriptional silencing of retroviral

LTRs in human somatic cells [e.g. 29,30], and some of the

mechanisms operating to repress retrotransposon transcription in

somatic cells may operate in pluripotent cells too. In addition to

transcriptional silencing, retrotransposon activity is also regulated

at post-transcriptional levels in germ cells and pluripotent cells

through the activity of miRNAs and endogenous small interfering

RNAs (endo-siRNAs) [31–33]. Other host factors, such as Apobec

proteins [34] and the Trex1 endonuclease [35], have been shown

to suppress retrotransposon activity post-transcriptionally in

somatic cell types, and similar factors presumably also operate in

pluripotent cells [36] and germ cells. Thus, multiple mechanisms

probably combine to bring about effective silencing of different

classes of retrotransposon in different cell types.

Although silencing of repetitive elements has been studied by

qRT-PCR and Northern blotting of representative candidate

elements in ES cells and in other cell types, few genome-wide

studies of repetitive element expression have been performed to

date [22,23,37]. Therefore it is often not clear how many different

repetitive elements are being targeted by a specific silencing

mechanism in any particular cell type. Given the antagonistic

evolutionary relationship between retrotransposon expression and

host silencing mechanisms, identifying repetitive elements that

have escaped specific host silencing mechanisms may generate

some insight into how these mechanisms are able to determine

which regions of the genome or transcriptome to target.

Microarrays are widely used for gene expression profiling, and a

large volume of microarray gene expression data obtained under

various experimental conditions has been deposited in freely-

accessible repositories such as NCBI GEO [38]. Microarray

analysis of gene expression has been able to identify some changes

in repetitive element gene expression [e.g. 26,39], but although a

number of probes present on commercially available microarrays

are identical to repetitive element sequences, few probes on these

arrays are explicitly annotated as recognising repetitive elements.

Author Summary

Repetitive DNA sequences make up almost half the
mammalian genome. A large proportion of mammalian
repetitive DNA sequences use RNA intermediates to
amplify and insert themselves into new locations in the
genome. Mammalian genomes contain hundreds of
different types of these mutagenic retrotransposons, but
the mechanisms that host cells use to silence most of
these elements are poorly understood. Here we describe a
computational approach to monitoring expression of
hundreds of different retrotransposons in gene expression
microarray datasets. This approach reveals new retro-
transposon targets for silencing mechanisms such as DNA
methylation, histone modification and polycomb repres-
sion in mouse embryonic stem cells, and identifies the
histone deacetylase Hdac1 as a regulator of retrotranspo-
sons in this cell type. These computational predictions are
verified experimentally by qRT-PCR in Dnmt12/2 Dnmt3a2/2

Dnmt3b2/2 embryonic stem cells, Ring1B2/2 embryonic
stem cells, and Hdac12/2 embryonic stem cells. We also use
microarray analysis of retrotransposon expression to show
that the pluripotency-associated Tex19.1 gene has exquisite
specificity for MMERVK10C elements in developing male
germ cells. Importantly, our computational analysis also
suggests that different genomic copies of individual retro-
transposons can be differentially regulated, and helps
identify the sequences in these retrotransposons that are
being targeted by the host cell’s silencing mechanisms.

LTR Retrotransposon Silencing in Mouse ES Cells
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The purpose of this study is to computationally extract

information about genome-wide silencing of repetitive elements

in germ cells and stem cells from microarray gene expression data.

Using this approach we identify retrotransposons that are silenced

by DNA methylation and various histone modifications in mouse

embryonic stem cells. We also identify the histone deacetylase

Hdac1 as a regulator of retrotransposons in mouse ES cells. Our

results demonstrate that different silencing mechanisms can be

independently recruited to retrotransposons in a modular manner,

and that different genomic copies of individual retrotransposons

can be differentially sensitive to loss of these silencing mechanisms.

Lastly, we show that analysing the sequence variation between

differentially regulated copies of individual retrotransposons can

help identify sequences important for retrotransposon silencing.

Results

Identification of Repetitive Element Probes in the
Illumina and Affymetrix Gene Expression Microarray
Platforms

Previously, in a study designed to refine and improve the

detection of gene expression changes in Illumina Mouse WG-6

Beadchip microarrays data, more than 4,000 probes in the

Illumina Mouse WG-6 Beadchips were identified that map to

regions of the mouse genome that are at least partially masked by

Repeatmasker [40]. Although information from these probes was

discarded from gene expression microarray data in that study in

order to improve the analysis of the remaining single-copy probes

[40], these repeat probes could potentially contain information

about genome-wide repetitive element expression in microarray

datasets. We therefore investigated how well different classes of

repetitive element are represented in Illumina Beadarrays, and

whether these probes could monitor repetitive element expression

on a genome-wide level.

The Illumina Mouse WG-6 Beadchips each contain ,46,000

probes. We identified ,2,300 repetitive element probes in version

1.0, version 1.1 and version 2.0 of these arrays (Table 1) by

comparing the genomic locations of the probes with the

Repeatmasked regions of the mouse genome (see Materials and

Methods). The proportion of repetitive element probes identified

on the Illumina Beadchips in this analysis (,5%) is around half

that reported previously [40]. This difference appears to be a

consequence of using stricter criteria to identify repetitive element

probes in the current study. In each version of the Illumina Mouse

WG-6 Beadchip analyzed, ,1400 probes were in the correct

orientation to detect sense repetitive element transcripts. Text files

containing the repetitive element probe names and sequences

identified in the Illumina Mouse WG-6 Beadchip are included

online (Datasets S1, S2, S3). Of the 1221 different repetitive

elements in the mouse genome annotated in the Repeatmasker

database, ,320 are represented by probes in the different versions

of the Illumina Mouse WG-6 Beadchips (Table 2). Repetitive

elements belonging to the LINE and SINE classes are well

represented on these arrays, and repetitive elements belonging to

the LTR retrotransposon and DNA transposon classes are

reasonably represented (Table 2). Simple repeats and satellite

repeats are also present but less well represented on the Illumina

Mouse WG-6 Beadchips (Table 2). Thus Illumina Mouse WG-6

Beadchips have a good coverage of probes for monitoring

transposon and retrotransposon expression during genome-wide

transcriptional profiling.

We applied the same rationale to identify repetitive element

probes present in the Affymetrix Murine Genome U74Av2 and

Mouse Expression 430 2.0 GeneChips (Table 1). The Murine

Genome U74Av2 and Mouse Expression 430 2.0 GeneChips

contain ,4,200 and ,26,000 probes respectively that are in the

correct orientation to detect sense transcripts from repetitive

elements. Text files containing the repetitive element probe names

and sequences identified in the Affymetrix Gene Expression

GeneChips are included online (Datasets S4, S5). Like the

Illumina Mouse WG-6 Beadchip arrays, the Affymetrix arrays

also have good representation of repetitive elements belonging to

LINE and SINE classes, and the Affymetrix Mouse Expression 430

2.0 GeneChip also has good coverage of LTR retrotransposons

and DNA transposons (Table 2). The Affymetrix Murine Genome

U74Av2 GeneChip has reasonable coverage of repetitive elements

within the LTR retrotransposon and DNA transposon classes

(Table 2). Thus Affymetrix Gene Expression GeneChips also

contain a wide range probes that can be used to monitor

transposon and retrotransposon expression.

Computational Analysis of Repetitive Element Expression
in Tex19.12/2 Testes from Microarray Gene Expression
Profiles

We had previously identified upregulation of the MMERVK10C

(ERVK family) LTR retrotransposon in mouse germ cells lacking

the pluripotency-associated Tex19.12/2 gene by analysing indi-

vidual probe sequences upregulated in Illumina Beadchip micro-

array data [39]. In order to test whether any additional

retrotransposons might be targets for Tex19.1 in developing male

germ cells we used the repeat probes in the Illumina Mouse WG-6

v2.0 Beadchip to assess genome-wide repetitive element expression

in Tex19.12/2 testis microarray data. As Tex19.12/2 male mice

have defects in progression through meiosis that perturb the

normal cellular composition of the testis, gene expression profiling

was performed on 16 dpp prepubertal testes undergoing the first

wave of spermatogenesis where defects in meiosis are first

becoming apparent [39]. In addition, the Tex19.1 mutation was

backcrossed onto an inbred C57BL/6 genetic background in order

to minimize genetic variation between the animals used for this

Table 1. Number of probes matching repetitive elements in mouse gene expression microarray platforms.

Illumina Affymetrix

WG6 v1.0 WG6 v1.1 WG6 v2.0 U74Av2 430 2.0

All probes 46,005 46,632 45,281 197,993 496,468

Probes matching repetitive
elements (non-complementary)

899 912 867 2,636 19,870

Probes matching repetitive
elements (complementary)

1,397 1,425 1,438 4,239 26,124

doi:10.1371/journal.pcbi.1002486.t001

LTR Retrotransposon Silencing in Mouse ES Cells
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microarray analysis. 19,089 probes on the Illumina Beadarray

were expressed in 16 dpp testes in this experiment (Figure 1A),

with most showing no significant change in expression in

Tex19.12/2 testes. The expression levels of 158 probes (0.8%)

are downregulated at least 2 fold in Tex19.12/2 testes at a

significance level of p,0.01. However, the apparent downregu-

lation of many of these probes may be a consequence of the delay

in meiotic progression that is becoming evident in Tex19.12/2

testes at 16 dpp [39]. On the other hand, 10 probes (0.05%) are

upregulated at least 2 fold in Tex19.12/2 testes at p,0.01.

