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Abstract: In a wide range of
biological studies, it is highly desir-
able to visualize and analyze three-
dimensional (3D) microscopic im-
ages. In this primer, we first intro-
duce several major methods for
visualizing typical 3D images and
related multi-scale, multi-time-
point, multi-color data sets. Then,
we discuss three key categories of
image analysis tasks, namely seg-
mentation, registration, and anno-
tation. We demonstrate how to
pipeline these visualization and
analysis modules using examples
of profiling the single-cell gene-
expression of C. elegans and con-
structing a map of stereotyped
neurite tracts in a fruit fly brain.

Introduction

Multidimensional microscopic image

data sets (Figure 1) are widely used in

modern biology studies, especially in

screening various phenotypic data. Ana-

lyzing microscopic data is highly useful

and fruitful, such as observing the dynam-

ics of microtubule spindles during mitosis

[1], profiling gene expression of cells [2–

4], and reconstructing the three-dimen-

sional (3D) morphology of neurons [5–7].

Image visualization also enables effective

development of high-content high-

throughput bioimage informatics tech-

niques [8] to extract biologically meaning-

ful knowledge from microscopic images. It

is also critical for visualizing raw images

and respectively processed results (in terms

of surface objects).

In this primer, we briefly introduce the

basic concepts and methods of 3D micro-

scopic image visualization and analysis,

which are the two core components for a

number of bioimage informatics applica-

tions. We emphasize fluorescent micro-

scopic images as examples, and occasion-

ally also mention other types of image data

in our discussion. On the other hand, the

essential visualization and analysis meth-

ods introduced here can be applied to a

wide range of data, including many of

those not explicitly discussed. Due to the

length limitations of this educational note,

here we do not intend to comprehensively

survey software tools or biological appli-

cations, which can be found in a few

previous reviews [8–11].

Visualization of 3D Microscopic
Images

Visualizing 3D microscopic images

helps better understand the data. It also

helps determine appropriate analysis

methods or parameters. In addition,

visualizing analysis results on top of, or

side-by-side with, the input image(s) is

critical for checking the meaningfulness of

an analysis and making necessary correc-

tions (‘‘proof-editing’’ [12]).

Two-dimensional (2D) cross-sectional

display (Table 1) of a 3D image stack is still

the most prevailing method for biologists to

observe 3D data sets, probably due to its

simplicity. ImageJ [13] (a newer variant

bears the name Fiji), a popular tool to

visualize and analyze microscopic images,

uses mainly the z-section display to visualize

3D images, although various additional

ImageJ modules or plugins were also

developed to render 3D views. Tri-view

display (Table 1) is a natural extension of

the z-slice display of 3D data, displaying all

XY, XZ, and ZY cross-sectional planes at

the same time. Cutting through the volu-

metric data from an arbitrary angle and

displaying the 2D image data on this cutting

plane is also useful. These features have

been incorporated in other scientific visual-

ization software packages (e.g., Vaa3D

(previously known as V3D [14]) or GoFi-

gure [15]). Electronic microscopic (EM)

images typically have a large cross-sectional

size in the XY plane. It is particularly

convenient to view EM images using 2D or

tri-view display methods, such as in the

ImageJ-based software TrakEM [16].

However, cross-sectional views are not

able to visualize the 3D information of

volumetric images. Visualizing the complete

3D information in a volumetric image

requires seeing (a) all individual image

voxels’ (pixels) intensity, and (b) the 3D

spatial adjacency information of all voxels.

However, since normally a rendered

image is a 2D projection to a computer

screen and our retina, it is hard to meet

both requirements at the same time. Tiling

all image voxels on a single 2D plane will

not appropriately display the 3D spatial

adjacency information. On the other

hand, in a 3D volumetric rendering, while

the spatial adjacency relationship is re-

tained, not all image voxels’ intensity is

visible, as voxels near the viewer will

occlude far-away voxels. Therefore, selec-

tively discarding the non-important voxel

intensity information is the central trick

used in 3D volumetric image visualization.

3D image visualization calls for depth-

blended views from any angle. Maximal

(or minimal) intensity projection (MIP or

mIP) and alpha-value blended views

(Table 1) are two main types of methods

to display 3D data. MIP is mainly used to

visualize high-intensity structures within

volumetric data. This is the typical situation

for most fluorescent microscopic (FM)

images, e.g., GFP-labeled neuron struc-

tures. Usually, MIP contains no shading

information; depth and occlusion informa-

tion are not visible. Structures with higher

intensity value lying behind a lower valued

object appear to be in front of it. Thus, MIP

may not accurately display the actual 3D

relationships of structures. While alpha-

blended views can display the depth

information more meaningfully, the most

common solution is to animate or interac-

tively change the viewpoint while viewing
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using MIP (or even alpha-blended views).

