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Introduction

This study is intended for evolutionary

biologists interested in strategies for the

simulation of molecular data under diverse

evolutionary scenarios. It begins with a

brief background on simulation approach-

es and describes some of the most

important simulators developed to date.

Then, several practical examples for

simulating particular scenarios are pre-

sented, and finally, details are given on a

variety of relevant applications of simulat-

ed data. Overall, this study provides a

practical guide for applying simulation

techniques to real world problems in

molecular evolution.

The Importance of Computer
Simulations in Molecular
Evolution

A commonly used methodology to

mimic the processes that occur in the real

world is to perform computer simulations

[1]. Computer simulations allow us to

understand which patterns may dramati-

cally alter a particular system and can be

used to study complex processes, including

those that are analytically intractable.

Furthermore, the simulation of multiple

replicates with stochasticity may provide

the variability required to study numerous

processes, such as those often found in

evolution. In molecular evolution, the

simulation of genetic data has been

commonly used for hypothesis testing

(e.g., [2]), to compare and verify analytical

methods or tools (e.g., [3–5]), to analyze

interactions among evolutionary processes

(e.g., [6]), and even to estimate evolution-

ary parameters (e.g., [7]). Consequently, a

wide variety of tools have been developed

to simulate sequence data under different

substitution models of evolution, but also

under different evolutionary processes

such as selection, recombination, demo-

graphics, population structure, and migra-

tion. In recent years, new programs have

been developed to handle very complex

scenarios (e.g., [8,9]) and efficient algo-

rithms have been incorporated in order to

accommodate large datasets in response to

the increasing amount of genome-wide

data (e.g., [10]). Thus, the importance of

simulations continues to grow in order to

deal with these new challenges.

Approaches for the Simulation
of Molecular Data

After the simulation of evolutionary

histories (see Box 1), or when just a rooted

tree or network is given, a sequence

assigned to the most recent common

ancestor (MRCA, or grand MRCA

[GMRCA] in the case of networks) can

be evolved along branches according to a

substitution model of evolution, in order to

simulate sequences for all internal and

terminal nodes (see an example in

Figure 1). A common procedure consists

of applying continuous-time Markov mod-

els defined by 464, 20620, and 61661

matrices of substitution rates for nucleo-

tide, amino acid, and codon (note that stop

codons are ignored) data, respectively

(details in [11]). This methodology is very

flexible and allows for heterogeneous

evolution where different sites and branch-

es can be evolved under different substi-

tution models (e.g., [12]). These aspects

suggest in practice two important consid-

erations. Firstly, simulations of nucleotide

sequences are much faster than simula-

tions of coding or amino acid sequences

due to the dimension of the substitution

matrices. Secondly, a large number of

branches (derived from a large number of

taxa or recombination events) leads to

slower simulations due to the need to re-

calculate the matrix for each branch.

Main Software Implementations

A number of programs have been

developed to simulate nucleotide, codon,

and amino acid sequences evolution.

Although several studies have already

reviewed these software tools (e.g., [13–

17]), such revisions quickly become obso-

lete due to the emergence of new simula-

tors, as noted in [14]. Table 1 shows an

updated list of user-friendly and common-

ly used programs available to date. Next,

the most interesting software from a

practical perspective is briefly described.

When attempting to simulate a complex

evolutionary scenario, several programs

developed under the forward-time ap-

proach may be useful (see Table 1).

GenomePop [18] and SFS_CODE [19] seem

the most comprehensive tools with imple-

mentations of population structure, demo-

graphic particularities, recombination, and

selection, but they do not allow simula-

tions under amino acid substitution mod-

els. The programs SPLATCHE2 [9] and

AQUASPLATCHE [20] are able to simu-

late nucleotide data under spatially (using

land or freshwater maps, respectively) and

temporally explicit demographic models.

A disadvantage of these programs is that

only two DNA substitution models are

available, note that other programs such as

SFS_CODE or SimuPop [21] implement all

DNA substitution models (see Table 1),

which may be problematic when trying to

mimic genome-wide data (see [22]).