In general the repetitive element probes behaved similarly to

other probes on the array (Figure 1A). 512 (2.7%) of the 19,089

probes expressed in 16 dpp testes are repeat probes. These 512

repeat probes represent 173 different repetitive elements. LTR

retrotransposon, LINE, SINE, DNA transposon, and satellite

transcripts were all expressed similarly in Tex19.12/2 and control

testes (Figure 1A). However, 6 repeat probes belonging to the LTR

retrotransposon class appear to be behaving as outliers from the

total probe population (Figure 1A). These outlying probes are

upregulated 2–4 fold in Tex19.12/2 testes, and all belong to the

ERVK family of LTR retrotransposons (Figure 1B). All of these 6

probes are complementary to the MMERVK10C repetitive element

(Figure 1C). Indeed, although the 124 LTR retrotransposon

probes that are expressed in this dataset do not behave differently

from the 18,577 non-repeat probes (Figure 1D, Wilcoxon rank

sum test p = 0.5), the 9 MMERVK10C probes expressed in this

dataset represent a distinct population from the non-repeat probes

(Figure 1D, Wilcoxon rank sum test, p,0.0001). The

MMERVK10C probes also appear to be behaving differently from

other LTR retrotransposon and ERVK retrotransposon probes in

this dataset (Wilcoxon rank sum tests, p,0.0001). Only four non-

repeat probes are upregulated in Tex19.12/2 testes, and none of

these probes map close to MMERVK10C loci in the reference

genome, suggesting that the upregulation of MMERVK10C

elements in Tex19.12/2 testes is likely to be caused by loss of a

trans-acting retrotransposon silencing mechanism rather than

changes in non-repetitive gene expression affecting the local

chromatin structure and influencing expression of nearby retro-

transposon sequences.

The unique behaviour of MMERVK10C repeat probes in the

microarray data was confirmed by identifying probes whose

expression changed at least 2 fold (p,0.01) in Tex19.12/2 testes

relative to control testes. 6 (1.2%) of the 512 repeat probes

change expression at least 2 fold (p,0.01) in Tex19.12/2 testes,

and all 6 of these repeat probes are derived from MMERVK10C-

int LTR retrotransposon sequences. We confirmed that each of

these MMERVK10C probe sequences matches multiple genomic

loci ($48/50 nt identity) by BLAT suggesting that each probe is

able to detect expression from multiple genomic copies of the

MMERVK10C LTR retrotransposon (data not shown). Further-

more, we also confirmed that the non-complementary repeat

probes recognizing antisense repetitive element transcripts did

not show any significant change in expression in Tex19.12/2 testes

(data not shown). Thus repeat-annotation of the Tex19.12/2

Illumina Beadchip data suggests that expression of MMERVK10C

retrotransposons is significantly and specifically upregulated in

Tex19.12/2 testes. The systematic annotation and analysis of the

C57BL/6 Tex19.12/2 testis microarray data presented here is

consistent with our previous findings that MMERVK10C elements

are upregulated in Tex19.12/2 testes from a mixed (129/

Ola6CD1) genetic background [39], but importantly also

extends the range and variety of repetitive elements analysed in

these animals. Intriguingly, MMERVK10C remains the only

repetitive element among the 173 elements represented in this

dataset whose expression changes by more than 2 fold in the

absence of Tex19.1.

Table 2. Number of different repetitive elements represented by complementary probes in mouse gene expression microarray
platforms.

Mouse Genome Illumina Affymetrix

mm9 assembly WG-6 v1.0 WG-6 v1.1 WG-6 v2.0 U74Av2 430 2.0

LINE 122 elements 70 elements 71 elements 66 elements 62 elements 97 elements

1.3 million loci 351 probes 358 probes 321 probes 631 probes 4635 probes

SINE 41 elements 30 elements 30 elements 32 elements 32 elements 37 elements

2.1 million loci 473 probes 486 probes 558 probes 1465 probes 11650 probes

LTR 471 elements 153 elements 155 elements 153 elements 107 elements 291 elements

1.2 million loci 393 probes 396 probes 372 probes 1362 probes 7293 probes

DNA 156 elements 42 elements 43 elements 40 elements 36 elements 88 elements

0.2 million loci 69 probes 71 probes 58 probes 229 probes 1329 probes

Satellite 8 elements 2 elements 2 elements 2 elements 2 elements 2 elements

0.01 million loci 55 probes 54 probes 61 probes 266 probes 463 probes

Simple 315 elements 8 elements 3 elements 9 elements 26 elements 47 elements

1.5 million loci 9 probes 9 probes 12 probes 67 probes 168 probes

Other 108 elements 13 elements 14 elements 13 elements 15 elements 32 elements

0.6 million loci 47 probes 51 probes 56 probes 219 probes 586 probes

Total 1,221 elements 318 elements 323 elements 315 elements 280 elements 594 elements

6.9 million loci 1397 probes 1425 probes 1438 probes 4239 probes 26124 probes

Mouse genome data is derived from Repeatmasker annotation of the mm9 assembly of the sequenced genome downloaded from the UCSC genome browser [62]. The
number of elements within each repetitive element class that are represented in the mouse genome and in the different microarray platforms is indicated. The number
of genomic loci or microarray probes corresponding to each repetitive element class is also shown.
doi:10.1371/journal.pcbi.1002486.t002
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Retrotransposon Derepression in Tex19.12/2 Testes Is
Restricted to MMERVK10C Elements

Our computational analysis of Tex19.12/2 testis microarray

data suggests that repetitive element misexpression in Tex19.12/2

testes is largely restricted to upregulation of MMERVK10C

elements (Figure 1A–D). We verified the upregulation of

MMERVK10C elements in an independent group of C57BL/6

Tex19.12/2 testes by qRT-PCR (Figure 1E). The ,2 fold qRT-

PCR upregulation of MMERVK10C elements in C57BL/6

Tex19.12/2 testes is similar to the ,4 fold qRT-PCR upregulation

of this element reported previously using animals on a mixed

genetic background [39]. The slightly lower level of upregulation

of MMERVK10C seen in C57BL/6 animals may be caused by

differences in the rate of testis development between these genetic

backgrounds. In order to investigate the apparent specificity of the

MMERVK10C upregulation evident in the microarray analysis we

tested expression of LINE-1 and some representative ERV1,

ERVK and ERVL LTR retrotransposon sequences in Tex19.12/2

testes by qRT-PCR. qRT-PCR for LINE-1 retrotransposons

(Figure 1E) confirmed the repeat-annotation analysis suggesting

that these elements do not change expression in Tex19.12/2 testes

(Figure 1A–D). Furthermore, RLTR4, ETnERV2 and MERVL2a

LTR retrotransposons representing the ERV1, ERVK and ERVL

families of LTR retrotransposons also do not change expression in

Tex19.12/2 testes in either the Illumina Beadarray data

(Figure 1A–D) or by qRT-PCR (Figure 1E). Thus MMERVK10C

elements appear to be behaving differently from other LTR

retrotransposons in Tex19.12/2 testes.

The Illumina Beadarrays used to profile gene expression in the

Tex19.12/2 testes contain probes representing around a third of

the LTR retrotransposons present in the mouse genome.

Therefore although the computational and experimental data

both suggest that MMERVK10C elements respond differently from

other retrotransposons in the genome to the loss of Tex19.1, we

investigated whether LTR retrotransposons that were closely

related to MMERVK10C might also be upregulated in Tex19.12/2

testes. We used MMERVK10C pol and pro protein sequences to

identify repetitive elements closely related to MMERVK10C

(Figure 2A). MMERVK10C appears to be most closely related to

IAP elements, with the pol protein sequences of MMERVK10C,

IAPEz and IAPEY3 all having around 75% similarity to each other.

Although there are numerous IAP probes in the Illumina

Beadarrays, these probes do not appear to be changing in

Tex19.12/2 testes (Figure 2B). Furthermore we tested expression

of IAPEz and IAPEY3 elements in Tex19.12/2 testes by qRT-PCR

(Figure 2C) and found that, as suggested by computational analysis

of the microarray data, expression of these elements is not

changing in Tex19.12/2 testes. We also tested expression of the

MMERVK9E retrotransposon that is related to MMERVK10C but

not represented on the Illumina Beadarrays. MMERVK9E has

around 65% similarity to MMERVK10C across the pol protein

sequence, but is not part of the cluster of IAP elements evident in

the MMERVK10C phylogeny (Figure 2A). However, qRT-PCR

data shows that MMERVK9E elements do not change expression

in Tex19.12/2 testes either (Figure 2C). Thus retrotransposon

derepression in Tex19.12/2 testes appears to be intriguingly

restricted to MMERVK10C elements.

Different Transcriptional Silencing Mechanisms Have
Distinct Effects on Genome-Wide Repression of
Repetitive Elements

Our data on Tex19.12/2 testes suggests that only a small

number of retrotransposon RNAs are sensitive to loss of Tex19.1 in

germ cells. We therefore next investigated whether loss of well

established retrotransposon silencing mechanisms had more

extensive effects on genome-wide repression of retrotransposons

using ES cells as a model. We computationally analysed repetitive

element expression in previously published gene expression

microarray datasets from Dnmt TKO ES cells carrying mutations

in all three catalytically active DNA methyltransferases [41], and

from ES cells transiently transfected with shRNAs to knock-down

the histone H3K9 methyltransferase Eset [42]. Although the

Dnmt TKO and EsetshRNA ES cell gene expression profiles were

performed on Affymetrix and Illumina platforms respectively, and

may therefore have some differences in coverage of individual

retrotransposons or sensitivity of detection limits, different classes

of repetitive elements are similarly represented on these platforms

(Table 2) and some genome-wide comparisons will still be

informative. We also included data from Affymetrix gene

expression profiling of ES cells carrying mutations in the Hdac1

histone deacetylase enzyme [43] in this analysis. Although the

HDAC family of histone deacetylases are implicated in retro-

transposon silencing by virtue of being targets of trichostatin A

[28,44,45], the role and retrotransposon targets of the different

HDAC histone deacetylases has not yet been defined. Genome-

wide analysis of retrotransposon silencing in Dnmt TKO, EsetshRNA

and Hdac12/2 ES cells could therefore uncover new or additional

retrotransposon targets for these mechanisms in ES cells.