Therefore, a real-time 3D renderer for

large datasets is highly desirable. This often

needs both good hardware (i.e., high-

throughput graphics card with large mem-

ory) and optimized software (e.g., to

optimize the OpenGL-based graphics ren-

dering). Vaa3D (http://vaa3d.org) meets

this requirement and has been used in

Figure 1. Examples of 3D microscopic images. (a) A confocal image of kinetochores (EGFP labeled) and chromosomes (histone-mCherry
labeled) used in studying the first meiotic division in mouse oocytes [17]. (b) A confocal image of the first larval stage of C. elegans [18]. Gray: DAPI
labeled nuclei; yellow: myo3:EGFP. (c) A confocal image of an adult fruit fly brain [19]. Gray: NC82 labeled neuropil; green: ato-GAL4 (courtesy of Julie
Simpson). (d) A serial section electron microscopic image of mouse visual cortex [20]. (e) A digital scanned laser light sheet fluorescence microscopic
image of a Medaka juvenile [21]. Green: acetylated tubulin immuno-staining of the developing brain and spinal cord.
doi:10.1371/journal.pcbi.1002519.g001

Table 1. Often-used visualization methods for multi-dimensional microscopic image data.

Visualization mode Dimension Often Applied to Pros Cons Example Figure(s)

Cross-sectional view(s) 2D FM/WM/EM Fast Not 3D —

Tri-view 2D FM/EM Fast Partial 3D 3a

Maximum intensity projection (MIP) 3D FM 3D Hardware-limited (HL) 1a, 1b, 1c, 1e, 2b

Alpha-value blending 3D FM/EM Surface-display effect HL 1d, 2a

Multi-channel/multi-color
3D (MC-3D)

4D FM 3D Need color-blending
(CB), HL

1a, 1b, 1c, 1e, 2b

Multi-time-point MC 3D (MT-MC-3D) 5D FM 3D CB, HL 2b

Multi-scale MT-MC 3D
(MS-MT-MC-3D)

6D FM Hardware-friendly,
3D

Need 3D interaction
of image content

2a

3D surface-object and
image rendering

Heterogeneous
3D/4D/5D/6D

FM/EM Allow proof-
reading/editing

HL 2a, 4b

CB, color-blending; EM, electron microscopic images; FM, fluorescent microscopic images (often laser-scanning-microscopic images); HL, hardware-limited; WM, wide-
field light microscopic images.
doi:10.1371/journal.pcbi.1002519.t001
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recent large-scale 3D image visualization

applications, e.g., the Janelia Fly WorkSta-

tion that currently screens more than 50

terabytes of fruit fly brain images (private

communication with the Janelia FlyLight

project).

In many cases, each voxel in a 3D

microscopic image could have multiple

color components that correspond to

various features of the biological entities

(e.g., different fluorephores with different

wavelengths in fluorescent imaging). Visu-

alizing multi-channel (MC) 3D image

stacks (thus four-dimension [4D], see

Table 1) requires blending the data in

different channels to the RGB space for

rendering. When the number of channels,

N, is not larger than 3, a simple mapping,

e.g., channel 1 to Red or Magenta, channel

2 to Green, and channel 3 to Blue, is often

used. When N.3, e.g., in the cases of

dozens of co-localized antibody-probes, or

thousands of 3D registered image stacks

organized as different channels [19], a

spreadsheet-based color-blending manager

(e.g., the one provided in Vaa3D) will be

critical for effective visualization.

Live imaging experiments produce

multi-time-point (MT) multi-color 3D

image series (thus five-dimension [5D],

see Table 1). In addition, when an image is

large (e.g., 20 Gbytes/image), it is usually

impractical and also unnecessary to load

all image voxels in the computer memory

and graphics card to visualize. Thus, there

is a need to visualize an image dataset at

multiple scales. The MT-MC-3D data

sets, and multi-scale (MS) rendering (thus

six-dimensional visualization [6D], see

Table 1), impose significant challenges to

current visualization hardware and soft-

ware, due to the limited bandwidth

between hard drives, computer memory,

and graphics card. When the entire image

series could be loaded in computer

memory, Vaa3D could be used to produce

real-time 5D or 6D rendering (Figure 2).

Yet, in general they are unsolved problems

for terabyte-sized image data sets.