If our target scenario can be represented

by the coalescent, a variety of coalescent-
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based programs are able to simulate

nucleotide data (see Table 1). Neverthe-

less, only CodonRecSim [23], Recodon [24],

and NetRecodon [8] can simulate coding

sequences in the presence of recombina-

tion. The first two of these programs force

recombination breakpoints to occur be-

tween codons while NetRecodon does not

(see [8]). On the other hand, fastsimcoal

[10], Recodon, and NetRecodon allow simula-

tions with sampling at different times,

which can be very interesting for the joint

analysis of ancient and modern DNA [25].

When a phylogenetic history (one or

several trees) is given, numerous programs

exist to directly simulate sequences along

such history (see Table 1, phylogenetic

class). One of the most applied programs is

Seq-Gen [26], which implements several

nucleotide and amino acid substitution

models. The program indel-Seq-Gen 2.0

[27] extended Seq-Gen to include diverse

indel (insertion and deletion) models.

Almost at the same time as Seq-Gen, the

program EVOLVER (from the PAML

package [28]) was released, which addi-

tionally allowed the simulation of coding

data. Recently, INDELible [12] and Phylo-

Sim [29] implemented all those capabili-

ties, and in addition they included codon

models where dN/dS (nonsynonymous/

synonymous rate ratio) may vary across

sites and/or branches. INDELible is very

user-friendly but PhyloSim was implement-

ed in R (language for statistical computing,

[30]) and requires some programming

knowledge.

Practical Examples

In this section I outline five hypothetical

practical examples, of the fast simulation of

genetic sequences under particular evolu-

tionary scenarios, which will be of general

interest. The reader may notice that some

scenarios can be solved using more than

one approach, but I base my suggestions

here on how appropriate, flexible, and user-

friendly I think the simulators are.

I) Nucleotide Data under Natural
Selection

This scenario is commonly applied to

identifying targets of positive selection in

real datasets (e.g., [31,32]). To my knowl-

edge, there is no coalescent framework

available to simulate data under natural

selection whilst using Markov DNA sub-

stitution models, which may bring realistic

information because not necessarily every

mutation occurs at a different site in the

sequence. However, two programs can be

combined to quickly perform this task.

First, we can simulate coalescent trees

using the programs msms [33] or SelSim

[34], although both tools are limited to

simulation of a single locus under selec-

tion. Then, nucleotide sequences can be

evolved along those trees using Seq-Gen.

Another possibility is to apply a forward-

time simulator that implements complex

selection and all DNA substitution models

(e.g., SFS_CODE).

II) Coding Data with Intracodon
Recombination

Simulations with recombination break-

points that occur within codons are more

realistic since these particular events occur

2/3 of the time that a recombination

happens, assuming a spatially uniform

distribution. Therefore, these events might

exert undue influence on other parameter

estimates since current analytical phyloge-

netic methods using codon models and

recombination assume intercodon recom-

bination. However, such effects have not

been observed; in particular, dN/dS

estimations were not altered (see [8]), so

this should be studied further. The fastest

procedure for the simulation of intracodon

recombination is to directly apply the

program NetRecodon. Alternatively, Genome-

Pop can also perform this simulation under

the forward approach. This scenario was

applied in [35].

III) Amino Acid Data with Indels and
Under Recombination

This is a very specific scenario, but one

that can also be very interesting for

readers due to its complexity and the

multiple possible options for its simula-

tion. For instance, this scenario could be

useful for testing phylogenetic tree recon-

struction (or recombination detection)

methods from amino acid datasets that

evolved under recombination (e.g., [36]).

As far as I know, there is no single tool

available that can simulate this scenario.

My suggestion is to first simulate coales-

cent trees (a tree for each recombinant

fragment) by the program ms, and then

amino acid sequences with indels can be

evolved on the respective trees using

INDELible.