Repeat-annotation of Dnmt TKO, EsetshRNA and Hdac12/2 ES

cells (Figure 3) confirmed that LTR retrotransposons are

upregulated in all of these mutant ES cells. Interestingly, although

individual retrotransposon sequences could be selected that show

upregulation in each of these mutant ES cell lines, the genome-

wide overview of retrotransposon behaviour shows striking

differences in retrotransposon behaviour between mutant ES lines

(Figure 3A, 3C, 3E). Dnmt TKO ES cells appear to modestly

upregulate a number of LTR retrotransposon probes around 2–8

fold, which behave similarly to the upregulated non-repeat probes

in the array, but other classes of repeat probe do not appear to

change (Figure 3A). The upregulated group of LTR retro-

transposon probes in Dnmt TKO ES cells is primarily composed

of ERV1 and ERVK classes of LTR retrotransposon (Figure 3B).

In contrast EsetshRNA ES cells appear to strongly upregulate most

LTR retrotransposon probes in the array, and these upregulated

LTR retrotransposon probes appear to be responding more

strongly to loss of Eset than the upregulated non-repeat probes in

Figure 1. Genome-wide repetitive element expression in Tex19.12/2 testes. (A–C) MA-plots showing the mean expression level for each
expressed probe in the Tex19.1 testis Illumina Beadarray data plotted against the fold upregulation of that probe in Tex19.12/2 testes. Probes for
repeat families (A), classes of LTR retrotransposons (B), and the MMERVK10C element (C) are colour-coded in each plot according to the legend. Note
the group of six MMERVK10C ERVK LTR retrotransposon probes upregulated in Tex19.12/2 testes. (D) Plot showing the behaviour of the entire
MMERVK10C probe population in Tex19.12/2 testes. Vertical lines indicate a 2 fold change. (E) qRT-PCR verification of MMERVK10C upregulation in
C57BL/6 Tex19.12/2 testes. Expression levels for each repetitive element (mean 6 standard error for three animals) were normalized to b-Actin and
expressed relative to littermate controls. Representative LTR retrotransposons belonging to ERV1, ERVK and ERVL classes do not change expression in
Tex19.12/2 testes. Sdmg1 is a single-copy control gene for Sertoli cell expression to verify normalization between animals. MMERVK10C env.c and
LINE1 ORF2 primer sets (Figure S2) were used to assess MMERVK10C and LINE-1 expression. Asterisk indicates a statistically significant difference
(p,0.05).
doi:10.1371/journal.pcbi.1002486.g001
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the dataset (Figure 3C). The range of LTR retrotransposon probes

upregulated in EsetshRNA ES cells is more expansive than in Dnmt

TKO ES cells with probes belonging to ERV1, ERVK and ERVL

classes all being upregulated (Figure 3D). Furthermore, EsetshRNA

ES cells appear to modestly upregulate LINE-1 probes (Figure 3C),

a group of retrotransposons that does not strongly change

expression in Dnmt TKO ES cells (Figure 3A). Thus Eset appears

to have a stronger and more widespread role in repressing

retrotransposons in ES cells than DNA methylation. Interestingly,

Hdac1 also plays a role in repressing retrotransposons in ES cells

(Figure 3E). However the role of Hdac1 appears to be distinct from

the roles of DNA methylation and Eset histone methyltransferase.

Hdac12/2 ES cells upregulate one group of LTR retrotransposon

probes 4–8 fold, a relatively strong upregulation compared to non-

repeat probes in the dataset, and downregulate a second large

group of LTR retrotransposon probes around 2–4 fold (Figure 3E).

The upregulated and downregulated groups of LTR retro-

transposon probes are both primarily composed of ERVK class

LTR retrotransposons (Figure 3F, pink dots), and these changes in

ERVK probe expression are comparable in magnitude to the

Figure 2. Closely related retrotransposons are differentially sensitive to loss of Tex19.1. (A) Phylogeny of mouse retrotransposon pol and
pro proteins. MMERVK10C sequences are highlighted in red. The MMERVK10C sequences lie within a cluster of IAP-type sequences (yellow). (B) Plot
showing the likelihood of IAP probes changing expression in the Tex19.12/2 microarray dataset. (C) qRT-PCR for retrotransposons closely related to
MMERVK10C in Tex19.12/2 knockout and littermate control testes at 16 dpp. Expression levels for each repetitive element (mean 6 standard error for
three animals) were normalized to b-Actin and expressed relative to littermate controls. MMERVK10C env.c and IAP primer sets (Figure S2) were used
to assess MMERVK10C and IAPEz expression. Asterisk indicates a statistically significant difference (p,0.05).
doi:10.1371/journal.pcbi.1002486.g002
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changes in non-repetitive gene expression that occur in Hdac12/2

ES cells (Figure 3F, grey dots, [43]). The observation that LTR

retrotransposon expression is altered in Hdac12/2 ES cells is

consistent with data showing that human HDAC1 can silence avian

retroviral LTR reporter genes in somatic HeLa cells [29,30], and

identifies Hdac1 as a novel regulator of retrotransposon expression

in mouse ES cells. Hdac12/2 ES cells do not appear to change

expression of other classes of repeat probe (Figure 3E), and

therefore Hdac1 appears to be more restricted than either DNA

methylation or Eset in the range of retrotransposon sequence

classes that it affects. However unlike DNA methylation or Eset,

Hdac can have both positive and negative effects on expression of

retrotransposons. Thus although the Dnmt TKO, EsetshRNA, and

Hdac12/2 ES cell lines all upregulate individual retrotransposons,

these mechanisms appear to have different effects on retro-

transposon expression at a genome-wide level.

Interactions between Retrotransposon Silencing
Mechanisms in ES Cells

We next investigated how the Dnmt, Eset and Hdac1

transcriptional repression mechanisms interact in ES cells by

identifying distinct and overlapping retrotransposon targets for

these mechanisms. We identified repeat probes in each of the

Dnmt TKO, EsetshRNA, and Hdac12/2 ES cell datasets that

changed expression at least 2 fold (p,0.01) relative to the

appropriate wild-type control datasets. 84 (0.8%) of the 10,316

expressed repeat probes changed expression at least 2 fold

(p,0.01) in the Dnmt TKO ES cells, with multiple probes for

MMERGLN and RLTR1B (ERV1 family), and IAP and RLTR45

(ERVK family) retrotransposons all showing upregulation in these

cells (Figure 4A, 4B). These findings correlate well with recent

RNA-seq data from Dnmt TKO ES cells: MMERGLN, RLTR1B,

IAP and RLTR45 are all upregulated ,2.5–13 fold in Dnmt TKO

ES cell RNA-seq data [22]. However the two other elements

(MMERVK10C and RMER16) reported as upregulated .2 fold

in Dnmt TKO ES cells by RNA-seq (,2.3 fold upregulation for

each [22]) have no detectable change in expression in the

microarray data suggesting that microarray analysis is less sensitive

than RNA-seq for detecting some changes in LTR retrotransposon

expression. In EsetshRNA ES cells, 125 (45%) of the 277 expressed

repeat probes changed expression at least 2 fold (p,0.01), with

multiple probes for MMERGLN (ERV1 family), MMERVK10C,

IAP and RLTR45 (ERVK family), MERVL (ERVL family) and

LINE-1 repetitive elements all showing upregulation in EsetshRNA

ES cells (Figure 4C, 4D). These elements represent a small subset

of those reported previously as being upregulated in Eset2/2 ES

cells [22,24], which may reflect greater loss of Eset function in

Eset2/2 conditional knockout ES cells than in ES cells transiently

transfected with knock-down shRNAs. Interestingly, although

comparison of the Dnmt TKO and EsetshRNA ES cell datasets

suggests that some retrotransposon sequences (MMERGLN, IAP,

RLTR45) are co-repressed by both DNA methyltransferases and

Eset histone methyltransferase, analysis of the Hdac12/2 ES cell

data shows striking divergences in the behaviour of these elements

(Figure 4E, 4F). 74 (3.7%) of the 1971 expressed repeat probes

changed expression at least 2 fold (p,0.01) in Hdac12/2 ES cells,

with multiple probes for the ETnERV3 and RLTR45 (ERVK

family) retrotransposons showing upregulation in Hdac12/2 ES

cells (Figure 4E, 4F). These elements share considerable sequence

similarity at the nucleotide level (84% identity over 4.2 kb of

sequence). Interestingly, although RLTR45 and IAP elements both

appear to be co-repressed by DNA methyltransferases and Eset

histone methyltransferase (Figure 4A–D), multiple probes for IAP

(ERVK family) retrotransposons behaved quite differently from

the RLTR45 probes and were downregulated in Hdac12/2 ES cells

(Figure 4E, 4F). Although Hdac1 typically acts as a transcriptional

repressor, the apparent downregulation of IAP elements in

Hdac12/2 ES cells would parallel the behaviour of some single-

copy gene targets of Hdac1 [43]. We verified the microarray

analysis of LTR retrotransposon expression by performing qRT-

PCR on Hdac12/2 ES cells: significant upregulation of RLTR45

elements (11 fold, p,0.05) and downregulation of IAP elements

(2.5 fold, p,0.05) was confirmed using this methodology

(Figure 5A). Thus expression of some LTR retrotransposons is

perturbed in the absence of Hdac1 in mouse ES cells. Furthermore,

the differences between RLTR45 and IAP expression in Hdac12/2

ES cells suggests that an Hdac1-dependent transcriptional silencing

mechanism is being recruited to retrotransposons independently of

DNA methyltransferase or Eset histone methyltransferase activity.

The changes in IAP and RLTR45 element expression in

Hdac12/2 ES cells could be an indirect consequence of other

gene expression changes that occur in Hdac12/2 ES cells [43], or

may reflect a more direct role for Hdac1 in transcriptional

regulation of these elements. To investigate whether RLTR45 and

IAP are direct targets of Hdac1 in ES cells, we analysed high

throughput sequencing data from ES cell chromatin Hdac1

immunoprecipitation (Hdac1 ChIP-seq from mouse ES cells [38])

for enrichment of repetitive element sequences [25]. Interestingly,

RLTR45 LTR sequences are enriched in Hdac1 ChIP-seq relative

to whole cell extract controls (Figure 5B), suggesting that Hdac1 is

negatively regulating RLTR45 expression in ES cells through

physically associating with RLTR45 LTRs. In contrast IAP LTR

sequences are depleted in Hdac1 ChIP-seq (Figure 5B), consistent

with the downregulation of IAP expression in Hdac12/2 ES cells

being an indirect consequence of other changes in gene expression

in these cells. Taken together, these data suggest that Hdac1 is

directly recruited to RLTR45 retrotransposons to silence their

expression in ES cells.