Surface-object rendering (Table 1) is a

powerful way to visualize image analysis

results (e.g., image segmentation) and

provides ways for quantitative measure-

ment or editing. Isosurface-based mesh-

extraction and rendering has also been

used in 3D biomedical image visualization.

However, commonly used algorithms, e.g.,

marching cubes [22], are computationally

expensive. In addition, isosurfaces can

hardly capture the internal structures in

a 3D image.

Interactive visualization techniques are

important for microscopic image analysis.

Through interactions, users can collect

much more information of the multi-

dimensional data than passively observing

the 3D rendered data. Interacting with

3D rendered surface-objects is straight-

forward. It is more difficult to directly

interact with 3D rendered volumetric

data to define interesting 3D locations,

3D curves, and other objects. The

concept of 3D-WYSIWYG (what you

see is what you get) was recently proposed

in the Vaa3D system to define an

unambiguous 3D location (point) using

one computer mouse click, or define a

unique 3D curve using one mouse stroke

on the 2D computer screen. This ap-

proach has been demonstrated to boost

both the reconstruction speed and accu-

Figure 2. Vaa3D visualization of 4D and 5D microscopic images, as well as associated 3D surface objects, of different model
animals. (a) The hierarchical (multi-scale) 3D visualization of a fluorescent confocal image of fruit fly (Drosophila melanogaster) brain using both
global and local 3D viewers. In the global viewer, different brain compartments rendered using surface meshes (in different colors) are overlaid on
top of the 3D volume of a fruit fly brain. When an image is very large, the global viewer can serve for navigation purpose. A user can quickly define
any 3D local region of interest and display it in a local 3D viewer using full resolution. In this example, the brain voxels can be rendered in a different
color from the global viewer, while the user can optionally display other surface objects, such as the single 3D-reconstructed neuron (yellow). (b) 5D
visualization of a series of multi-color 3D image stacks of C. elegans (courtesy of Rex Kerr). Different 3D viewing angles can be adjusted in real-time in
Vaa3D, with which the user can freely change the displayed time point (bottom).
doi:10.1371/journal.pcbi.1002519.g002
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racy of 3D neuron morphology [12,14].

In the long run, integrating these 3D

interaction techniques in immersive visu-

alization of very large data, possibly also

equipped with other virtual reality tech-

niques and a very large display wall, may

demonstrate its power in detecting inter-

esting patterns or associations in very

large data sets.

In practice, 3D visualization of multi-

dimensional image data may involve many

other considerations. For instance, in both

3D tomographic EM imaging and laser

scanning microscopy, anisotropy is an

often seen property of the data. Software

tools (e.g., Vaa3D) can reslice the data in

the 3D rendering based on the relative

pixel size in three dimensions, thus

providing a more realistic display of the

data. In Vaa3D, this auto-slicing function

is combined with some image analysis

functions (e.g., fibrous structure tracing)

discussed below to generate various 3D

reconstructions of the image objects. In

addition, data filtering techniques (e.g.,

non-linear anisotropic diffusion, recursive

median filtering, bilateral filtering, etc.)

have been provided in many software tools

(e.g., ImageJ). Integrating all these tools

together could lead to more interesting

insight in the data (see the last section on

‘‘pipelining’’).

Analysis of 3D Microscopic
Images

The overarching goal of microscopic

image analysis is to quantitatively measure

‘‘objects’’ in microscopic images, preferably

in an automatic manner. Various labeled

molecules (e.g., proteins or protein com-

plexes), sub-cellular organelles, cells, or

super-cellular objects (e.g., neuron popula-

tions or cell lineages) often need to be

extracted, named, and compared with each

other, before they can be measured. Most

microscopic image analysis techniques can

be categorized into three major classes,

namely segmentation, registration, and annotation.

N Segmentation is the process of parti-

tioning an image into multiple regions,

so that voxels within each region share

certain common features. Image seg-

mentation is often used to locate

objects and their boundaries (lines,

curves, etc., e.g., [23]), as well as to

Figure 3. 3D image visualization and analysis for measuring single-cell gene expression of C. elegans. (a) Tri-view display of a confocal
image of C. elegans (L1 stage). Green: DAPI staining (pseudo-colored); red: myo3:GFP labeled muscle cells. (b) Tri-view display of the 3D watershed
segmented nuclei of (a). The co-localized image objects are indicated by crosses (white). (c) A spreadsheet display of 3D measured gene expression of
various cells. All sub-figures are produced using VANO [39], a 3D annotation tool.
doi:10.1371/journal.pcbi.1002519.g003
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perform qualitative and quantitative

analysis in images [24,25]. In micro-

scopic image analysis, segmentation is

typically used to locate, track, and

classify bio-structures such as cells or

nuclei [4], fibrous structures (e.g.,

axonal fibers [5,7], microtubules

[26]), and anatomical/functional tissue

regions. Thresholding [27], watershed

[28,25], and deformable models [29]

are the basis for the most commonly

used segmentation techniques for mi-

croscopic images.