Box 1. Simulation of Evolutionary Histories

There are two main approaches commonly used to simulate evolutionary
histories in population genetics: the forward in time (forward-time) and the
coalescent (backward-time). Here I describe the main particularities of these
approaches, considering goals and limitations for the simulation of diverse
evolutionary scenarios.

The forward-time approach simulates the evolutionary history of an entire
population from the past to the present and allows the success of a lineage to be
a function of the genotype (see reviews, [13,14,80]). Thus, these simulations
consider all ancestral information and therefore can be useful to fully study the
subsequent evolutionary process of the population, including gene–gene
interactions, mating systems, complex migration models (such as sex biased
dispersal or long-distance dispersal), or complex selection (e.g., [42,81,82]);
beginners may explore these basic concepts using educational simulations
[83,84]. Unfortunately, because the whole population history is simulated,
forward simulations require generally extensive computational cost, although
recently significant improvements have been achieved in this concern (e.g., [85]).

On the other hand, the coalescent approach describes a backwards in time
genealogical process of a sample of genes to a single ancestral copy (see reviews
[86,87]). The coalescent allows the simulation of a limited set of scenarios, namely
population size changes (e.g., [88]), population structure and migration (e.g., [89]),
recombination (e.g., [90]), and selection (e.g., [91]). A key aspect of the coalescent
is that the history of the whole population is not required (so it is not actually
simulated) and, consequently, it is generally computationally faster than the
forward-time approach. It is important to remember, however, that the efficiency
of forward-time simulations is irrespective of the amount of recombination or
selection, in contrast to coalescent simulations that are highly sensitive to such
processes.

Coalescent and forward-time approaches can be considered complementary [13].
In fact, recently two new methods have incorporated both approaches for fast
simulations of complex scenarios [9,33]. In conclusion, one should keep in mind
that the choice of the simulation approach may depend on the complexity of the
target scenario, as well as on the required computational cost for the simulation.
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IV) Long Genomic DNA Regions
under Recombination

The amount of genomic data available

increases rapidly and as a consequence,

plenty of genetic studies focusing on large

genomic regions have appeared (e.g., [37]).

As expected, such studies require robust

and memory-efficient simulators [10,38].

One of them is fastsimcoal, which allows for

efficient simulations because it is based on a

simplification of the standard coalescent

with recombination (the sequential Mar-

kovian coalescent [SMC] algorithm [39]).

Therefore, it seems to be an appropriate

framework to simulate this scenario.

V) Coding Data under a Spatial and
Temporal Range Expansion

Spatial and temporal range expansions

have occurred repeatedly in the history

of most species and promote genetic

consequences that are different than

those produced by pure demographic

expansions [40]. In addition, other

spatiotemporal processes, such as range

contractions and range shifts (usually

produced during climate changes) or

long-distance dispersal events, can also

affect molecular diversity [41,42]. Using

SPLATCHE2, trees can be simulated

under spatial and temporal range expan-

sion in a straightforward manner. Then,

coding data can be simulated over those

trees by INDELible.

Applications of Simulated
Genetic Data

Computer simulation is a powerful tool

in population genetics with a rich variety

of applications. Here I show some inter-

esting published applications.

I. Hypothesis Testing

1. The effect of recombination on ances-

tral sequence reconstruction.

Figure 1. Example of nucleotide evolution on the ancestral recombination graph. Note that this ARG contains a recombination event with
breakpoint at position 6. Starting from a sequence assigned to the GMRCA, substitutions (marked with black circles) occur forward in time. Non-
ancestral material (material that does not reach the sample) and its substitution events are shown in grey.
doi:10.1371/journal.pcbi.1002495.g001

PLoS Computational Biology | www.ploscompbiol.org 3 May 2012 | Volume 8 | Issue 5 | e1002495



1. Recently, Arenas and Posada [35] tested

if recombination can affect ancestral

sequence reconstruction (ASR). They

simulated nucleotide, codon, and amino

acid data with NetRecodon and they

observed that recombination biases the

reconstruction of ancestral sequences,

regardless of the method or software

used. This effect was shown as a

Table 1. The main software used to simulate genetic sequences under nucleotide, codon, and amino acid substitution models.