Identifying LTR Retrotransposon Targets of Polycomb
Repressive Complexes in ES Cells

Our genome-wide analysis of retrotransposon silencing in Dnmt

TKO, EsetshRNA, and Hdac12/2 ES cells suggests that multiple

mechanisms contribute to silencing individual retrotransposon

sequences in ES cells. These silencing mechanisms may be

recruited sequentially or independently to target sequences. To

investigate the interaction between different transcriptional

repression complexes at retrotransposon sequences in more detail,

we examined retrotransposon silencing in ES cells carrying

mutations in components of the polycomb repressive complexes

PRC1 and PRC2.

Conventional repression of gene expression by the polycomb

repressive complexes PRC1 and PRC2 is thought to involve PRC2

methylating histone H3K27 and sequentially recruiting PRC1 to

target loci [reviewed in 46]. However, a recent study on ES cells

carrying mutations in the PRC1 component Ring1B, or mutations

in the PRC2 component Eed, or mutations in both Ring1B and Eed

has suggested that PRC1 and PRC2 are recruited independently

and act redundantly to repress MuLV and IAP repetitive elements

in this cell type [26]. We therefore computationally analysed

genome-wide retrotransposon silencing in Ring1B2/2, Eed2/2,

and Ring1B2/2 Eed2/2 ES cells to determine whether any

additional LTR retrotransposons are redundantly regulated by

polycomb repressive complexes, and also to test whether any LTR

retrotransposons are regulated by conventional sequential target-

ing of polycomb repressive complexes. Ring1B2/2 Eed2/2 ES cells

have numerous differences in gene expression compared to wild-

type ES cells [26], and although LTR retrotransposon probes do
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not appear to be preferentially affected by loss of both PRC1 and

PRC2 relative to other probes in the dataset, a number of ERV1

and ERVK probes are upregulated in Ring1B2/2 Eed2/2 ES cells

(Figure 6A). A smaller subset of LTR retrotransposon probes is

upregulated in Ring1B2/2 (Figure 6C) and Eed2/2 (Figure 6E)

single knockout ES cells. We identified LTR retrotransposon

probes that were strongly upregulated at least 4 fold (p,0.01) in

Ring1B2/2 Eed2/2 ES cells (Figure 6B) and monitored how these

LTR retrotransposons behaved in Ring1B2/2 (Figure 6D) and

Eed2/2 (Figure 6F) single knockout ES cells. MMVL30 (ERV1

family) probes were upregulated in Ring1B2/2 Eed2/2 double

knockout ES cells, but did not change greatly in either Ring1B2/2

or Eed2/2 single knockout ES cells, consistent with these elements

being redundantly and independently regulated by PRC1 and

PRC2 [26]. A small number of IAP probes also appeared to be

more strongly upregulated in Ring1B2/2 Eed2/2 double knockout

ES cells than in either single knockout cell line: 4 of the 112 IAP

probes that are expressed in this dataset are upregulated at least 4

fold (p,0.01) in Ring1B2/2 Eed2/2 double knockout ES cells, but

no IAP probes are upregulated by these criteria in either single

knockout cell line (Figure 6B, 6D, 6F). This is consistent with

previous observations that IAP elements are redundantly and

independently regulated by PRC1 and PRC2 [26]. RLTR45

(ERVK family) probes are also more strongly upregulated in

Ring1B2/2 Eed2/2 double knockout ES cells than in either single

knockout cell line suggesting that this element is a novel

retrotransposon target for redundant silencing by polycomb

repressive complexes (Figure 6B, 6D, 6F).

Interestingly, genome-wide analysis of retrotransposon expres-

sion also suggests that some LTR retrotransposon probes are being

repressed by conventional sequential recruitment of PRC2 and

PRC1. RLTR44 (ERVK family) probes appear to be similarly

upregulated in Ring1B2/2 Eed2/2 double knockout and single

knockout ES cells (Figure 6B, 6D, 6F). The slightly lower

upregulation of RLTR44 probes in Ring1B2/2 ES cells compared

to Eed2/2 ES cells may represent Ring1A-containing PRC1

complexes contributing to polycomb-mediated repression in ES

cells [47]. RLTR44 retrotransposons do however appear to be a

novel retrotransposon target for conventional sequential silencing

by polycomb repressive complexes. Thus computational analysis

of gene expression in polycomb mutant cell lines suggests that

PRC1 and PRC2 interact in different ways on different retro-

transposon targets to bring about silencing of these repetitive

elements in ES cells.

Differential Regulation of Retrotransposon Genomic Loci
During analysis of the Ring1B2/2 Eed2/2 double knockout and

single knockout ES cells, we noticed that probes for RLTR4

retrotransposons were strongly upregulated in all three cell lines

(Figure 6B, 6D, 6F). However the RLTR4 probes that are

upregulated correspond mainly to the LTR region (RLTR4_Mm)

but usually not the internal region (RLTR4-int) of this element

(Figure 7A). This suggests that the upregulation of these probes

may represent expression from a subset of RLTR4 loci, possibly

corresponding to truncated or chimaeric elements. We therefore

mapped the genomic location of the RLTR4 LTR and internal

probes that were upregulated in Ring1B2/2 ES cells back onto the

genome using BLAT. In contrast to the retrotransposon probes

upregulated in other datasets analysed in this study, the RLTR4

probes upregulated in Ring1B2/2 ES cells did not map to multiple

genomic loci. Rather, all of the upregulated RLTR4 probes

mapped only to a single RLTR4-containing genomic locus on

chromosome 8 (chr8:125949704–125958431). The RLTR4 probes

that did not change expression in Ring1B2/2 ES cells mapped to

multiple loci in the genome. Thus the upregulation of a subset of

RLTR4 probes in Ring1B2/2 ES cells may represent upregulation

of a single genomic copy of this element. This locus appears to

contain RLTR4-int and MuLV-int sequences flanked by

RLTR4_Mm sequences that each contains an inversion and a

,200 bp deletion relative to the 742 bp consensus sequence.

qRT-PCR using primers designed to specifically detect the

RLTR4-int sequence at this locus confirmed that expression of

this region is strongly upregulated in Ring1B2/2 ES cells

(Figure 7B), whereas qRT-PCR using primer sets that recognize

multiple copies of RLTR4-int suggest that these elements are, in

general, not upregulated in Ring1B2/2 ES cells (Figure 7B). qRT-

PCR also confirmed that representative ERV1, ERVK and ERVL

LTR retrotransposons were not changing expression in Ring1B2/2

ES cells (Figure 7B), consistent with the computational analysis.

The divergent copy of RLTR4 on chromosome 8 appears to be

silenced by conventional polycomb repression as it is de-repressed

in both Ring1B2/2 and Eed2/2 single knockout ES cells (Figure 6).

This copy of RLTR4 could have acquired Ring1B target sequences

through mutations and re-arrangement to make it a target for

conventional polycomb silencing. However as RLTR4 is derived

from MuLV [48], a target of redundant silencing by PRC1 and

PRC2 [26], it is perhaps more likely that changes in this divergent

copy of RLTR4 have removed sequences that allow PRC2-

independent silencing of this locus by PRC1, making it behave as a

conventional target for polycomb repression.

Many of the changes in retrotransposon expression that we have

characterized in ES cells and germ cells involve subsets of probes

for particular retrotransposons changing expression (Figure 1,

Figure 4, Figure 6) suggesting that different genomic copies of

these retrotransposons may be differentially regulated in these cell

types. In Tex19.12/2 testes, six of the nine expressed

MMERVK10C probes in the dataset are upregulated at least 2

fold (Figure 1). All six of the upregulated MMERVK10C probes are

located in the MMERVK10C env open reading frame. Two of the

remaining three MMERVK10C probes are also located in the env

gene and are upregulated in Tex19.12/2 testes, but are just below

the 2 fold change threshold. The single MMERVK10C probe that

is located in the gag region does not significantly change expression

in the Tex19.12/2 testis dataset. We validated the computational

data by qRT-PCR and confirmed that the gag and env regions of

MMERVK10C are indeed differentially sensitive to loss of Tex19.1

in mouse testes (Figure 7C). Interestingly, we noted that primer

sets designed to different parts of MMERVK10C env (env.a – env.d)

Figure 3. Different transcriptional silencing mechanisms have distinct effects on genome-wide repression of repetitive elements. (A,
B) MA-plots for Dnmt12/2 Dnmt3A2/2 Dnmt3B2/2 triple knockout (Dnmt TKO) ES cell Affymetrix Gene Expression data. The mean expression level for
each expressed probe is plotted against the fold upregulation of that probe in Dnmt TKO ES cells. Probes for repeat families (A), and classes of LTR
retrotransposons (B) are colour-coded in each plot according to the legend. A group of ERV1 and ERVK LTR retrotransposons can be seen to be
upregulated relative to the total probe population in the Dnmt TKO ES cells. (C, D) MA-plots for EsetshRNA ES cell Illumina Beadchip data with probes
for repeat families (C), and classes of LTR retrotransposons (D) colour-coded according to the legend. Probes for different ERV1, ERVK and ERVL LTR
retrotransposon families are strongly upregulated, and multiple LINE-1 probes are modestly upregulated, in EsetshRNA ES cells. (E, F) MA-plots for
Hdac12/2 ES cell Affymetrix Gene Expression data with probes for repeat families (E), and classes of LTR retrotransposons (F) colour-coded according
to the legend. One group of ERVK LTR retrotransposon probes is upregulated in Hdac12/2 ES cells, another group is downregulated.
doi:10.1371/journal.pcbi.1002486.g003
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Figure 4. Genome-wide retrotransposon targets of transcriptional repression mechanisms in mouse ES cells. (A, C, E) Histograms
showing repeat probes that change expression at least 2 fold (p,0.01) in Dnmt TKO, EsetshRNA, and Hdac12/2 ES cells respectively. (B, D, F) Plots
showing the behaviour of the selected retrotransposon probe populations in Dnmt TKO, EsetshRNA, and Hdac12/2 ES cells respectively.
Retrotransposons are colour-coded according to the legend. Vertical lines indicate the 2 fold change cut-off used in panels A, C and E. Note the
divergent behaviour of IAP and RLTR45 retrotransposons in Hdac12/2 ES cells in contrast to Dnmt TKO and EsetshRNA ES cells.
doi:10.1371/journal.pcbi.1002486.g004
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were also differentially sensitive to loss of Tex19.1 (Figure 7C).