N Registration [30] is the process to map

multiple or many images geometrical-

ly, via a linear or nonlinear transform,

so that image objects or features can be

compared directly in a ‘‘standard’’

space. Registration is particularly

widely used in three types of micro-

scopic image processing tasks: stitching

of image tiles [31] (e.g., electron and

light microscopic tiles), registration of

multiple samples of the same biological

entity [19,32] (e.g., different images of

the same neuron-population), fusion of

multi-different views [33] of one object

(e.g., tomography used in electron

microscopy or selective plane illumi-

nation microscopy). Rigid or affine

transforms are often used to register

images globally. These linear trans-

forms can be iteratively applied to

images at different scales to achieve

nonlinear registration. However, it is

more common to use B-spline or thin-

plate-spline to derive nonlinear smooth

transforms [34], which are often used

to register images locally.

Figure 4. A pipeline of image analysis and data mining tools for building the neuronal atlases of fruit fly brains. (a) A flowchart of the
key steps in building a fruit fly brain atlas. (b) A 3D digital atlas of 269 stereotyped neurite tracts reconstructed from GAL4-label fruit fly brains [19].
Pseudo colors are used to distinguish different tracts. The width of each tract equals its spatial divergence.
doi:10.1371/journal.pcbi.1002519.g004

PLoS Computational Biology | www.ploscompbiol.org 5 June 2012 | Volume 8 | Issue 6 | e1002519



N Annotation is the process to label/

name images or image objects (e.g.,

cells) or assign their phenotypic prop-

erties with predefined terms. For

example, controlled vocabularies of

ontology have been assigned to images

for annotating gene expression pat-

terns (e.g., [35–37]). Another signifi-

cant type of application is to recognize

special objects of interest (e.g., cells)

automatically [4,38] and therefore to

facilitate the quantitative measurement

of biological entities (e.g., single-cell

resolution gene expression).

Pipelining 3D Visualization and
Analysis Modules

In many biological applications, differ-

ent image analysis techniques need to be

used as a whole pipeline. For instance, for

profiling the gene expression at the single

nucleus resolution of Caenorhabditis elegans

[4], laser scanning microscopic images of

this animal are first straightened (Figure 3a)

[40], which can be categorized as a

registration step. Then, C. elegans cells that

are stained using DAPI are segmented

(Figure 3b) using an adaptive 3D water-

shed algorithm. Cells are then recognized

(Figure 3) based on their relative location

patterns in the 3D standardized space.

Once the cell identities are determined,

quantifying the gene expression is as

simple as computing the normalized

intensity within the nucleus region. The

segmentation and recognition steps can

also be unified using a recent approach of

atlas-to-image deforming model [38].

Pipelining image analysis modules and

other more sophisticated data analysis/

mining modules is a powerful way to

generate quantitative biology. One such

pipeline is shown in Figure 4a, which

illustrates the main steps to construct the

first 3D map of spatially invariant neurite

tracts of a brain. Confocal images of adult

fruit fly brains are first registered in 3D

using the BrainAligner system [19]

(Figure 4a, Step 2), so that different

populations of neurons labeled using a

number of GAL4 lines can be aligned and

compared within the same 3D coordinate

system. Then, neurite tracts are segmented

and traced in 3D (Figure 4a, Step 3). The

neurite tracts reconstructed from the same

GAL4 line have a clear correspondence.

They are then annotated (Figure 4a, Step

4). A neuron/neurite comparison and

mining module is then used to determine

the spatial divergence of the correspond-

ing neurite tracts (Figure 4a, Step 5),

followed by a final mapping to the

standard space of the 3D fly brain atlas

(Figure 4a, Step 5). With this approach, it

is possible to measure hundreds of stereo-

typed neurite tracts in a fruit fly’s brain

(Figure 4b). The same pipeline can be used

to study other brain wiring-maps of

neurons.

Conclusions

Visualization and analysis methods are

critical for understanding and using 3D

microscopic images for various cell biolo-

gy, structural biology, neurosciences, and

systems biology applications. These tools

become indispensable for the ever-increas-

ing need to screen tens of gigabytes to

many terabytes of microscopic images.

Pipelining these tools and other data

analysis/mining methods is a new trend

for producing interesting biology.
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