Program Class Process Substitution Model Rate VariationIndels OS Ref.

SIMCOAL2 Coalescent D, Pm, R Nt: JC, K2P No No Linux, Win [65]

Fastsimcoal Coalescent D, Pm, R Nt: JC, K2P No No Linux, Mac,
Win

[10]

Serial Simcoal Coalescent D, Pm Nt: JC, K2P No No SC, Mac, Win [66]

mlcoalsim Coalescent D, Pm, R Nt: JC, K2P G, I No All [67]

TREEEVOLVE Coalescent D, Pm, R Nt: All G No SC, Mac [68]

CodonRecSim Coalescent R Codc: GY94 No No SC, Win [23]

Recodon/NetRecodona,b Coalescent D, Pm, R Nt: All; Codc: GY94 G, I No All [8,24]

SPLATCHE2 Forward,
Coalescent

D, Pm, R Nt: JC, K2P No No Linux, Win [9]

AQUASPLATCHE Forward,
Coalescent

D, Pm Nt: JC, K2P No No Linux, Win [20]

GenomePop Forward D, Pm, Ra, S Nt: JC, GTR; Cod: MG94 No No SC, Linux, Win [18]

SFS_CODE Forward D, Pm, R, S Nt: All; Cod: Ntd G Yes All [19]

SimuPop Forward D, Pm, R, S Nt: All No Yes All [21]

EvolSimulator Birth-death
processe

D, Pm, S Nt: All; Cod: Ntd; Aa: user defined User definedk No SC [69]

INDELible Phylogenetic - Nt: All; Cod: GY94f, EM; Aa: 15 EMg G, I Yes All [12]

EVOLVER Phylogenetic - Nt: All; Cod: GY94; Aa: 14 EMh G, I No All [28]

indel-Seq-Gen vs 2.0 Phylogenetic - Nt: All; Cod: Ntd; Aa: 6 EM G, I Yes All [27]

Seq-Gen Phylogenetic - Nt: All; Cod: Ntd, Aa: 6 EMi G, I No All [26]

EvolveAGene 3 Phylogenetic - Cod: E. coli spectra No Yes All [70]

DAWG Phylogenetic - Nt: All G, I Yes All [71]

MySSP Phylogenetic - Nt: All G Yes Win [72]

SISSI Phylogenetic - Nt: All; Cod: Ntd,j User definedk No All [73]

ROSE Phylogenetic - Nt: All; Aa: PAM G Yes SC [74]

SIMGRAM/SIMGENOME/GSIMULATOR Phylogenetic - Nt: All; Cod: EM; Aa: Secondary
structure

No Yes SC [75]

ALF Phylogenetic - Nt: F84, HKY, TN93, GTR; Cod: GY94
and EM; Aa: 6 EMl

G, I Yes All [76]

SIMPROT Phylogenetic - Aa: PAM, JTT, PMB G Yes Linux, Win [77]

PhyloSim Phylogenetic - Nt: All; Cod: GY94f, EM; Aa: 9 EMm G, I Yes R [29]