These data suggest that a subset of MMERVK10C loci may be

upregulated in Tex19.12/2 testes. Cloning and sequencing

multiple independent clones of the env.c PCR product confirmed

that multiple MMERVK10C loci were expressed in Tex19.12/2

and control testes (data not shown). The pol sequence is not

covered by probes on the array but this region of MMERVK10C is

also significantly upregulated in Tex19.12/2 testes (Figure 7C).

Although in silico PCR suggests that the different MMERVK10C

primer sets detect different numbers of MMERVK10C loci (gag

primers detect 95 loci, pol primers detect 164 loci, env.a – env.d

primers detect 78,70,179 and 40 loci respectively), the qRT-PCR

data suggest that expression of these amplicons is differentially

affected by loss of Tex19.1. We investigated the differential

regulation of MMERVK10C gag and env regions by mapping the six

strongly upregulated env probes and the single unaffected gag probe

to individual MMERVK10C genomic loci, and assembled the

MMERVK10C genomic loci into contigs. As MMERVK10C

sequences that have retained flanking RLTR10 LTRs are more

likely to be transcriptionally active we selected RLTR10-flanked

MMERVK10C contigs for further analysis (Figure 7D). Only 18 of

the 250 RLTR10-flanked MMERVK10C contigs (7%) that we

identified in the mouse genome are approximately full-length

(contain .95% of MMERVK10C reference sequence). Interest-

ingly, many of the RLTR10-flanked MMERVK10C contigs contain

recurrent deletions: one recurrent deletion in the upregulated

MMERVK10C contigs removes the start of the gag open reading

frame (nucleotides 399–870 deleted in 33% of these contigs) and

appears to be associated with recurrent deletions in env (nucleotides

5810–6646 deleted in 33% of all contigs, 5810–6651 deleted in

20% of contigs). The presence of recurrent deletions in the

MMERVK10C open reading frames at distinct genomic loci

suggests that transcripts carrying these deletions may be actively

retrotransposing, presumably in a non-autonomous manner

through the activity of endogenous retroviral proteins provided

in trans. The upregulated probes appeared to be highly

representative of the RLTR10-flanked MMERVK10C loci, with

197 of the 250 RLTR10-flanked MMERVK10C contigs matching

only the upregulated probes (Figure 7D). No RLTR10-flanked

MMERVK10C contig matched all upregulated probes, or all the

upregulated qRT-PCR primer sets, suggesting that multiple

genomic copies of MMERVK10C are upregulated in Tex19.12/2

testes. In contrast, only two RLTR10-flanked MMERVK10C

contigs matched only the unaffected probe (Figure 7D). Interest-

ingly, 12 of the 15 RLTR10-flanked MMERVK10C contigs that

matched both sets of probes were approximately full-length

sequences, whereas the contigs that matched only the upregulated

probes usually contained deletions with recurrent breakpoints.

(Figure 7D). Furthermore, qRT-PCR primers designed to amplify

sequences within the 5810–6646 deletion (env.a) do not change

expression in Tex19.12/2 testes, but those amplifying env

sequences outside this deletion (env.b, env.c, and env.d) are

upregulated (Figure 7C, 7D). Thus de-repression of specific subsets

of MMERVK10C loci could be contributing to the differential

regulation of different regions of MMERVK10C gag and env

amplicons in Tex19.12/2 testes (Figure 7C). The upregulated pol

and env.b/env.c primer sets can detect expression from RLTR10-

flanked MMERVK10C contigs encoding intact pol and env

proteins respectively (.90% of open reading frame intact relative

to MMERVK10C reference sequence), but not contigs where the

gag, pol, pro and env proteins are all intact. This suggests that the

upregulated MMERVK10C transcripts may have some protein

coding potential, but may need to rely on proteins provided in trans

for retrotransposition. Some of the deletions in the upregulated

Figure 5. Hdac1 regulates expression of LTR retrotransposons in mouse ES cells. (A) qRT-PCR verification of LINE-1, RLTR45 and IAP expression
in Hdac12/2 ES cells. Expression levels (mean 6 standard error for three biological replicates) were normalized to b-Actin and expressed relative to
control ES cells. IAP and LINE1 59UTR primer sets (Figure S2) were used to assess IAP and LINE-1 expression. Asterisks indicate a statistically significant
difference (p,0.05) for RLTR45 and IAP elements. RLTR45 expression is upregulated in Hdac12/2 ES cells, but IAP expression is downregulated. (B)
Enrichment of LTR retrotransposon sequences in Hdac1 ChIP-seq data from mouse ES cells. The maximum likelihood of enrichment (695% confidence
intervals) for RLTR45 LTR and IAP LTR sequences Hdac1 ChIP-seq relative to whole cell extract is shown. RLTR45 LTR sequences are enriched in the Hdac1
ChIP-seq indicating a physical association between Hdac1 and RLTR45 retrotransposon chromatin, in contrast IAP LTR sequences are depleted.
doi:10.1371/journal.pcbi.1002486.g005
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MMERVK10C contigs, particularly the consistent disruption to

parts of the gag region, may be removing sequences used to recruit

Tex19.1-independent retrotransposon silencing mechanisms.

These loci would therefore be more reliant on the Tex19.1-

dependent pathway for repression in germ cells, and be specifically

de-repressed in Tex19.12/2 testes. Thus the differential regulation

of MMERVK10C probes in Tex19.12/2 testes may be caused by

the emergence of variant non-autonomous MMERVK10C ele-

ments that have deleted the sequences used to target silencing

mechanisms to MMERVK10C.

We noted that IAP retrotransposon probes in Dnmt TKO ES

cells lines were also exhibiting bimodal behaviour (Figure 4B). To

investigate whether this represents differential regulation of IAP

loci we designed qRT-PCR primers to IAP loci matching either

upregulated or unaffected IAP-int probes (Figure 7E). qRT-PCR

confirmed that some IAP loci are upregulated in Dnmt TKO ES

cells, whereas others do not change expression (Figure 7F). As

expected from the computational analysis of retrotransposon

expression in Dnmt TKO ES cells, expression of LINE-1 elements

do not change in Dnmt TKO ES cells, and MMERGLN elements

are upregulated, when assessed experimentally by qRT-PCR

(Figure 7F). Our finding that different genomic copies of IAP may

be differentially sensitive to loss of DNA methyltransferases is

consistent with recent findings from RNA-seq of Dnmt TKO ES

cells [22]. A simple interpretation of this phenomenon would be

that the IAP loci that are not changing expression in Dnmt TKO

ES cells are divergent defective copies of the IAP element.

However, the unaffected IAP-int probes are detecting some IAP

expression in ES cells, albeit at a lower level than the upregulated

probes, suggesting that the IAP loci that are detected by the

unaffected IAP-int probes are not all transcriptionally inert. To

investigate why some IAP loci are insensitive to DNA methylation

we identified the genomic IAPEz-int contigs that matched either

the upregulated or the unaffected IAP-int probes. Although many

of the contigs that only matched the unaffected IAP-int probes

carried large deletions, one locus (chr10:22250294–22243066)

contained a relatively intact IAPEz-int region flanked by IAP

LTRs. Interestingly both of the LTRs at this locus contain a small

10 bp deletion (Figure 7G) that removes the conserved AP-1

transcription factor binding site [49]. Only 5 of the 16141 IAP

LTRs in the mouse genome carry this, or a similar, deletion of the

AP-1 binding site, and none of the IAP contigs that only match

upregulated IAP-int probes contain this deletion in their LTRs. We

confirmed that this copy of IAP (IAP_chr10) was not upregulated

in Dnmt TKO ES cells by qRT-PCR (Figure 7F). However,

mRNA from this locus was readily detected in wild-type and Dnmt

TKO ES cells, suggesting that this copy of IAP is constitutively

expressed. Loss of the AP-1 binding site in the IAP LTRs at this

locus therefore does not appear to silence expression of this

element, but may render this locus insensitive to regulation by

DNA methylation. Interestingly, DNA methylation has been

shown to inhibit binding of AP-1 to gene promoters [50].

Inhibition of AP-1 binding to IAP LTRs may therefore be

contributing to DNA methylation-mediated repression of IAP

elements in mouse ES cells.

Taken together, computational analysis of genome-wide retro-

transposon silencing suggests that individual loci for a particular

retrotransposon can have different sensitivities to retrotransposon

suppression mechanisms. Mapping the changes that are present in

differentially regulated loci may help to identify cis-acting retro-

transposon sequences that are being used to recruit silencing

mechanisms.