‘‘Class’’ includes phylogenetic (where a genealogy is already given from the user), forward, birth-death, and coalescent approaches. ‘‘Process’’ shows the implemented
evolutionary scenarios: ‘‘D’’, ‘‘Pm’’, ‘‘R’’, and ‘‘S’’ indicate demographics, population structure and migration, recombination, and selection, respectively. ‘‘Substitution
model’’ refers to substitution models based on nucleotide ‘‘Nt’’, codon ‘‘Cod’’, and amino acid ‘‘Aa’’ sequences; indeed, ‘‘Nt: All’’ indicates all nucleotide substitution
models developed so far (JC, …, GTR) and ‘‘EM’’ indicates empirical model. ‘‘Rate variation’’ indicates whether different sites can be evolved under different rates (G:
gamma distribution; I: proportion of invariable sites). ‘‘Indels’’ indicates the consideration of insertion and deletion events. ‘‘OS’’ shows the availability of executable files
and/or source code ‘‘SC’’ for different operative systems (‘‘All’’ means that Macintosh, Windows, and Linux executables are available), and ‘‘R’’ means the R language for
statistical computing. ‘‘Ref’’ indicates the reference of publication. Although many more software packages exist, here I have selected, from my point of view, those
programs most commonly used, most user-friendly, and which implement the most diverse range of evolutionary scenarios.
aIntracodon recombination is also allowed in NetRecodon and GenomePop.
bThe ARG can be exported from NetRecodon and can be then visualized and analyzed using NetTest [78].
cUnder codon models, v can change across codons.
dCoding sequences are simulated by nucleotide substitution models, avoiding stop codons.
eEvolSimulator simulates phylogenetic histories under the birth-death model of speciation and extinction [79].
fUnder codon models, v can change across codons and branches.
gAmino acid models implemented in INDELible: BLOSUM62, CpREV, DAYHOFF, DAYHOFF (DCMUT), HIVb, HIVw, JTT, JTT (DCMUT), LG, mtArt, MTMAM, mtREV, RtREV, VT,
and WAG.
hAmino acid models implemented in EVOLVER: CpREV, CpREV64, DAYHOFF (DCMUT), DAYHOFF, GRANTHAM, JTT (DCMUT), JTT, LG, miyata, mtArt, MTMAM, mtREV24,
mtZoa, WAG.
iAmino acid models implemented in Seq-Gen: BLOSUM62, CpREV24, JTT, mtREV, PAM, and WAG.
jSimulation of codons with structural dependency among sites.
kThe rate of variation among sites can be introduced from the user.
lAmino acid models implemented in ALF: PAM, JTT, WAG, LG, CustomP, GCB.
mAmino acid models implemented in PhyloSim: CpREV, JTT, JTT (DCMUT), LG, mtArt, mtMam, mtREV24, mtZoa, WAG.
doi:10.1371/journal.pcbi.1002495.t001
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consequence of incorrect phylogenetic

tree reconstructions when recombination

is ignored [43]. Note that this effect is

crucial for numerous ASR-based studies

(e.g., [44]).

2. The effect of recombination on selec-

tion tests.

2. Tests for identifying selection (based on

dN/dS) are frequently used in different

species, including highly recombining

viruses and bacteria (e.g., [45]). There

is, however, an important pitfall of such

tests in the presence of recombination.

In the studies [8,23] authors simulated

coding data under several heteroge-

neous codon models [46] and different

levels of recombination. Then, they

applied likelihood ratio tests (LRTs) for

model choice. Results showed a weak

impact of recombination on the esti-

mation of global dN/dS but a strong

effect at the local level by inflating the

number of positively selected sites.

Simulations were carried out using

CodonRecSim and NetRecodon.

3. Testing criteria for substitution model

selection.

3. A common step in phylogenetics con-

sists of the statistical selection of a DNA

substitution model that best fits the

data [47,48]. Currently, this model

selection can be performed using

several criteria, namely hierarchical

and dynamic LRTs, Akaike and Bayes-

ian information criterion (AIC and

BIC, respectively), and the decision-

theoretic approach (DT). Although

AIC and BIC showed advantages over

LRTs [47], the best criterion among all

other options remained unclear. Re-

cently, Luo et al. [49] addressed this

point by extensive simulations of nu-

cleotide data (using PAML [28] to

simulate four tree topologies and Seq-

Gen to evolve DNA sequences under a

wide set of substitution models) and

coding data (using Recodon). Then, by

statistical analysis they concluded that

BIC and DT approaches favor accu-

rate model selection.

II. Verification of Analytical Methods

1. Validation of a method for large

phylogenetic tree reconstruction.

1. One of the most well-established pro-

grams for phylogenetic tree reconstruc-

tion is PHYML [50]. As with most

analytical tools, PHYML required thor-

ough validation through computer sim-

ulations. In particular, 5,000 random

phylogenies were simulated according

to the standard speciation process (see

[51]), and then DNA sequences were

evolved on those phylogenies using Seq-

Gen. The program showed a topological

accuracy similar to that from other

maximum likelihood programs, but it

strongly reduced computing time.