Discussion

Evaluation of the Microarray Repeat-Annotation
Approach

In this manuscript we describe a simple computational

approach to monitor repetitive element expression in microarray

gene expression data. We have used repeat-annotation of pre-

existing datasets to identify retrotransposons regulated by DNA

methylation and different histone modifications in mouse ES cells

(Table 3). We have verified that repeat probes present in gene

expression microarrays are accurately reporting repetitive element

expression by confirming our findings from Tex19.1, Ring1B and

Dnmt TKO microarray analyses by qRT-PCR. In general there

appears to be good qualitative correlation between repeats that we

identified as changing expression in microarray datasets, and our

qRT-PCR verification. Importantly there is also good correlation

between repeat probes that are not changing expression in the

microarray datasets and our qRT-PCR verification of these

repetitive elements. Furthermore, we have used this approach to

identify Hdac1 as a component of the retrotransposon silencing

machinery in mouse ES cells (Figure 3, Figure 4). Application of

this methodology to gene expression microarray data is likely to

generate new insights into retrotransposon regulation in mammals,

and help to identify further components of the defence

mechanisms that protect the mammalian genome from retro-

transposition. Consistent with previous re-annotation workflows

designed to remove non-informative probes from microarray

analyses [40], we found that commercially available mouse gene

expression microarray platforms contain a number of probes that

map to repetitive regions of the genome. Although expression

information from these probes can be discarded to improve

analysis of gene expression in the remaining dataset [40], we show

here that the information from these probes can be extracted to

accurately monitor repetitive element expression.

Repeat-annotation of microarray data can significantly expand

the repertoire of repetitive elements studied in an experiment

compared to testing selected representative candidates. Indeed this

study has identified new target retrotransposons for polycomb

repressive complexes and Hdac1 histone deacetylase in mouse ES

cells. Although the range of repetitive elements analysed by

microarray repeat-annotation will not be as wide as that analysed

by RNA-seq [22,23], between one and two thirds of all

retrotransposons in the mouse genome are represented by probes

on the microarray platforms that we have analysed here. A direct

comparison between microarray repeat annotation (this study) and

RNA-seq [22] for detecting changes in retrotransposon expression

in Dnmt TKO ES cells shows good correlation between these

methods (the four retrotransposons detected as upregulated by

Figure 6. LTR retrotransposon targets of polycomb repressive complexes in ES cells. (A, C, E) MA-plots for Ring1B2/2 Eed2/2 double
knockout, Ring1B2/2 single knockout and Eed2/2 single knockout ES cells showing how different classes of LTR retrotransposons change expression
in these cell lines. (B, D, F) Plots showing the behaviour of selected retrotransposon probe populations in Ring1B2/2 Eed2/2 double knockout, Ring1B2/2

single knockout and Eed2/2 single knockout ES cells. The selected retrotransposons are all represented by multiple upregulated probes ($4
fold upregulation, p,0.01) in Ring1B2/2 Eed2/2 ES cells. Vertical lines indicate a 4 fold change. Note that some retrotransposons (e.g.
MMVL30, RLTR45) are upregulated in double knockout but not single knockout ES cells, other retrotransposons (e.g. RLTR44) are upregulated
in all three ES cell lines. Retrotransposon probes are colour-coded as shown in the plot legends.
doi:10.1371/journal.pcbi.1002486.g006
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microarray analysis are the four most strongly upregulated

retrotransposons detected by RNA-seq). However, two additional

LTR retrotransposons were detected as upregulated in Dnmt

TKO ES cells only by RNA-seq, despite representation of these

elements on the microarray. Thus microarray analysis may be less

sensitive than RNAseq for detecting some changes in LTR

retrotransposon expression, particularly when only a small number

of genomic copies are changing expression [22]. In addition,

although we have focused on retrotransposon silencing in mouse

germ cells and pluripotent cells, the computational approach that

we describe here can be readily applied to microarray data from

human cells and tissues to inform on retrotransposon expression in

relation to retrotransposition in somatic mosaicism [12,37],

epigenetic changes in cancer [51,52], reprogramming somatic

cells into iPS cells [53], and toxicological insults [54]. As repeat-

annotation can be applied to pre-existing microarray data as well

as new datasets, this methodology can be used to extract

information from many of the ,18,000 microarray gene

expression data series that have been generated and deposited in

publicly available databases [38]. This makes repeat-annotation of

microarray data an attractive approach to test hypotheses and

generate initial findings upon which more detailed research can be

built. Thus microarray repeat-annotation represents a simple and

cost-effective addition to the methods available to study repetitive

element silencing at a genome-wide level.

Differential Regulation of Specific Genomic Copies of a
Retrotransposon

One of the features of the computational approach that we have

outlined here is that our analysis is based on aligning probe

sequences to Repeatmasked regions of the genome, rather than to

Repeatmasker consensus sequences. If different genomic copies of

a repetitive element are behaving in different ways in an

experiment then repeat-annotation of microarray data can

potentially monitor expression from divergent genomic copies of

a repetitive element. Clearly the extent to which multiple genomic

copies of a particular element can be monitored will depend on the

coverage of probes for that element. In the Affymetrix Mouse

Expression 430 2.0 GeneChip platform that contains ,26,000

repeat probes we have been able to detect differential regulation of

Figure 7. Differential regulation of retrotransposon genomic loci. (A) Plot showing the differential behaviour of different RLTR4
retrotransposon probe populations in Ring1B2/2 single knockout ES cells. Different RLTR4 probe populations are colour-coded as shown in the
legend, and vertical lines indicate a 4 fold change. (B) qRT-PCR verification of repetitive element expression in Ring1B2/2 ES cells. Expression levels
(mean 6 standard error) were normalized to b-Actin and expressed relative to wild-type control ES cells. MMERVK10C env.c and LINE1 59UTR primer
sets (Figure S2) were used to assess MMERVK10C and LINE-1 expression. The asterisk indicates a statistically significant difference (p,0.05). Note that
different primers for RLTR4 elements behave differently in the qRT-PCR assay. (C) qRT-PCR for different MMERVK10C primer sets in Tex19.12/2

knockout and littermate control testes at 16 dpp. Expression levels (mean 6 standard error for three animals) were normalized to b-Actin and
expressed relative to littermate controls. Asterisks indicate statistically significant differences (p,0.05) (D) Plot showing the MMERVK10C genomic
contigs flanked by RLTR10C LTRs that match only upregulated probes (blue), only unaffected probes (brown), neither class of probes (grey), or both
classes of probe (green) in Tex19.12/2 testes. Each contig is represented by a horizontal line that indicates the regions of the MMERVK10C sequence
within it. The upregulated MMERVK10C contigs appear to contain recurrent deletions and may be non-autonomous. The positions of the qRT-PCR
primers used in (C) are shaded orange. (E) Plot showing the bimodal behaviour of IAP-int retrotransposon probe populations in Dnmt TKO ES cells.
Vertical lines indicate a 4 fold change. (F) qRT-PCR for of repetitive elements in Dnmt TKO ES cells. Expression levels (mean 6 standard error) were
normalized to Gapdh and expressed relative to wild-type control ES cells. The asterisk indicates a statistically significant difference (p,0.05). The
LINE1 59UTR.b primer set (Figure S2) was used to assess LINE-1 expression. Note the difference in behaviour between the two IAP-int primer sets. The
IAP contig carrying deletions in the AP-1 binding site shown in panel G (IAP_chr10 primers) is expressed but not upregulated in Dnmt TKO ES cells.
(G) Sequence alignment between an LTR of a full-length IAP element that does not change expression in Dnmt TKO ES cells (IAP_chr10), and the
consensus sequence for the LTR (IAPLTR1a_Mm). The 10 bp deletion removes the AP-1 transcription factor binding site in the LTR.
doi:10.1371/journal.pcbi.1002486.g007

Table 3. Summary of changes in repetitive element expression detected by microarray repeat-annotation in this study.

ES cells Testes

Dnmt TKO EsetshRNA Hdac12/2 Ring1B2/2 Ring1B2/2 Eed2/2 Tex19.12/2

ERV1 MMERGLN q q - - - -

RLTR1B q - - - - -

RLTR4 - - - (q) (q) -

MMVL30 - - - - q -

ERVK IAP q q Q - (q) -

RLTR44 - - - q q -

RLTR45 q q q - q -

MMERVK10C -* q - - - q

ETnERV3 - - q - - -

ERVL MMERVL - q - - - -

LINE LINE-1 - q - - - -

Statistically significant upregulation and downregulation of repetitive element expression in mutant ES cell lines or testes is indicated by up and down arrows
respectively. Changes that only appear to affect a small number of probes for a repetitive element are indicated in brackets. The degree of change in gene expression
detected for these elements is detailed in the main text.
*Although changes in MMERVK10C expression were not detected in Dnmt TKO ES cell microrray data in this study, RNA-seq analysis suggests that some genomic copies
of MMERVK10C are upregulated in Dnmt TKO ES cells [22].
doi:10.1371/journal.pcbi.1002486.t003

LTR Retrotransposon Silencing in Mouse ES Cells

PLoS Computational Biology | www.ploscompbiol.org 16 April 2012 | Volume 8 | Issue 4 | e1002486



different genomic copies of RLTR4 elements in Ring1B2/2 ES

cells, IAP, RLTR45 and RLTR1B elements in Dnmt TKO ES cells

and ETnERV3 and RLTR45 in Hdac12/2 ES cells. Remarkably,

for Ring1B2/2 ES cells we were able to detect expression changes

that are possibly arising from only a single divergent copy of

RLTR4. Thus repeat-annotation of microarray data appears to be

able to monitor expression from divergent genomic copies of a

repetitive element.

For MMERVK10C elements, analysis of the genomic loci

matching retrotransposon probes was able to generate some

insight into why some genomic copies of these elements are more

sensitive to loss of suppression mechanisms than others. Loss of

parts of the gag or env regions of MMERVK10C may be associated

with genomic copies becoming more sensitive to Tex19.1-

dependent suppression in male germ cells (Figure 7D). Interest-

ingly, non-autonomous variants of IAP (IAPD1) that carry deletions

in the gag region retrotranspose more frequently than their full-

length counterparts [55]. Thus sequences in the gag region of both

IAP and MMERVK10 may be being used by host defence

mechanisms to target these elements for silencing. In addition,

analysis of differentially regulated IAP loci allowed us to identify a

region in the IAP LTR that may be targeted by host silencing

mechanisms (Figure 7G). DNA methylation at this conserved AP-1

transcription factor binding site may contribute to Dnmt-

dependent repression of IAP elements in ES cells by inhibiting

AP-1 binding. However, further experimental work is needed to

functionally characterize the consequences of these deletions for

MMERVK10C and IAP silencing in germ cells and ES cells. Our

analysis of MMERVK10C and IAP elements suggests that the

behaviour of sequence variants in a retrotransposon’s population

can potentially be used to identify cis-acting sequences involved in

retrotransposon suppression. In this respect, although repeat-

annotation of microarray data may give some indication of

differential regulation of repeat loci, RNA-seq may potentially be a

more powerful approach to identify which genomic copies of an

element are responsible for changes in expression.

As with all studies reporting changes in retrotransposon

expression, determining whether changes in RNA or protein

levels are caused by misregulation of one copy or many copies of a

retrotransposon can be difficult. However, determining the

sequence of the retrotransposon loci or transcripts that change

expression in microarray datasets is an important prerequisite for

assessing the functional potential of the mis-expressed retro-

transposons. Finer sub-classification of repeat probes to distinguish

between expression of functional and non-functional copies of a

retrotransposon, for example active and inactive LINE-1 elements,

may not be accurate due to the short length of microarray probes:

longer sequences are usually required to unambiguously identify a

particular retrotransposon subfamily. Furthermore, none of the

LINE-1 probes present in the Illumina and Affymetrix arrays

analysed here match the consensus monomer sequences that

distinguish active Tf, Gf and A-type LINE-1 elements. Thus

microarray repeat-annotation may not be able to distinguish

whether functional or non-functional genomic copies of a

particular retrotransposon are deregulated, but may be useful in

identifying subpopulations of genomic copies that include or

exclude the misregulated retrotransposon sequence.

Regulation of Retrotransposon Expression in Mouse ES
Cells and Germ Cells

We have used repeat-annotation of microarray data to

investigate whether some of the established mechanisms for

retrotransposon silencing have additional retrotransposon targets

in mouse ES cells. This analysis has demonstrated that there is a

complex interplay between DNA methylation and histone

modifications regulating the expression of the spectrum of

repetitive elements in the mouse genome (Table 3). The LTR

retrotransposons that we identified as being upregulated in Dnmt

TKO ES cells overlap well with those identified recently by RNA-

seq of Dnmt TKO ES cells [22]. Interestingly, many repetitive

elements that belong to the same ERVK LTR retrotransposon

family as IAP elements were not upregulated in Dnmt TKO ES

cells suggesting that related retrotransposons can differ in their

sensitivity to DNA methylation. Similarly, our finding that

MMERVK10C, but not closely related retrotransposons such as

IAP, are upregulated in Tex19.12/2 testes suggests that closely

related retrotransposons differ in sensitivity to regulatory mecha-

nisms in developing germ cells as well as ES cells. The differential

behaviour of IAP and MMERVK10C elements in Tex19.12/2 testes

could be caused by differences in the availability of transcriptional

factors or by differences in silencing mechanisms associated with

these elements. However as IAP LTRs are able to drive expression

in spermatogonia [8,19], which are present in the 16 dpp

Tex19.12/2 testes analysed here, the differential behaviour of

IAP and MMERVK10C in Tex19.12/2 testes may reflect

differences in silencing mechanisms acting on these elements.

DNA methylation plays an important role in silencing IAP

elements in spermatogonia [19], and redundancy between

silencing mechanisms may well be contributing to the differential

behaviour of MMERVK10C and IAP elements in Tex19.12/2

testes. Some of the retrotransposon targets for DNA methylation,

Tex19.1, and the other silencing mechanisms that we have studied,

may be obscured by redundancy between silencing mechanisms,

and each of the mechanisms that we have studied here may have a

broader range of targets than we have been able to identify.

Like IAP elements, the RLTR45 ERVK LTR retrotransposon

and the MMERGLN and RLTR1B ERV1 LTR retrotransposons

are all upregulated in Dnmt TKO ES cells. The level of

upregulation of IAP, MMERGLN, RLTR45 and RLTR1B retro-

transposons in Dnmt TKO ES cells was relatively low, consistent

with previous observations for IAP elements [21]. Additional

mechanisms are likely to play a role in transcriptionally repressing

these retrotransposons in ES cells, and Kap1/Eset-mediated

repression appears to be one of the silencing pathways that plays

a prominent role in repression of these elements [this study,22,23].

At least for IAP elements, differentiated cells may rely more heavily

on DNA methylation than Kap1/Eset for repression [21,23]. It

will be interesting to test whether transcription of MMERGLN,

RLTR1B and RLTR45 repetitive elements is directly regulated by

DNA methylation, and whether DNA methylation plays a

dominant role in repressing these repetitive elements in differen-

tiated cells.

MMERGLN and RLTR45 elements behaved similarly to IAP

elements in EsetshRNA ES cells. Our finding that MMERGLN,

RLTR45 and MMERVK10C are all upregulated in EsetshRNA ES

cells is consistent with these elements being enriched for

H3K9Me3 in ES cells [22,25], and with recent RNA-seq and

ChIP-seq data from Eset2/2 ES cells [22]. We also found that

MERVL-int elements were upregulated in EsetshRNA ES cells. These

elements have also been reported to be upregulated in Kap12/2

ES cells [23]. ERVL retrotransposons are enriched for

H3K27Me3 but not H3K9Me3 in ES cells [25], and the

upregulation of MERVL-int (this study) and MTA [24] ERVL

retrotransposons in EsetshRNA and Eset2/2 ES cells may be an

indirect effect of loss of Eset function. As ES cells lacking Eset

differentiate towards the trophectoderm lineage [42], some of the

changes in gene expression in EsetshRNA and Eset2/2 ES cells may

be an indirect consequence of this change in cell fate, or indeed
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any other change in gene expression. Indeed all of the microarray

analyses of gene expression in ES cells that we have repeat-

annotated are subject to the caveat that some changes in gene

expression in these datasets may be consequences of differences in

the proportion or type of differentiated cells present in the ES cell

cultures. Further experiments will be required to determine why

some ERVL retrotransposons are modestly upregulated in

EsetshRNA and Eset2/2 ES cells.

Importantly this study also identifies the histone deacetylase

Hdac1 as a regulator of retrotransposon expression in mouse ES

cells. The HDAC family of histone deacetylases has been

implicated in retrotransposon suppression in some cell types

[28,44,45], and HDAC1 has been shown to suppress expression

from avian retroviral LTRs in somatic HeLa cells [29,30]. The

microarray analysis that we present here extends these findings by

identifying the retrotransposon elements that are regulated by

Hdac1 in mouse ES cells. Interestingly, although RLTR45 and IAP

elements behaved similarly in Dnmt TKO and EsetshRNA ES cells,

these elements were misregulated in opposite directions in

Hdac12/2 ES cells. Thus the silencing mechanisms operating on

repetitive elements appear to be modular, with different

combinations of mechanisms acting on different elements

(Table 3). Furthermore, these data suggest that the Hdac1-

mediated and Dnmt-mediated silencing mechanisms operating

on these elements are being targeted independently to RLTR45

and IAP retrotransposons. The upregulation of RLTR45 elements

in Hdac12/2 ES cells, together with the enrichment of RLTR45

sequences in Hdac1 ChIP-seq data from ES cells, suggests that an

Hdac1-containing repressor complex may be recruited to RLTR45

loci and silence this element. Further analysis of Hdac1-binding

and histone modification at RLTR45 elements is likely to generate

more mechanistic insight into this silencing event. The downreg-

ulation of IAP elements in Hdac12/2 ES cells parallels the

behaviour of some endogenous genes in these ES cells [43]. It will

be informative to determine whether Hdac1 is acting directly on

IAP elements to promote their transcriptional activation, or the

increased activity of Hdac2 in Hdac12/2 ES cells is responsible for

downregulation of IAP elements [43]. Interestingly, LINE-1

elements did not appear to be upregulated in Hdac12/2 ES cells

(Figure 5A), which contrasts with Hdac1’s role in repressing LINE-

1 elements in neural stem cells [56]. Again, further experiments

will be required to distinguish whether this difference reflects

different chromatin environments between pluripotent ES cells and

somatic neural stem cells, an effect of different Sox2-interacting

partners in these cell types, or redundancy between multiple

pathways operating to suppress LINE-1 activity in ES cells.

In summary we have shown that genome-wide silencing of

repetitive elements can be monitored by extracting this informa-

tion from microarray gene expression data, revealing a complex

interplay between mechanisms that act to control retrotransposon

expression in mouse ES cells and germ cells, and important

differences in the behaviour of different genomic copies of

individual retrotransposons. This computational approach has

expanded our knowledge of retrotransposon targets for known

silencing mechanisms, identified Hdac1 as a regulator of retro-

transposon expression in ES cells, and demonstrated that

epigenetic silencing mechanisms are independently recruited to

retrotransposons in a modular manner.

Materials and Methods

Ethics Statement
Animal work was conducted according to UK Home Office

regulations and local guidelines for animal welfare.

Animals
Mice were housed and bred according to UK Home Office

regulations and local guidelines for animal welfare. Tex19.12/2

mice [39] were backcrossed three times to inbred C57BL/6 mice

to reduce genetic variation prior to microarray analysis. Animals

were culled at 16 days post partum (dpp) by cervical dislocation

and testes from Tex19.12/2 experimental mice and Tex19.1+/+

and Tex19.1+/2 control littermates were frozen on liquid nitrogen

prior to RNA isolation.

ES Cell Culture
Ring1B2/2 feeder-dependent ES cells [57] were cultured at 37uC,

5% CO2 on a mitomycin C-treated mouse embryonic fibroblast

feeder layer, feeder-independent Dnmt TKO and Hdac12/2 ES

cells [20,43] were cultured at 37uC, 5% CO2 on gelatinized tissue-

culture flasks. Ring1B2/2 and Hdac12/2 ES cells were cultured

using DMEM (Invitrogen) supplemented with 15% fetal calf serum,

16non-essential amino acids, 1 mM sodium pyruvate, 100 units/

mL penicillin, 0.1 mg/mL streptomycin, 50 mM b-mercaptoetha-

nol and leukemia inhibitory factor. Dnmt TKO ES cells were

cultured using GMEM (Invitrogen) with 10% fetal calf serum rather

than DMEM with 15% fetal calf serum. ES cells were harvested

using trypsin-EDTA, then pelleted for RNA isolation.