2. Validation of a method for the detec-

tion of recombinant breakpoints.

2. Recombination detection methods are

fundamental for the analysis of genome

dynamics, genetic mapping, and phylo-

genetic methods. As a result, a variety of

methods for recombination detection

exist (see [52]). One of them was

recently developed by Westesson and

Holmes [5] for the analysis of whole-

genome alignments. For its validation,

ancestral recombination graphs (ARGs)

were simulated using Recodon, then

marginal trees with identical topologies

were excluded and DNA sequences

were simulated on the remaining trees

using Seq-Gen. The method accurately

detected recombinant breakpoints even

for genome-size datasets.

III. Study of Complex Evolutionary
Processes

1. Principal component analysis of hu-

man genetic diversity across Europe.

1. A controversial topic that sparked

debate in recent years was the inter-

pretation of gradients of population

genetic variation across Europe de-

rived from principal component anal-

ysis (PCA) [53–56]. Briefly, while

initially Cavalli-Sforza et al. [56]

interpreted principal component (PC)

gradients only as a consequence of

human ancestral expansions, Novem-

bre and Stephens [53] showed that

similar PC gradients may arise from

diverse spatial genetic patterns under

equilibrium isolation-by-distance mod-

els. Recently, François et al. [55]

carried out simulations of DNA data

using SPLATCHE2 in order to mimic

the Neolithic farmer expansion across

Europe taking into account various

levels of interbreeding between farmer

and resident hunter-gatherer popula-

tions (see Figure 2). They concluded

that demographic and spatial popula-

tion expansions often lead to PC

gradients that are perpendicular to

the direction of the expansion as a

consequence of the allele surfing

phenomenon [57].

IV. Estimation of Evolutionary
Parameters

1. Coestimation of evolutionary parame-

ters using approximate Bayesian com-

putation.

1. Approximate Bayesian computation

(ABC) is a recent and useful approach

for the inference in evolutionary genet-

ics (see [58]), based on computer

simulations. It provides a robust alter-

native for those analyses where the

likelihood function cannot be evaluated

or is computationally too expensive. An

interesting example studied by Wilson

et al. [59] applied ABC to coestimate

several evolutionary parameters (such

as mutation, dN/dS, and recombina-

tion rates) from coding data of the

bacteria Campylobacter jejuni. Although

the simulator used was not published,

such a scenario could be simulated

using e.g., Recodon. In addition, Laval et

al. [60] also applied an ABC-based

approach to coestimate, assuming a

particular model of human evolution,

important historical and demographic

parameters like the onset of the African

expansions and the out-of-Africa mi-

gration, as well as the current and

ancestral effective population sizes of

Africans and non-Africans. Here the

simulation of DNA data was performed

using SIMCOAL2.

The Future of Computer
Simulations

Although current software available can

simulate a wide set of evolutionary sce-

narios, some limitations still remain con-

cerning computational costs and particular

complex models. In some cases the

computational time is crucial (e.g., ABC

studies that require millions of simulations

to cover a wide range of parameter space),

and running simulations in parallel on a

cluster can help alleviate the computation-

al time. On the other hand, several

complex scenarios that interest evolution-

ary biologists are still difficult to simulate.

An example is the simulation of molecular

evolution with dependence among sites

(coevolving sites, e.g., [61]). Here, al-

though some models were already devel-

oped (see [62]), they could not be

extensively applied in simulations due to

intractable computational costs derived

from the calculation of diverse structural

energies (like those used in [63]). Another

challenging scenario is the simulation of

coding data under natural selection, but

where the signatures of natural selection
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directly influence the synonymous and

nonsynonymous substitutions (see [64]).

There is a permanent need of software

for the simulation of molecular data due to

the emergence of complex scenarios and

the requirement of fast simulations. Thus,

I expect a fruitful future for this basic and

applied area of research.
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