RNA Isolation and Illumina Beadarray Gene Expression
Profiling

RNA was isolated from 16 dpp testes or ES cell pellets using

TRIzol (Invitrogen) according to the manufacturer’s instructions.

RNA was treated with DNAseI (Roche) for 2 h at 37uC to remove

genomic DNA contamination. For Illumina Beadarrays of 16 dpp

testes, cRNA samples were prepared using Illumina TotalPrep

RNA Amplification Kit (Ambion) and hybridized to Illumina

Mouse WG-6 v2.0 Beadarrays according to the manufacturers’

protocols. The raw and processed Tex19.1 microarray data have

been deposited in the publicly accessible GEO database [38],

accesssion number GSE30461.

qRT-PCR
cDNA synthesis was performed on DNaseI-treated RNA using

random primers and Superscript III reverse transcriptase (Invitro-

gen) according to the manufacturer’s instructions. qRT-PCR was

performed using Brilliant II/III SYBR Green QPCR Master Mix

(Agilent Technologies) or Quantitect SYBR Green detection kit

(Qiagen) and a CFX96 Real-Time PCR Detection System (Bio-

Rad). Relative changes in gene expression were calculated by

normalizing gene expression levels from different samples to b-

Actin or Gapdh as indicated. Expression levels in experimental

samples are expressed relative to wild type ES cells or littermate

controls. Three technical replicates were performed for each

biological sample, and cDNA prepared from each RNA sample in

the absence of reverse transcriptase showed no significant qRT-

PCR signals. For qRT-PCR of 16 dpp testes, the Sertoli cell-

expressed Sdmg1 gene [58] was used to verify normalization

between animals. A two-tailed t-test was used to determine

statistical significance of qRT-PCR gene expression changes. The

sequences of the primers used for qRT-PCR are available with the

online version of this paper (Figure S2).

Repeat Annotation of Illumina Probes
The DNA sequences of the 50-mer probes used in Illumina

Mouse WG-6 Beadchips were downloaded from the manufactur-

er’s website [59]. For each Beadchip version the probe sequences

were used to search the mm9 release of the mouse genome by
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individual chromosome using BLAT [60]. The BLAT parameters

used were -minIdentity = 95 -stepSize = 5 -repMatch = 2253.

Experimental data suggests that the 50 nt Illumina Beadchip

probes will hybridize to mRNAs containing 2 mismatches in the

probe sequence with an efficiency of greater than 90% [61]. A Perl

script was used to compare the genome co-ordinates of the top hit

(with a 48/50 nt identity minimum cut-off) for each probe

sequence with the co-ordinates of the Repeatmasked regions of

the mm9 release of the mouse genome downloaded from the

UCSC genome browser [62]. Probes that overlapped a Repeat-

masked region by at least 48 nt, and were in the appropriate

orientation to recognize sense transcripts were selected and

annotated with the Repeatmasker class, family and element

corresponding to that genomic region. Tables containing the

repetitive element probes for each Illumina Beadchip were

imported into R [63] and used to annotate Illumina Beadchip

gene expression data. These annotation tables are available with

the online version of this paper (Datasets S1, S2, S3).

Pre-processing of Illumina Beadchip Gene Expression
Data

Illumina Beadchip gene expression data for Eset shRNA knock-

down ES cells were downloaded from the NCBI GEO repository

[38], accession number GSE17439 [42]. All analysis of Illumina

Mouse Whole Genome WG-6 Beadchip microarrays was performed

on probe-level data. Probe-level expression data were background-

subtracted in Illumina Beadstudio, then imported into the lumi

Bioconductor package [64] in R. The data were then log-transformed,

and quantile-normalized in lumi. The expression data and present/

absent calls were exported from lumi and any probes that were called as

absent in all samples in the experiment were removed from the dataset.

Repeat Annotation of Affymetrix Probes
These Affymetrix Murine Genome U74Av2 and Mouse

Expression 430 2.0 GeneChips contain ,12,000 and ,45,000

probesets respectively, with each probeset containing ,11

different 25 nt probes targeting a specific transcript. The DNA

sequences of the 25-mer probes used in Affymetrix Mouse Gene

Expresson Arrays were downloaded from the manufacturer’s

website [65]. For each version of these arrays the probe sequences

were used to BLAT search the mm9 release of the mouse genome

by individual chromosome. The BLAT search parameters were -

minIdentity = 95 -tileSize = 11 -stepSize = 5 -repMatch = 110. The

genome co-ordinates of the top hit (with a 24/25 nt identity

minimum cut-off) for each probe sequence were compared to the

co-ordinates of the Repeatmasked regions of the mm9 release of

mouse genome using a Perl script. Probes that overlapped a

Repeatmasked region by at least 24 nt, and were in the

appropriate orientation to recognize sense transcripts, were

selected and annotated with the Repeatmasker class, family, and

element corresponding to that genomic region. Tables containing

the repetitive element probes for each Affymetrix array platform

were imported into R. These annotation tables are available with

the online version of this paper (Datasets S4, S5).

Pre-processing of Affymetrix Microarray Gene Expression
Data

Affymetrix Mouse Gene Expression data for Ring1B2/2, Eed2/2,

Ring1B2/2 Eed2/2, Hdac12/2 and Dnmt TKO ES cells were

downloaded from the NCBI GEO repository [38], accession

numbers GSE19076 [26], GSE20177 [41] and GSE5583 [43].

Raw Affymetrix data were imported into the affy Bioconductor

package [66] in R. Probe expression values were background-

corrected using the robust multi-array average algorithm [67] in

affy. Expression values for the perfect match probes were

extracted from affy, log-transformed, then quantile-normalized.

Summation across probesets was not performed so that the

Affymetrix data could be analysed at the probe level. Probes

that were expressed at more than the sample median level in at

least half the arrays for one experimental condition in a dataset

were considered to be present [68]. Absent probes were

removed from the dataset to simplify the analysis. Some probe

sequences in the Affymetrix Gene Expression platform are

present in more than one probeset, and these redundant probes

are present at multiple locations in the array. Therefore some

25-mer DNA sequences are represented by more than one

probe in the Affymetrix datasets.

Identification of Differentially Expressed Probes in
Illumina and Affymetrix Microarray Data

For both Illumina and Affymetrix data, the R Bioconductor

package limma [69] was used to identify probes that were expressed

at different levels in experimental and control conditions by linear

modeling. The Benjamini-Hochberg method was used to correct

for multiple testing in limma, and adjusted p-values of #0.01 were

considered to be statistically significant. Tables corresponding to

all expressed probes in the experiment, and probes that statistically

changed during the experiment, were repeat-annotated in R using

the tables generated in sections 2.5 and 2.7. The resulting data

were graphed using R. MA-plots show the log fold change in

expression of each probe, plotted against the average expression of

that probe in the dataset. Probability density functions for the

microarray data were generated by kernel density estimation in R.

Phylogenetic Analysis
Close relatives of MMERVK10C were found by using

MMERVK10C as a template for Genewise [70] to predict pol

and pro sequences in the Repbase database of repetitive DNA

sequences [3]. Multiple protein alignment was performed using

ClustalW [71], and phylogenetic trees were constructed using

MEGA4 [72] to apply the neighbour-joining method [73].

Phylogenies were based on the proportion of amino acid sites at

which sequences are different, with pairwise deletion to remove

gaps in alignments as the need arises. The reliability of each

interior branch of a given topology was assessed using the

bootstrap interior branch test with 1000 bootstraps.

Assembly of Repeatmasker Genomic Hits into Contigs
The co-ordinates of the Repeatmasked regions of the mm9 release

of the mouse genome were downloaded from the UCSC genome

browser [62], and regions Repeatmasked for MMERVK10C-

int or IAP-int were extracted. The hits were ordered by their co-

ordinates and adjacent hits that were in the same orientation on the

same chromosome, were collinear on the consensus sequence, and

were separated by less than the length of the consensus sequence were

assembled into the same contig. IAP-int contigs that had IAP LTRs

located within 50 bp of both ends of the contig were identified for

further analysis. A similar approach was used to identify RLTR10-

flanked MMERVK10C contigs, with RLTR10 genomic loci greater

than 250 bp included in the assembly.

LTR Retrotransposon Enrichment in ChIP-seq Data
Hdac1 ES cell ChIP-seq and control ES cell whole cell extract

datasets were downloaded from the GEO repository (accession

number GSE27844). LTR retrotransposon enrichment was cal-

culated using the Repeat Enrichment Estimator web application

LTR Retrotransposon Silencing in Mouse ES Cells
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[25], and data for either all IAP LTR sequences, or all RLTR45

LTR sequences, were combined.

Supporting Information

Dataset S1 Tab-delimited text file containing complementary

repeat probes in Illumina Mouse 6V1 Beadchips.

(TXT)

Dataset S2 Tab-delimited text file containing complementary

repeat probes in Illumina Mouse 6V1.1 Beadchips.

(TXT)

Dataset S3 Tab-delimited text file containing complementary

repeat probes in Illumina Mouse 6V2 Beadchips.

(TXT)

Dataset S4 Tab-delimited text file containing complementary

repeat probes in Affymetrix Murine Genome U74Av2 GeneChips.

(TXT)

Dataset S5 Tab-delimited text file containing complementary

repeat probes in Affymetrix Mouse430 2.0 GeneChips.

(TXT)

Figure S1 PDF showing a schematic diagram of Repeatmasker

organization of murine repetitive elements into classes and

families. The 1221 different consensus sequences for murine

repetitive elements are categorized into 45 families within 16

classes by Repeatmasker. The organization of the repetitive

elements most relevant for this study are shown schematically in

the figure, and the number of consensus sequences belonging to

each class and family are indicated. Examples of LTR retro-

transposons belonging to each of the four main LTR retro-

transposon families are also shown.

(PDF)

Figure S2 PDF showing the sequences of primers used for qRT-

PCR in this study.

(PDF)
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